Skip to main content
Log in

Fast Numerical Contour Integral Method for Fractional Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The numerical contour integral method with hyperbolic contour is exploited to solve space-fractional diffusion equations. By making use of the Toeplitz-like structure of spatial discretized matrices and the relevant properties, the regions that the spectra of resulting matrices lie in are derived. The resolvent norms of the resulting matrices are also shown to be bounded outside of the regions. Suitable parameters in the hyperbolic contour are selected based on these regions to solve the fractional diffusion equations. Numerical experiments are provided to demonstrate the efficiency of our contour integral methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Benson, D., Schumer, R., Meerschaert, M., Wheatcraft, S.: Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Med. 42, 211–240 (2001)

    Article  MathSciNet  Google Scholar 

  2. Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  3. Gavrilyuk, I.P., Makarov, V.L.: Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces. SIAM J. Numer. Anal. 43, 2144–2171 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  5. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  6. in ’t Hout, K.J., Weideman, J.A.C.: A contour integral method for the Black–Scholes and Heston equations. SIAM J. Sci. Comput. 33, 763–785 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for containant transport in catchments. Nature 403, 524–526 (2000)

    Article  Google Scholar 

  8. Lee, H., Lee, J., Sheen, D.: Laplace transform method for parabolic problems with time-dependent coefficients. SIAM J. Numer. Anal. 51, 112–125 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lee, S., Pang, H., Sun, H.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lei, S., Sun, H.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)

    MathSciNet  Google Scholar 

  12. Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)

    Article  MathSciNet  Google Scholar 

  13. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform of certain holomorphic mapping. Appl. Numer. Math. 51, 289–303 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. López-Fernández, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332–1350 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)

    Google Scholar 

  17. Martensen, E.: Zur numerischen Auswertung uneigentlicher Integrale. ZAMM Z. Angew. Math. Mech. 48, T83–T85 (1968)

    MATH  MathSciNet  Google Scholar 

  18. Mclean, W., Sloan, I.H., Thomée, V.: Time discretization via Laplace transformation of an integro-differential equation of parabolic type. Numer. Math. 102, 497–522 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mclean, W., Thomée, V.: Time discretization of an evolution equation via Laplace transformation. IMA J. Numer. Anal. 24, 439–463 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mclean, W., Thomée, V.: Numerical solution via Laplace transformation of a fractional-order evolution equation. J. Integr. Equ. Appl. 22, 57–94 (2010)

    Article  MATH  Google Scholar 

  21. Mclean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation. IMA J. Numer. Anal. 30, 208–230 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–diffusion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  27. Qu, W., Lei, S., Vong, S.: Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations. Int. J. Comput. Math. 91, 2232–2242 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  28. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica 314, 749–755 (2002)

    Article  MATH  Google Scholar 

  29. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  30. Shen, S., Liu, F.: Error analysis of an explicit finite difference approximation for the space fractional diffusion. ANZIAM J. 46, 871–887 (2005)

    MathSciNet  Google Scholar 

  31. Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic problems based on contour integral representation and quadrature. Math. Comput. 69, 177–195 (1999)

    Article  Google Scholar 

  32. Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal. 23, 269–299 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Spijker, M.N.: Numerical ranges and stability estimates. Appl. Numer. Math. 13, 241–249 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Talbot, A.: The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl. 23, 97–120 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tilli, P.: Singular values and eigenvalues of non-Hermitian block Toeplitz matrices. Linear Algebra Appl. 272, 59–89 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wang, H., Basu, T.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang, H., Wang, K.: An \(O(N\log ^2N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Weideman, J.A.C.: Improved contour integral methods for parabolic PDEs. IMA J. Numer. Anal. 30, 334–350 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76, 1341–1356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions. The first author was supported by the National Natural Science Foundation of China under Grant 11201192, the Natural Science Foundation of Jiangsu Province under Grant BK2012577, and the Natural Science Foundation for Colleges and Universities in Jiangsu Province under Grant 12KJB110004. The second author was supported by research grants 005/2012/A1 from FDCT of Macao and MYRG206(Y3-L4)-FST11-SHW from University of Macau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Wei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, HK., Sun, HW. Fast Numerical Contour Integral Method for Fractional Diffusion Equations. J Sci Comput 66, 41–66 (2016). https://doi.org/10.1007/s10915-015-0012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0012-9

Keywords

Mathematics Subject Classification

Navigation