Skip to main content
Log in

Alternating Direction Implicit Galerkin Methods for an Evolution Equation with a Positive-Type Memory Term

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We formulate and analyze new methods for the solution of a partial integrodifferential equation with a positive-type memory term. These methods combine the finite element Galerkin (FEG) method for the spatial discretization with alternating direction implicit (ADI) methods based on the Crank–Nicolson (CN) method and the second order backward differentiation formula for the time stepping. The ADI FEG methods are proved to be of optimal accuracy in time and in the \(L^2\) norm in space. Furthermore, the analysis is extended to include an ADI CN FEG method with a graded mesh in time for problems with a nonsmooth kernel. Numerical results confirm the predicted convergence rates and also exhibit optimal spatial accuracy in the \(L^{\infty }\) norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bramble, J.H., Ewing, R.E., Li, G.: Alternating direction multistep methods for parabolic problems-iterative stabilization. SIAM J. Numer. Anal. 25, 904–919 (1989)

    Article  MathSciNet  Google Scholar 

  2. Chen, C., Shih, T.: Finite Element Methods for Integrodifferential Equations. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  3. Dendy Jr, J.E.: An analysis of some Galerkin schemes for the solution of nonlinear time-dependent problems. SIAM J. Numer. Anal. 12, 541–565 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fernandes, R.I., Bialecki, B., Fairweather, G.: Alternating direction implicit orthogonal spline collocation methods for evolution equations. In: Jacob, M.J., Panda, S. (eds.) Mathematical Modelling and Applications to Industrial Problems (MMIP-2011), pp. 3–11. Macmillan Publishers India Limited, India (2012)

    Google Scholar 

  5. McLean, W., Mustapha, K.: A second order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. McLean, W., Thomée, V.: Numerical solution of an evolution equation with a positive-type memory term. J. Aust. Math. Soc. Ser. B. 35, 23–70 (1993)

    Article  MATH  Google Scholar 

  7. McLean, W., Thomée, V.: Numerical solution via Laplace transforms of a fractional-order evolution equation. J. Integral Equ. Appl. 22, 57–94 (2010)

    Article  MATH  Google Scholar 

  8. McLean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation. IMA J. Numer. Anal. 30, 208–230 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. McLean, W., Thomée, V., Wahlbin, L.B.: Discretization with variable time steps of an evolution equation with a positive type memory term. J. Comput. Appl. Math. 69, 49–69 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comput. 78, 1975–1995 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pani, A.K., Fairweather, G., Fernandes, R.I.: Alternating direction implicit orthogonal spline collocation methods for an evolution equation with a positive-type memory term. SIAM J. Numer. Anal. 46, 344–364 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Thomée, V.: A high order parallel method for time discretization of parabolic type equations based on Laplace transformation and quadrature. Int. J. Numer. Anal. Model. 2, 85–96 (2005)

    MATH  MathSciNet  Google Scholar 

  13. Wheeler, M.F.: A priori \(L_2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors AKP and GF gratefully acknowledge the research support of the Department of Science and Technology, Government of India, through the National Programme on Differential Equations: Theory, Computation and Applications, DST Project No.SERB/F/1279/2011-2012. Support was also received by AKP from Chiangmai University, Thailand, and by GF from IIT Bombay while a Distinguished Visiting Professor at that institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Fairweather.

Appendices

Appendix 1

Lemma 7.1

With \(\zeta _{n}=k_{n+1}/{k_n}\),

$$\begin{aligned} \sum _{n=1}^{J-1}\left( \zeta _n^{2(1+\alpha )} - 1 \right) \le C. \end{aligned}$$

Proof

First recall that, for \(a, b \in \mathcal{R}\),

$$\begin{aligned} a^n + b^n \le (a+b)^n. \end{aligned}$$

With

$$\begin{aligned} a= x^{1/n} - y^{1/n}, \quad b=y^{1/n}, \qquad x \ge y, \end{aligned}$$

we have

$$\begin{aligned} \left( x^{1/n} - y^{1/n}\right) ^n + y \le x \end{aligned}$$

or

$$\begin{aligned} x^{1/n} - y^{1/n}\le (x-y)^{1/n}. \end{aligned}$$
(7.1)

