Skip to main content
Log in

Trapezoidal Rule for Computing Supersingular Integral on a Circle

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The computation of trapezoidal rule for the supersingular integrals on a circle in boundary element methods is discussed. When the singular point coincides with some priori known point, the convergence rate of the trapezoidal rule is higher than the global one which is considered as the superconvergence phenomenon. Then the error functional of density function is derived and the superconvergence phenomenon of composite trapezoidal rule occurs at certain local coordinate of each subinterval. At last, several numerical examples are provided to validate the theoretical analysis and show the efficiency of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, D.H.: Natural Boundary Integrals Method and its Applications. Kluwer Academic Publishers, Berlin (2002)

    Google Scholar 

  2. Yu, D.H.: The approximate computation of hypersingular integrals on interval. Numer. Math. J. Chin. Univ. (English Ser.) 1, 114–127 (1992)

    MATH  Google Scholar 

  3. Zhang, X.P., Wu, J.M., Yu, D.H.: The superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application. Int. J. Comput. 87(4), 855–876 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yang, C.X.: A unified approach with spectral convergence for the evaluation of hypersingular and supersingular integrals with a periodic kernel. J. Comput. Appl. Math. 239, 322–332 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Linz, P.: On the approximate computation of certain strongly singular integrals. Computing 35, 345–353 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, J.M., Wang, Y.X., Li, W., Sun, W.W.: Toeplitz-type approximations to the Hadamard integral operator and their applications to electromagnetic cavity problems. Appl. Numer. Math. 58(2), 101–121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abdou, M.A.: Fredholm–Volterra integral equation with singular kernel. Appl. Math. Comput. 137, 231–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Klerk, J.H.: Solving strongly singular integral equations by Lp approximation methods. Appl. Math. Comput. 127, 311–326 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Akel, M.S., Hussein, H.S.: Numerical treatment of solving singular integral equations by using Sinc approximations. Appl. Math. Comput. 218, 3565–3573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhou, Y.T., Li, J., Yu, D.H., Lee, K.Y.: Numerical solution of hypersingular equation using recursive wavelet on invariant set. Appl. Math. Comput. 217, 861–868 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Monegato, G.: Numerical evaluation of hypersingular integrals. J. Comput. Appl. Math. 50, 9–31 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Choi, U.J., Kim, S.W., Yun, B.I.: Improvement of the asymptotic behaviour of the Euler-Maclaurin formula for Cauchy principal value and Hadamard finite-part integrals. Int. J. Numer. Methods Eng. 61, 496–513 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, J.M., Yu, D.H.: The approximate computation of hypersingular integrals on interval. Chin. J. Numer. Math. Appl. 21, 25–33 (1999)

    MathSciNet  Google Scholar 

  14. Frangi, A., Bonnet, M.: A direct approach for boundary integral equations with high-order singularities. Int. J. Numer. Methods Eng. 49, 871–898 (2000)

    Article  MATH  Google Scholar 

  15. Hasegawa, T.: Uniform approximations to finite Hilbert transform and its derivative. J. Comput. Appl. Math. 163, 127–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hui, C.Y., Shia, D.: Evaluations of hypersingular integrals using Gaussian quadrature. Int. J. Numer. Methods Eng. 44, 205–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ioakimidis, N.I.: On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives. Math. Comp. 44, 191–198 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, P., Jin, U.C.: Two trigonometric quadrature formulae for evaluating hypersingular integrals. Inter. J. Numer. Methods Eng. 56, 469–486 (2003)

    Article  MATH  Google Scholar 

  19. Li, J., Wu, J.M., Yu, D.H.: Generalized extrapolation for computation of hypersingular integrals in boundary element methods. CMES. Comput. Model. Eng. Sci. 42(2), 151–175 (2009)

    MathSciNet  Google Scholar 

  20. Li, J., Yu, D.H.: The superconvergence of certain two-dimensional Cauchy Principal value integrals. CMES Comput. Model. Eng. Sci. 71, 331–346 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Li, J., Yu, D.H.: The superconvergence of certain two-dimensional Hilbert singular integrals. CMES Comput. Model. Eng. Sci. 82, 233–252 (2011)

