Skip to main content
Log in

An Alternating Direction Method with Continuation for Nonconvex Low Rank Minimization

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we consider a nonconvex model of recovering low-rank matrices from the noisy measurement. The problem is formulated as a nonconvex regularized least square optimization problem, in which the rank function is replaced by a matrix minimax concave penalty function. An alternating direction method with a continuation (ADMc) technique (on the regularization parameter) is proposed to solve this nonconvex low rank matrix recovery problem. Moreover, under some mild assumptions, the convergence behavior of the alternating direction method for the proposed nonconvex problems is proved. Finally, comprehensive numerical experiments show that the proposed nonconvex model and the ADM algorithm are competitive with the state-of-the-art models and algorithms in terms of efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The APGL code is downloaded form http://www.math.nus.edu.sg/~mattohkc/NNLS.html.

  2. The PD code is downloaded from http://www.sfu.ca/~yza30/homepage/PD_Rank/downloads.html.

References

  1. Srebro, N.: Learning with matrix factorizations. Doctoral dissertation, Massachusetts Institute of Technology (2004)

  2. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Inf. Retr. 4(2), 133–151 (2001)

    Article  MATH  Google Scholar 

  3. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12), 3273–3297 (1998)

    Article  Google Scholar 

  4. Netfix prize website http://www.netflixprize.com

  5. Mohan, K., Fazel, M.: Reweighted nuclear norm minimization with application to system identification. In: American Control Conference, 2010, pp. 2953–2959. IEEE (2010)

  6. Fazel, M., Hindi, H., Boyd, S.: Rank minimization and applications in system theory. In: American Control Conference, 2004. Proceedings of the 2004, vol. 4, pp. 3273–3278. IEEE (2004)

  7. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 11 (2011)

    Article  MathSciNet  Google Scholar 

  8. Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization. Math. Program. 128(1–2), 321–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    Article  Google Scholar 

  11. Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from a few entries. IEEE Trans. Inf. Theory 56(6), 2980–2998 (2010)

    Article  MathSciNet  Google Scholar 

  12. Tütüncü, R.H., Toh, K.-C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using sdpt3. Math. Program. 95(2), 189–217 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, Y.-J., Sun, D., Toh, K.-C.: An implementable proximal point algorithmic framework for nuclear norm minimization. Math. Program. 133(1–2), 399–436 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Toh, K.-C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 6(615–640), 15 (2010)

    MathSciNet  Google Scholar 

  16. Xiao, Y.-H., Jin, Z.-F.: An alternating direction method for linear-constrained matrix nuclear norm minimization. Numer. Linear Algebra Appl. 19(3), 541–554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, J., Yuan, X.: Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, Y., Zhang, D., Ye, J., Li, X., He, X.: Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2117–2130 (2013)

    Article  Google Scholar 

  20. Chen, X., Fengmin, X., Ye, Y.: Lower bound theory of nonzero entries in solutions of \(l_2-l_p\) minimization. SIAM J. Sci. Comput. 32(5), 2832–2852 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, T.: Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res. 11, 1081–1107 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010)

    Article  MATH  Google Scholar 

  24. Li, Y.-F., Zhang, Y.-J., Huang, Z.-H.: A reweighted nuclear norm minimization algorithm for low rank matrix recovery. J. Comput. Appl. Math. 263, 338–350 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, C., Tang, J., Yan, S., Lin, Z.: Generalized nonconvex nonsmooth low-rank minimization. arXiv preprint arXiv:1404.7306 (2014)

  26. Lai, M.-J., Yangyang, X., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed \(l_q\) minimization. SIAM J. Numer. Anal. 51(2), 927–957 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, S., Liu, D., Zhang, Z.: Nonconvex relaxation approaches to robust matrix recovery. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 1764–1770. AAAI Press (2013)

  28. Jiao, Y., Jin, B., Lu, X.: A primal dual active set algorithm for a class of nonconvex sparsity optimization. arXiv preprint. arXiv:1310.1147 (2013)

  29. Yang, J., Zhang, Y.: Alternating direction algorithms for l\_1-problems in compressive sensing. SIAM J. Sci. Comput. 33(1), 250–278 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiao, Y., Zhu, H., Soon-Yi, W.: Primal and dual alternating direction algorithms for \(l_1-l_1\)-norm minimization problems in compressive sensing. Comput. Optim. Appl. 54(2), 441–459 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yuan, X.: Alternating direction method for covariance selection models. J. Sci. Comput. 51(2), 261–273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fan, Q., Jiao, Y., Lu, X.: A primal dual active set algorithm with continuation for compressed sensing. IEEE Trans. Signal Process. 62, 6276–6285 (2014)