With \(t_n=(nk)^{\gamma }\),

$$\begin{aligned} k_{n+1} = t_{n+1}-t_n = [(n+1)k]^{\gamma }-(nk)^{\gamma } = (nk)^{\gamma }\left[ \left( 1+\frac{1}{n}\right) ^{\gamma } -1 \right] \end{aligned}$$

and

$$\begin{aligned} k_n = t_{n}-t_{n-1}= (nk)^{\gamma }\left[ 1-\left( 1-\frac{1}{n}\right) ^{\gamma } \right] . \end{aligned}$$

Thus

$$\begin{aligned} \zeta _n^{2(1+\alpha )} - 1 =\frac{k_{n+1}^{2(\alpha +1)} -k_n^{2(\alpha +1)} }{k_{n}^{2(\alpha +1)}} \le \frac{( k_{n+1} +k_n )^{2(\alpha +1)} }{k_{n}^{2(\alpha +1)}}, \end{aligned}$$
(7.2)

on using (7.1). Then, from (7.2),

$$\begin{aligned} \zeta _n^{2(1+\alpha )} - 1\le & {} \frac{\left[ \left( 1 + \frac{1}{n}\right) ^{\gamma } -2 +\left( 1 - \frac{1}{n}\right) ^{\gamma } \right] ^{2(\alpha +1)}}{\left[ 1-\left( 1 - \frac{1}{n}\right) ^{\gamma }\right] ^{2(\alpha +1)}}\\= & {} \frac{ \frac{\gamma (\gamma -1)}{n^2}\left[ 1+\sum _{j=3}^{\infty }\frac{1+ (-1)^j}{\gamma (\gamma -1)}\left( \begin{array}{c} \gamma \\ j \end{array} \right) \frac{1}{n^{j-1}}\right] ^{2(\alpha +1)}}{\frac{\gamma }{n}\left[ 1+ \sum _{j=2}^{\infty }\frac{(-1)^j}{\gamma }\left( \begin{array}{c} \gamma \\ j \end{array} \right) \frac{1}{n^{j-1}}\right] ^{2(\alpha +1)}} \\\le & {} C\left( \frac{k}{nk}\right) ^{2(\alpha +1)} \\= & {} Ck^{2(\alpha +1)}t_n^{-\frac{2(\alpha +1)}{\gamma }}. \end{aligned}$$

Thus

$$\begin{aligned} \sum _{n=1}^{J-1}\left( \zeta _n^{2(1+\alpha )} - 1 \right)\le & {} C\sum _{n=1}^{J-1}k^{2(\alpha +1)}t_n^{-\frac{2(\alpha +1)}{\gamma }}\\= & {} C\sum _{n=1}^{J-1}\left( \frac{k}{k_n}\right) ^{2(\alpha +1)}k_n^{2(\alpha +1)}t_n^{-\frac{2(\alpha +1)}{\gamma }}. \end{aligned}$$

Since

$$\begin{aligned} \left( \frac{k}{k_n}\right) ^{2(\alpha +1)}\le \left( \frac{2^{\gamma -1}}{\gamma } \right) ^{2(\alpha +1)}t_n^{2(-1+\frac{1}{\gamma })(\alpha +1)}, \end{aligned}$$
(7.3)

it follows that

$$\begin{aligned} \sum _{n=1}^{J-1}\left( \zeta _n^{2(1+\alpha )} - 1 \right)\le & {} C\left( \frac{2^{\gamma -1}}{\gamma } \right) ^{2(\alpha +1)} \sum _{n=1}^{J-1}k_n^{2(\alpha +1)}t_n^{2(\alpha +1)(-1+\frac{1}{\gamma })}t_n^{-\frac{2}{\gamma }(\alpha +1)} \end{aligned}$$

