Skip to main content
Log in

Second Order Accurate IMEX Methods for Option Pricing Under Merton and Kou Jump-Diffusion Models

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper three implicit-explicit (IMEX) time semi-discrete methods, namely IMEX-BDF1, IMEX-BDF2 and CN-LF, are developed for solving parabolic partial integro-differential equations which arise in option pricing theory when the underlying asset follows a jump diffusion process. It is shown that IMEX-BDF2 and CN-LF are stable and second order accurate, whereas IMEX-BDF1 is stable but only first order accurate. After time semi-discretization, the resulting linear differential equations are solved by using a cubic B-spline collocation method. The methods so developed have computational complexity of \(O(MNlog_{2}(M))\) for Merton model and of \(O(MN)\) for Kou model, where \(N\) denotes the number of time steps and \(M\) the number of collocation points. Some numerical examples, for pricing European options under Merton and Kou jump-diffusion models with constant as well as variable volatility, are presented to demonstrate the stability, convergence and computational complexity of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Article  MATH  Google Scholar 

  2. Dupire, B.: Pricing with a smile, RISK magazine January, pp. 18–20 (1994)

  3. Hull, J., White, A.: The pricing of options with stochastic volatilities. J. Finance 42, 281–300 (1987)

    Article  Google Scholar 

  4. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Finance Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  5. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Finance Econ. 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  6. Kou, S.G.: A jump-diffusion model for option pricing. Manage Sci. 48, 1086–1101 (2002)

    Article  MATH  Google Scholar 

  7. Madan, D.B., Milne, F.: Option pricing with V. G. Martingale components. Math. Finance 1, 39–55 (1991)

    Article  MATH  Google Scholar 

  8. Barndorff-Nielsen, E., Mikosch, T., Resnick, S.I.: Lévy Processes: Theory and Applications. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  9. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)

    Article  Google Scholar 

  10. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  11. Bates, D.: Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options. Review of Financial Studies 9, 69–107 (1996)

    Article  Google Scholar 

  12. Andersen, L., Andreasen, J.: Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4, 231–262 (2000)

    Article  MATH  Google Scholar 

  13. Carr, P., Madan, D.B.: Option valuation using the fast Fourier transform. J. Comput. Finance 2, 61–73 (1999)

    Google Scholar 

  14. Amin, K.I.: Jump diffusion option valuation in discrete time. J. Finance 48, 1883–1863 (1993)

    Google Scholar 

  15. Matache, A.-M., von Petersdorff, T., Schwab, C.: Fast deterministic pricing of options on Lévy driven assets, M2AN Math. Model. Numer. Anal. 38, 37–71 (2004)

    Article  MATH  Google Scholar 

  16. Briani, M., Chioma, C.L., Natalini, R.: Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Numer. Math. 98, 607–646 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. Siam J. Numer. Anal. 43, 1596–1626 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. d’Halluin, Y., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for contigent claims under jump diffusion processes. IMA J. Numer. Anal. 25, 87–112 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tavella, D., Randall, C.: Pricing Financial Instruments: The Finite Difference Method. Wiley, Chichester (2000)

    Google Scholar 

  20. Almendral, A., Oosterlee, C.W.: Numerical valuation of options with jumps in the underlying. Appl. Numer. Math. 53, 1–18 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kwon, Y., Lee, Y.: A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal. 49, 2598–2617 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kwon, Y., Lee, Y.: A second-order tridiagonal method for American options under jump-diffusion models. SIAM J. Sci. Comput. 33, 1860–1872 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen, F., Shen, J., Yu, H.: A new spectral element method for pricing european options under the Black-Scholes and Merton jump diffusion models. J. Sci. Comput. 52, 499–518 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wilmott, P.: Derivatives: The Theory and Practice of Financial Engineering. Wiley, West Sussex (1998)

    Google Scholar 

  25. Garroni, M. G., Menaldi, J. L.: Green functions for second order parabolic integro-differential problems, Pitman Res. Notes Math. Ser., (1992)

  26. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. de Boor, C.: A Practical Guide to Splines, (revised edition). Springer, New York (2001)

  28. Carr, P., Mayo, A.: On the numerical evaluation of option prices in jump diffusion processes. Eur. J. Finance 13(4), 353–372 (2007)

    Article  Google Scholar 

  29. Toivanen, J.: Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM J. Sci. Comput. 30, 1949–1970 (2008)

    Article  MathSciNet  Google Scholar 

  30. Naimark, M. A.: Linear Differential Equations, Part I, English Transl. by E.R. Dawson, ed. by W.N. Everitt. Ungar, New York (1967)

  31. Kadalbajoo, M.K., Tripathi, L.P., Arora, P.: A robust nonuniform B-spline collocation method for solving the generalized Black-Scholes equation. IMA J. Numer. Anal. 34(1), 252–278 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  32. Clavero, C., Jorge, J.C., Lisbona, F.: Uniformly convergent schemes for singular perturbation problems combining alternating directions and exponential fitting techniques. In: Miller, J.J.H. (ed.) Applications of Advanced Computational Methods for Boundary and Interior Layers, pp. 33–52. Boole, Dublin (1993)

    Google Scholar 

  33. Gonzalez, C., Palencia, C.: Stability of time-stepping methods for abstract time-dependent parabolic problems. SIAM J. Numer. Anal. 35, 973–989 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ikonen, S., Toivanen, J.: Operator splitting methods for American option pricing. Appl. Math. Lett. 17, 809–814 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Salmi, S., Toivanen, J.: IMEX schemes for pricing options under jump-diffusion models. Appl. Numer. Math. 84, 33–45 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the comments/suggestions of the referee which have greatly improved the paper. The work of authors [Lok Pati Tripathi, Alpesh Kumar] is supported by Council of Scientific and Industrial Research(CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lok Pati Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadalbajoo, M.K., Tripathi, L.P. & Kumar, A. Second Order Accurate IMEX Methods for Option Pricing Under Merton and Kou Jump-Diffusion Models. J Sci Comput 65, 979–1024 (2015). https://doi.org/10.1007/s10915-015-0001-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0001-z

Keywords

Navigation