    Article  MathSciNet  Google Scholar 

  33. Jiao, Y., Jin, B., Lu, X.: A primal dual active set with continuation algorithm for the \(\ell ^0\)-regularized optimization problem. Appl. Comput. Harmon. Anal. (2014). doi:10.1016/j.acha.2014.10.001

  34. Chen, S.S., Donoho, D.L.: Atomic decomposition by basis pursuit. SIAM J Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  35. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodological) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lu, Z., Zhang, Y.: Penalty decomposition methods for rank minimization. Research Paper, Department of Mathematics, Simon Fraser University. Available at http://people.math.sfu.ca/zhaosong/ResearchPapers/pd-rank-rev.pdf (2013)

  38. Jin, Z.-F., Wang, Q., Wan, Z.: Recovering low-rank matrices from corrupted observations via the linear conjugate gradient algorithm. J. Comput. Appl. Math. 256, 114–120 (2014)

    Article  MathSciNet  Google Scholar 

  39. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics, Philadelphia (1995)

    Book  MATH  Google Scholar 

  40. Wen, Z., Yang, C., Liu, X., Marchesini, S.: Alternating direction methods for classical and ptychographic phase retrieval. Inverse Probl. 28(11), 115010 (2012)

    Article  MathSciNet  Google Scholar 

  41. Wen, Z., Peng, X., Liu, X., Sun, X., Bai, X.: Asset allocation under the basel accord risk measures. arXiv preprint, arXiv:1308.1321 (2013)

  42. Shen, Y., Wen, Z., Zhang, Y.: Augmented lagrangian alternating direction method for matrix separation based on low-rank factorization. Optim. Methods Softw. 29(2), 239–263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Malek-Mohammadi, M., Babaie-Zadeh, M., Amini, A., Jutten, C.: Recovery of low-rank matrices under affine constraints via a smoothed rank function. IEEE Trans. Signal Process. 62(4), 981–992 (2014)

    Article  MathSciNet  Google Scholar 

  44. Larsen, R.M.: Propack-software for large and sparse svd calculations. Available online, http://sun.stanford.edu/rmunk/PROPACK (2004)

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their insightful comments, which have led to improved presentation of the paper. The research of Z. Wan is supported by the National Natural Science Foundation of China No. 71471140. Y. Jiao is supported by the Fundamental Research Funds for the Central Universities of China No. 31541411212. X. Lu is supported by the National Natural Science Foundation of China No. 91230108 and No. 11471253.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiliang Lu.

Appendices

Appendices

1.1 Appendix 1: A Note on Theorem 2.1

In this part, we give some numerical evidences about the assumptions of Theorem 2.1. We choice \(m=n=100\), \(r=5\), \(sr=0.5\), \(maxiter= 500\) and \(\lambda = 20\). Form the Fig. 4, we find that the \(\Vert Y^k\Vert _F\) is always bounded and the \(\Vert X^k-Y^k\Vert _F\) is less than \(10^{-15}\) after 500 iterations. It implies that the condition \(\lim _{k\rightarrow \infty } \Vert Z^{k+1}-Z^{k}\Vert _F= 0\) holds.

Fig. 4
figure 4

Test results on the \(\Vert Y^k\Vert _F\) and \(\Vert X^k-Y^k\Vert _F\)

1.2 Appendix 2: An Example

We will give an example to show the nonconvex model for the matrix completion problem may not admit a solution if the nonconvex functional is not coercive. Let \(m=n=2\), \(\Omega = \{(1,1);(1,2);(2,1)\}\), the observation matrix M be given by \(M= \left( \begin{array}{ccc} 0 &{} 1 \\ 1 &{} - \\ \end{array} \right) \). We consider the following four nonconvex models:

  1. (1)

    \(\min \sum _{(i,j)\in \Omega }|X_{i,j} - M_{i,j}|^2, \;\; s.t. \; \text {rank}(X) \le 1\),

  2. (2)

    \(\min \sum _{(i,j)\in \Omega }|X_{i,j} - M_{i,j}|^2 + \text {rank}(X)\),

  3. (3)

    \(\min \sum _{(i,j)\in \Omega }|X_{i,j} - M_{i,j}|^2, \;\; s.t. \; \Vert X\Vert _{\lambda ,\tau } \le 1\),

  4. (4)

    \(\min \sum _{(i,j)\in \Omega }|X_{i,j} - M_{i,j}|^2 + \Vert X\Vert _{\lambda ,\tau }\),

where \(\lambda =2\) and \(\tau =2\) in the scalar MCP function, then \(\rho (t) = \left\{ \begin{array}{l@{\quad }l}2t - \frac{t^2}{4}, &{} |t| < 4 \\ 4, &{} |t|\ge 4\end{array}\right. \) and \(\Vert X\Vert _{2,2} = \rho (\sigma _1) + \rho (\sigma _2)\), where \(\sigma _1\) and \(\sigma _2\) are two singular values of X. Clearly \(\rho (t) > t\) for all \(0< t < 4\). We will show that problems (1) to (4) have no solutions.