Then using (7.3) again,

$$\begin{aligned} \sum _{n=1}^{J-1}\left( \zeta _n^{2(1+\alpha )} -1 \right)\le & {} Ck^{2\alpha +1}\sum _{n=1}^{J-1}k_nt_n^{-(1+\frac{1}{\gamma } + \frac{2\alpha }{\gamma })}\\\le & {} Ck^{2\alpha +1}\int _{t_1}^{t_J}t^{-(1+\frac{1}{\gamma }+ \frac{2\alpha }{\gamma })}\,dt\\\le & {} Ck^{2\alpha +1} \left[ \frac{t_1^{-(\frac{1}{\gamma } + \frac{2\alpha }{\gamma })} -t_J^{-(\frac{1}{\gamma } + \frac{2\alpha }{\gamma })}}{(\frac{1}{\gamma } + \frac{2\alpha }{\gamma })} \right] \\\le & {} Ck^{2\alpha +1}k^{-(2\alpha +1)}\\= & {} C, \end{aligned}$$

which completes the proof.\(\square \)

Appendix 2

For any continuous function \(\psi \),

$$\begin{aligned} \psi (t_{n-1/2}) \approx \frac{1}{k_n}\int _{t_{n-1}}^{t_n} \psi (t)\;dt, \end{aligned}$$

from the midpoint rule. Thus, if

$$\begin{aligned} \mathcal{I}(\phi ) = \int _0^t \beta (t-s)\varphi (s)\;ds, \end{aligned}$$

then

$$\begin{aligned} \mathcal{I}^{n+{\frac{1}{2}}}(\varphi )\approx & {} \frac{1}{k_n}\int _{t_{n-1}}^{t_n} \int _0^t \beta (t-s)\varphi (s)\;ds\;dt\\= & {} \frac{1}{k_n}\int _{t_{n-1}}^{t_n}\left\{ \int _{0}^{t_1} \beta (t-s)\varphi (s)\;ds +\sum _{j=2}^{n-1}\int _{t_{j-1}}^{t_j}\beta (t-s)\varphi (s)\;ds\right. \\&\left. +\int _{t_{n-1}}^{t} \beta (t-s)\varphi (s)\;ds\right\} dt\\\approx & {} \frac{1}{k_n}\int _{t_{n-1}}^{t_n}\left\{ \varphi (t_1)\int _{0}^{t_1} \beta (t-s)\;ds +\sum _{j=2}^{n-1}\varphi ^{j-{\frac{1}{2}}}\int _{t_{j-1}}^{t_j}\beta (t-s)\varphi (s)\;ds\right. \\&\left. +\,\varphi ^{n-{\frac{1}{2}}}\int _{t_{n-1}}^{t}\beta (t-s)\varphi (s)\;ds\right\} dt\\= & {} \omega _{n1} k_1 \varphi ^{1}+ \sum _{j=2}^{n} \omega _{nj} k_j \varphi ^{j-{\frac{1}{2}}}\\\equiv & {} \tilde{Q}^{n-{\frac{1}{2}}}(\varphi ), \end{aligned}$$

where

$$\begin{aligned} \omega _{nj}= & {} \frac{1}{k_n k_j} \int _{t_{n-1}}^{t_n} \int _{t_{j-1}}^{t_j} \beta (t-s) \,ds\,dt, \quad j=1,\ldots ,n-1,\nonumber \\ \quad \omega _{nn}= & {} \frac{1}{k_n^2} \int _{t_{n-1}}^{t_n} \int _{t_{n-1}}^{t} \beta (t-s) \,ds\,dt. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khebchareon, M., Pani, A.K. & Fairweather, G. Alternating Direction Implicit Galerkin Methods for an Evolution Equation with a Positive-Type Memory Term. J Sci Comput 65, 1166–1188 (2015). https://doi.org/10.1007/s10915-015-0004-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0004-9

Keywords

Mathematics Subject Classification

Navigation