Skip to main content
Log in

Recovery-Based Error Estimator for the Discontinuous Galerkin Method for Nonlinear Scalar Conservation Laws in One Space Dimension

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a robust recovery-based error estimator for the original discontinuous Galerkin method for nonlinear scalar conservation laws in one space dimension. The proposed a posteriori error estimator of the recovery-type is easy to implement, computationally simple, asymptotically exact, and is useful in adaptive computations. We use recent results (Meng et al. in SIAM J Numer Anal 50:2336–2356, 2012) to prove that, for smooth solutions, our a posteriori error estimates at a fixed time converge to the true spatial errors in the \(L^2\)-norm under mesh refinement. The order of convergence is proved to be \(p + 1\), when \(p\)-degree piecewise polynomials with \(p\ge 1\) are used. We further prove that the global effectivity index converges to unity at \(\mathcal {O}(h)\) rate. Our proofs are valid for arbitrary regular meshes using \(P^p\) polynomials with \(p\ge 1\), under the condition that \(|f'(u)|\) possesses a uniform positive lower bound, where \(f(u)\) is the nonlinear flux function. We provide several numerical examples to support our theoretical results, to show the effectiveness of our recovery-based a posteriori error estimates, and to demonstrate that our results hold true for nonlinear conservation laws with general flux functions. These experiments indicate that the restriction on \(f(u)\) is artificial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adjerid, S., Baccouch, M.: The discontinuous Galerkin method for two-dimensional hyperbolic problems. Superconvergence error analysis. J. Sci. Comput. 33, 75–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adjerid, S., Baccouch, M.: The discontinuous Galerkin method for two-dimensional hyperbolic problems. Part II: a posteriori error estimation. J. Sci. Comput. 38, 15–49 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adjerid, S., Baccouch, M.: Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem. Appl. Numer. Math. 60, 903–914 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adjerid, S., Baccouch, M., et al.: Adaptivity and error estimation for discontinuous Galerkin methods. In: Feng, X., Karakashian, O., Xing, Y. (eds.) Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, vol. 157 of The IMA Volumes in Mathematics and its Applications, pp. 63–96. Springer, Switzerland (2014)

    Chapter  Google Scholar 

  5. Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097–1112 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  7. Babu\(\check{s}\)ka, I., Strouboulis, T., Upadhyay, C.: A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Comput. Methods Appl. Mech. Eng. 114, 307–378 (1994)

  8. Babu\(\check{s}\)ka, I., Strouboulis, T., Upadhyay, C., Gangaraj, J., Copps, K.: Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Methods Eng. 37, 1073–1123 (1994)

  9. Baccouch, M.: A local discontinuous Galerkin method for the second-order wave equation. Comput. Methods Appl. Mech. Eng. 209–212, 129–143 (2012)

    Article  MathSciNet  Google Scholar 

  10. Baccouch, M.: A posteriori error estimates for a discontinuous Galerkin method applied to one-dimensional nonlinear scalar conservation laws. Appl. Numer. Math. 84, 1–21 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baccouch, M., Adjerid, S.: Discontinuous Galerkin error estimation for hyperbolic problems on unstructured triangular meshes. Comput. Methods Appl. Mech. Eng. 200, 162–177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser Verlag, Switzerland (2003)

    Book  MATH  Google Scholar 

  13. Castillo, P.: A superconvergence result for discontinuous Galerkin methods applied to elliptic problems. Comput. Methods Appl. Mech. Eng. 192, 4675–4685 (2003)

    Article  MATH  Google Scholar 

  14. Celiker, F., Cockburn, B.: Superconvergence of the numerical traces for discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension. Math. Comput. 76, 67–96 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044–4072 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Pub. Co., Amsterdam (1978)

    MATH  Google Scholar 

  17. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)

    Google Scholar 

  18. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin methods for scalar conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Delfour, M., Hager, W., Trochu, F.: Discontinuous Galerkin methods for ordinary differential equation. Math. Comput. 154, 455–473 (1981)

    Article  MathSciNet  Google Scholar 

  21. Devine, K.D., Flaherty, J.E.: Parallel adaptive \(hp\)-refinement techniques for conservation laws. Comput. Methods Appl. Mech. Eng. 20, 367–386 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Comput. Differ. Equ. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  23. Flaherty, J.E., Loy, R., Shephard, M.S., Szymanski, B.K., Teresco, J.D., Ziantz, L.H.: Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. J. Parallel Distrib. Comput. 47, 139–152 (1997)

    Article  Google Scholar 

  24. Johnson, C.: Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 25, 908–926 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lesaint, P., Raviart, P.: On a finite element method for solving the neutron transport equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, New York (1974)

    Google Scholar 

  26. Li, R., Liu, W., Yan, N.: A posteriori error estimates of recovery type for distributed convex optimal control problems. J. Sci. Comput. 33, 155–182 (2007)

    Article  MathSciNet  Google Scholar 

  27. Meng, X., Shu, C.-W., Zhang, Q., Wu, B.: Superconvergence of discontinuous Galerkin methods for scalar nonlinear conservation laws in one space dimension. SIAM J. Numer. Anal. 50(5), 2336–2356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Peterson, T.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28, 133–140 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation, Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos (1973)

  30. Schumaker, L.: Spline Functions: Basic Theory. Cambridge University Press, Cambridge New York (2007)

    Book  Google Scholar 

  31. Segeth, K.: A posteriori error estimation with the finite element method of lines for a nonlinear parabolic equation in one space dimension. Numerische Mathematik 83(3), 455–475 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shu, C.-W.: Discontinuous Galerkin method for time-dependent problems: Survey and recent developments. In: Feng, X., Karakashian, O., Xing, Y. (eds.) Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, vol. 157 of The IMA Volumes in Mathematics and its Applications, pp. 25–62. Springer, Berlin (2014)

    Chapter  Google Scholar 

  33. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Teubner, Teubner-Wiley, Leipzig (1996)

    MATH  Google Scholar 

  34. Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50, 3110–3133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part I: the recovery technique, Int. J. Numer. Methods Eng. 33, 1331–1364 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part II: error estimates and adaptivity. Int. J. Numer. Methods Eng. 33, 1365–1382 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for the valuable comments and suggestions which improve the quality of the paper. This research was supported by the University Committee on Research and Creative Activity (UCRCA Proposal 2015-01-F) at the University of Nebraska at Omaha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboub Baccouch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baccouch, M. Recovery-Based Error Estimator for the Discontinuous Galerkin Method for Nonlinear Scalar Conservation Laws in One Space Dimension. J Sci Comput 66, 459–476 (2016). https://doi.org/10.1007/s10915-015-0030-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0030-7

Keywords

Navigation