For problem (1), let \(X_n = \left( \begin{array}{ll} 1/n &{} 1 \\ 1 &{} n\end{array}\right) \), then we obtain that the object function has the infimum 0. But it is clear that 0 can not be obtained, which implies the nonexistence of solution to problem (1). The similar argument can be applied to show problem (3) does not admit a solution. To see this, firstly \(X_n\) defined as above provides a minimum sequence, it remains to show 0 is not reachable. For any \(Z = \left( \begin{array}{ll} 0 &{} 1 \\ 1 &{} c \end{array}\right) \), it has two nonzero singular values \(\sigma _1 \ge 1\ge \sigma _2 >0\), which implies that \(\Vert Z\Vert _{\lambda ,\tau } \ge \min (4,\sigma _1) + \sigma _2 >1\). Therefore problem (3) has no solution.

For problem (2), we first notice that the cost functional has a lower bounded 1 and can not obtain this value. Then \(X_n\) as above implies that 1 is the exact lower bound, and hence the nonexistence of solution. To see problem (4), we only need to show 1 is its unreachable exact lower bound. To see this, let the cost function of problem (4) be f(X). For any \(Z = \left( \begin{array}{ll} a &{} b \\ c &{} d \end{array}\right) \), we can compute \(Z^tZ = \left( \begin{array}{ll} a^2 + b^2 &{} ac+bd \\ ac+bd &{} c^2+d^2 \end{array}\right) \), and hence two eigenvalues \(\lambda _1\), \(\lambda _2\) are positive and satisfy

$$\begin{aligned} \lambda _1 + \lambda _2 = a^2 + b^2 +c^2 + d^2,\quad \lambda _1\lambda _2 = (ad - bd)^2. \end{aligned}$$

From the definition of scalar MCP function, we have

$$\begin{aligned} \Vert Z\Vert _{\lambda ,\tau } \ge \min (\sigma _1,4) + \min (\sigma _2,4), \end{aligned}$$

where \(\sigma _1\) and \(\sigma _2\) are two singular values of Z (i.e., \(\sigma _i = \sqrt{\lambda _i}\)). If the sum of two singular value great than or equal to 1, then \(f(Z) \ge 1\) and the equality never happens (since when \(1\ge \sigma _1 >0\), the inequality \(\rho (\sigma _1) > \sigma _1\) holds). Otherwise let us assume the sum of two singular values is less than 1, we have

$$\begin{aligned} f(Z) \ge \sigma _1 + \sigma _2 + a^2 + (b-1)^2 + (c-1)^2 \ge \lambda _1 + \lambda _2 + a^2 + (b-1)^2 + (c-1)^2. \end{aligned}$$

By observing \(b^2 + (1-b)^2 \ge 1/2\), \(c^2 + (1-c)^2 \ge 1/2\), we obtain \(f(Z) \ge 1\) and the equality can not be obtained (otherwise \(a=0\), \(b=c=1/2\), \(\sigma _1 = \sigma _2 = 0\), which is a contradiction).

One may also find the following two minimization problems

  1. (5)

    \(\min \text {rank}(X) , \;\; s.t. \;\sum _{(i,j)\in \Omega }|X_{i,j} - M_{i,j}|^2\le \delta \),

  2. (6)

    \(\min \Vert X\Vert _{\lambda ,\tau }, \;\; s.t. \;\sum _{(i,j)\in \Omega }|X_{i,j} - M_{i,j}|^2\le \delta \)

have solutions, but the solutions are unstable with respect to noise level \(\delta \).

In general, if the desirable matrix is not a low rank matrix, its low-rank approximation is either not exist or not stable. This explains that the assumptions in Theorem 2.1 are necessary in general, to avoid the possible non-stable computation. It also explains that some existing matrix completion algorithms work well for easy problem (\(p/dr \ge 3\)) but may be not so efficient for hard problem. On the other hand, if we are interesting in some local minimizers, it may exist and stable. From our numerical experiments, it seems that the proposed ADMc converges to some stable local minimizer and hence it works well for both easy and hard problems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, ZF., Wan, Z., Jiao, Y. et al. An Alternating Direction Method with Continuation for Nonconvex Low Rank Minimization. J Sci Comput 66, 849–869 (2016). https://doi.org/10.1007/s10915-015-0045-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0045-0

Keywords

Navigation