    MathSciNet  Google Scholar 

  22. Li, J., Yu, D.H.: The erroe estimate of Newton-Cotes methods to compute hypersingular integral. Math. Numer. Sin. 33, 77–86 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Li, J., Zhang, X.P., Yu, D.H.: Superconvergence and ultraconvergence of Newton-Cotes rules for supersingular integrals. J. Comput. Appl. Math. 233, 2841–2854 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J., Zhang, X.P., Yu, D.H.: Extrapolation methods to compute hypersingular integral in boundary element methods. Sci. Chin. Math. 56(8), 1647–1660 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Du, Q.K.: Evaluations of certain hypersingular integrals on interval. Int. J. Numer. Methods Eng. 51, 1195–1210 (2001)

    Article  MATH  Google Scholar 

  26. Li, J., Yu, D.H.: Error expansion of classical Trapezoidal rule for computing Cauchy Principal value integral. CMES Comput. Model. Eng. Sci. 93, 47–67 (2013)

    MathSciNet  Google Scholar 

  27. Li, J., Li, X.Z.: The modified trapezoidal rule for computing hypersingular integral on interval. J. Appl. Math. 2013(736834), 9 (2013). doi:10.1155/2013/736834

    Google Scholar 

  28. Wu, J.M., Sun, W.W.: The superconvergence of the composite trapezoidal rule for Hadamard finite part integrals. Numer. Math. 102, 343–363 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, X.P., Wu, J.M., Yu, D.H.: Superconvergence of the composite Simpsons rule for a certain finite-part integral and its applications. J. Comput. Appl. Math 223, 598–613 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, J., Rui, H.X., Yu, D.H.: Composite Simpsons rule for computing supersingular integral on circle. CMES 97(6), 463–481 (2014)

    MathSciNet  Google Scholar 

  31. Andrews, L.C.: Special Functions of Mathematics for Engineers. McGraw-Hill Inc, NewYork (1992)

    Google Scholar 

Download references

Acknowledgments

The work of Li was supported by National Natural Science Foundation of China (Grant Nos. 11471195, 11201209 and 91330106), China Postdoctoral Science Foundation fund project ( No. 2013M540541). The work of Rui was supported by National Natural Science Foundation of China (No. 91330106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Li.

