Skip to main content
Log in

A Stabilized Mixed Finite Element Method for Elliptic Optimal Control Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

An Erratum to this article was published on 08 September 2015

Abstract

In this paper, we propose a new mixed finite element method, called stabilized mixed finite element method, for the approximation of optimal control problems constrained by a first-order elliptic system. This method is obtained by adding suitable elementwise least-squares residual terms for the primal state variable y and its flux \(\sigma \). We prove the coercive and continuous properties for the new mixed bilinear formulation at both continuous and discrete levels. Therefore, the finite element function spaces do not require to satisfy the Ladyzhenkaya–Babuska–Brezzi consistency condition. Furthermore, the state and flux state variables can be approximated by the standard Lagrange finite element. We derive optimality conditions for such optimal control problems under the concept of Discretization-then-Optimization, and then a priori error estimates in a weighted norm are discussed. Finally, numerical experiments are given to confirm the efficiency and reliability of the stabilized method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA (2002)

    Book  Google Scholar 

  2. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  3. Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Series in Information and Computational Science, vol. 41. Science Press, Beijing (2008)

    Google Scholar 

  4. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  5. Tiba, D.: Lectures on the Optimal Control of Elliptic Equations. University of Jyvaskyla Press, Finland (1995)

    Google Scholar 

  6. Chen, Y., Liu, W.: Error estimates and superconvergence of mixed finite elements for quadratic optimal control. Int. J. Numer. Anal. Model. 3, 311–321 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Yan, N., Zhou, Z.: A RT mixed FEM/DG scheme for optimal control governed by convection diffusion equations. J. Sci. Comput. 41, 273–299 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Lu, Z.: Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem. Comput. Methods Appl. Mech. Eng. 199, 1415–1423 (2010)

    Article  MATH  Google Scholar 

  9. Zhou, J., Chen, Y., Dai, Y.: Superconvergence of triangular mixed finite elements for optimal control problems with an integral constraint. Appl. Math. Comput. 217, 2057–2066 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fu, H., Rui, H.: A characteristic-mixed finite element method for time-dependent convection–diffusion optimal control problem. Appl. Math. Comput. 218, 3430–3440 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gong, W., Yan, N.: Mixed finite element methid for Dirichlet boundary control problems governed by elliptic PDEs. SIAM J. Control Optim. 49, 984–1014 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977)

  13. Pehlivanov, A.I., Carey, G.F., Lazarov, D.: Least-squares mixed finite elements for second-order elliptic problems. SIAM J. Numer. Anal. 31, 1368–1377 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cai, Z., Lazarov, R., Manteuffel, T.A., Mccormick, S.F.: First-order system least squares for second-order partial differential equations: part I. SIAM J. Numer. Anal. 31, 1785–1799 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pani, A.K.: An \(H^1\)-Galerkin mixed finite element method for parabolic partial differential equations. SIAM J. Numer. Anal. 35, 712–727 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, D.P.: A splitting positive defnite mixed element method for miscible displacement ofcompressible flow in porous media. Numer. Methods Part. Differ. Eqn. 17, 229–249 (2001)

    Article  MATH  Google Scholar 

  17. Rui, H., Kim, S., Kim, S.D.: A remark on least-squares mixed element methods for reaction–diffusion problems. J. Comput. Appl. Math. 202, 230–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gunzburger, M., Lee, H.-C.: A penalty/least-squares method for optimal control problems for first-order elliptic systems. Appl. Math. Comput. 107, 57–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, H.-C., Choi, Y.: A least-squares method for optimal control problems for a second-order elliptic system in two dimensions. J. Math. Anal. Appl. 242, 105–128 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fu, H., Rui, H.: A priori error estimates for least-squares mixed finite element approximation of elliptic optimal control problems. J. Comput. Math. 33, 113–127 (2015)

    Article  MathSciNet  Google Scholar 

  21. Guo, H., Fu, H., Zhang, J.S.: A splitting positive definite mixed finite element method for elliptic optimal control problems. Appl. Math. Comput. 219, 11178–11190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hughes, T., Franca, L.P., Hulbert, G.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Franca, L.P., Stenberg, R.: Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28, 1680–1697 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  25. Niceno, B.: http://www-dinma.univ.trieste.it/nirftc/research/easymesh/easymesh.html

  26. Li, R., Liu, W.B.: http://dsec.pku.edu.cn/dsectest

Download references

Acknowledgments

The authors would like to thank the editor and the anonymous referee for their valuable comments and suggestions on an earlier version of this paper. This work was supported by the National Natural Science Foundation of China (Nos. 11201485, 91330106), the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2013NJ001), the Fundamental Research Funds for the Central Universities (Nos. 14CX02217A, 15CX08004A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongfei Fu or Hongxing Rui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Rui, H., Hou, J. et al. A Stabilized Mixed Finite Element Method for Elliptic Optimal Control Problems. J Sci Comput 66, 968–986 (2016). https://doi.org/10.1007/s10915-015-0050-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0050-3

Keywords

Mathematics Subject Classification

Navigation