Appendix

Appendix

For the case \(p=2\), by the definition of (3), we have

$$\begin{aligned}&\displaystyle \omega _i^{2}(s)\nonumber \\&\quad \displaystyle = \frac{1}{h}\, =\!\!\!\!\!\!\!\int _{x_{i-1}}^{x_{i}} \frac{(x_{i-1}-x)\cos \frac{x-s}{2}}{\sin ^{3}\frac{x-s}{2}}dx \nonumber \\&\qquad \displaystyle +\,\frac{1}{h}\int _{x_{i}}^{x_{i+1}} \frac{(x-x_{i+1})\cos \frac{x-s}{2}}{\sin ^{3}\frac{x-s}{2}}dx \nonumber \\&\quad \displaystyle = \frac{1}{h}\lim _{\epsilon \rightarrow 0} \left\{ \left\{ \int _{x_{i-1}}^{s-\epsilon } +\int _{s+\epsilon }^{x_{i}}\right\} \frac{(x_{i-1}-x)\cos \frac{x-s}{2}}{\sin ^3 \frac{x-s}{2}}\,dx-\frac{-2\epsilon }{\sin ^{2} \frac{\epsilon }{2}}\right\} \nonumber \\&\qquad \displaystyle +\,\frac{1}{h}\int _{x_{i}}^{x_{i+1}} \frac{(x-x_{i+1})\cos \frac{x-s}{2}}{\sin ^{3}\frac{x-s}{2}}dx \nonumber \\&\quad \displaystyle = \frac{1}{h}[\lim _{\epsilon \rightarrow 0} \left\{ -\frac{(x_{i-1}-x)}{\sin ^{2}\frac{x-s}{2}}|_{x_{i-1}}^{s-\epsilon }-\frac{(x_{i-1}-x)}{\sin ^{2}\frac{x-s}{2}}|_{s+\epsilon }^{x_{i}}+\frac{2\epsilon }{\sin ^{2} \frac{\epsilon }{2}}\right\} \nonumber \\&\qquad \displaystyle +\,\, =\!\!\!\!\!\!\!\int _{x_{i-1}}^{x_{i}} \frac{1}{\sin ^{2}\frac{x-s}{2}}dx] \nonumber \\&\qquad \displaystyle +\,\frac{1}{h}[-\frac{(x-x_{i+1})}{\sin ^{2}\frac{x-s}{2}}|_{x_{i}}^{x_{i+1}} \displaystyle +\int _{x_{i}}^{x_{i+1}} \frac{1}{\sin ^{2}\frac{x-s}{2}}dx] \nonumber \\&\quad \displaystyle = \frac{1}{h}[\, =\!\!\!\!\!\!\!\int _{x_{i-1}}^{x_{i}} \frac{1}{\sin ^{2}\frac{x-s}{2}}dx+\int _{x_{i}}^{x_{i+1}} \frac{1}{\sin ^{2}\frac{x-s}{2}}dx] \nonumber \\&\quad \displaystyle = \frac{1}{h}[\lim _{\epsilon \rightarrow 0} \left\{ \left\{ \int _{x_{i-1}}^{s-\epsilon } +\int _{s+\epsilon }^{x_{i}}\right\} \frac{1}{\sin ^2 \frac{x-s}{2}}\,dx-4\cot \frac{\epsilon }{2}\right\} \nonumber \\&\qquad \displaystyle +\int _{x_{i}}^{x_{i+1}} \frac{1}{\sin ^{2}\frac{x-s}{2}}dx] \nonumber \\&\quad \displaystyle = \frac{1}{h}[\lim _{\epsilon \rightarrow 0} \left\{ -2\cot \frac{x-s}{2}|_{x_{i-1}}^{s-\epsilon }-2\cot \frac{x-s}{2}|_{s+\epsilon }^{x_{i}}-4\cot \frac{\epsilon }{2}\right\} \nonumber \\&\qquad \displaystyle -2\cot \frac{x-s}{2}|_{x_{i}}^{x_{i+1}}] \nonumber \\&\quad \displaystyle = \frac{2}{h}\left[ \cot \frac{x_{i+1}-s}{2}+\cot \frac{x_{i-1}-s}{2}-2\cot \frac{x_{i}-s}{2}\right] \nonumber \\&\quad \displaystyle = \frac{2}{h}\left[ \frac{\cos \frac{x_{i+1}-s}{2}\sin \frac{x_{i-1}-s}{2}+\cos \frac{x_{i-1}-s}{2}\sin \frac{x_{i+1}-s}{2}}{\sin \frac{x_{i+1}-s}{2}\sin \frac{x_{i-1}-s}{2}}-2\cot \frac{x_{i}-s}{2}\right] \nonumber \\&\quad \displaystyle = \frac{4}{h}\left[ \frac{\sin (x_{i}-s)}{\cos h-\cos (x_{i}-s)}-\cot \frac{x_{i}-s}{2}\right] , \end{aligned}$$
(80)

where we have used the identity

$$\begin{aligned} x_{i}= & {} x_{i-1}+h,x_{i+1}=x_{i}+h,\nonumber \\ \sin \alpha \sin \beta= & {} -\frac{1}{2}[\cos (\alpha +\beta )-\cos (\alpha -\beta )] \end{aligned}$$
(81)

and

$$\begin{aligned} \sin (\alpha +\beta )=\sin \alpha \cos \beta -\cos \alpha \sin \beta . \end{aligned}$$
(82)

For the case \(p=1\), we have

(83)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Rui, H. & Yu, D. Trapezoidal Rule for Computing Supersingular Integral on a Circle. J Sci Comput 66, 740–760 (2016). https://doi.org/10.1007/s10915-015-0042-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0042-3

Keywords

Navigation