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Abstract

We propose a novel decoupled unconditionally stable numerical scheme
for the simulation of two-phase flow in a Hele-Shaw cell which is gov-
erned by the Cahn-Hilliard-Hele-Shaw system (CHHS) with variable viscos-
ity. The temporal discretization of the Cahn-Hilliard equation is based on a
convex-splitting of the associated energy functional. Moreover, the capillary
forcing term in the Darcy equation is separated from the pressure gradient
at the time discrete level by using an operator-splitting strategy. Thus the
computation of the nonlinear Cahn-Hilliard equation is completely decou-
pled from the update of pressure. Finally, a pressure-stabilization technique
is used in the update of pressure so that at each time step one only needs to
solve a Poisson equation with constant coefficient. We show that the scheme
is unconditionally stable. Numerical results are presented to demonstrate the
accuracy and efficiency of our scheme.

Keywords— Cahn-Hilliard-Hele-Shaw; decoupling; unconditional stability; convex-
splitting; operator-splitting

1 Introduction

Consider the Ginzburg-Landau free energy of a binary fluid with matched density
(assumed to be 1)

E(φ) = γ

∫
Ω

1

ε
F (φ) +

ε

2
|∇φ|2 dx, (1.1)

where γ is a dimensionless surface tension parameter, F (φ) = 1
4(φ2 − 1)2 is

the homogeneous free energy density function, φ is the order parameter which
takes distinct values ±1 in the respective bulk phase, and ε is a constant measuring
the thickness of the transition layer between the two phases. Then the two-phase
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incompressible flow in a Hele-Shaw cell can be modeled by the following Cahn-
Hilliard-Hele-Shaw system [1–5]

∂tφ+∇ · (φu) =
1

Pe
∇ ·
(
m(φ)∇µ

)
,

µ = φ3 − φ− ε2∆φ,

u = − 1

12η(φ)

(
∇p+

γ

ε
φ∇µ

)
,

∇ · u = 0.

(1.2)

Here Pe is the diffusional Peclet number; m(φ) and η(φ) are the mobility and
kinematic viscosity coefficient, respectively. Throughout, the following assump-
tions will be assumed

0 < m1 ≤ m(φ) ≤ m2, 0 < η1 ≤ η(φ) ≤ η2. (1.3)

One may recognize that the first two equations in the system (1.2) are the (convec-
tive) Cahn-Hilliard equation with µ the chemical potential, and that the last two
equations are the Darcy equation incorporating the elastic forcing term.

We close the system with the following initial and boundary conditions

φ|t=0 = φ0, (1.4)

∂nφ|∂Ω = 0, (1.5)

∂nµ|∂Ω = 0, (1.6)

u · n|∂Ω = 0. (1.7)

Here n is the unit outer normal of the boundary ∂Ω; Eq. (1.5) is a Neumann
boundary condition for phase field variable which says that the diffuse interface is
perpendicular to the physical boundary [6]; Eq. (1.6) means that there is no mass
flux through the boundary; Eq. (1.7) is the usual no penetration boundary condition
for fluid velocity. With boundary conditions (1.5)-(1.7), it is clear that the CHHS
system (1.2) is energy dissipative

dE

dt
= − γ

Pe

∫
Ω
m(φ)|∇µ|2 dx−

∫
Ω

12η(φ)|u|2 dx ≤ 0. (1.8)

The CHHS system (1.2) can be viewed as a simplification of the Cahn-Hilliard-
Navier-Stokes system (CHNS) with (nearly) matched density in the Hele-Shaw
setting [1]. See [7–14] and many others for results related to CHNS system. The
applications of the CHHS model and its variant are abundant. In [15], a similar set
of equations are employed in the simulation of spinodal decomposition of a binary
incompressible fluid in a Hele-Shaw cell. Recently, the CHHS system has been
applied in the study of Saffman-Taylor instability [16] when a more viscous fluid
is displaced by a less viscous one resulting in complex pattern formation. Incorpo-
rated in a mass source term, the CHHS system also serves as a tumor growth model,

2



cf. [17]. When accounted for permeability/hydraulic conductivity, the CHHS sys-
tem, also known as Cahn-Hilliard-Darcy equation (CHD) in the literature, can be
used to model multiphase flow in porous media. We refer to [18] and references
therein for many potential applications of the CHD system.

We note that the equations in (1.2) are coupled, highly nonlinear and numeri-
cally stiff with large spatial derivative over a small transition layer. Thus solving
the CHHS system numerically is challenging. On one hand, unconditionally stable
schemes are preferred in order to cope with the stiffness issue. A common strat-
egy in discretizing the nonlinear chemical potential equation (second equation in
(1.2)) in time is based on the convex-splitting of the free energy functional E, i.e.,
treating the convex part of the functional implicitly and concave part explicitly, an
idea dates back to Eyre [19]. This semi-implicit discretization yields not only un-
conditional stability but also unconditionally unique solvability [3,4]. On the other
hand, unconditionally stable schemes such as schemes based on convex-splitting
tend to be nonlinear and coupled. Recently, efficient nonlinear multigrid solvers
have been designed to solve the resulting nonlinear system [3, 4, 20].

In this work, we propose a novel decoupled unconditionally stable numerical
scheme for the CHHS system with variable viscosity. The temporal discretization
of the Cahn-Hilliard equation is based on the aforementioned convex-splitting of
the energy functional. Moreover, an operator-splitting/fractional-step method is ap-
plied to split the computation of pressure gradient and capillary forcing term in the
Darcy equation. As a result, the computation of the nonlinear Cahn-Hilliard equa-
tion is completely decoupled from the update of pressure. A similar strategy has
been utilized in the computation of a triphasic Cahn-Hilliard-Navier-Stokes model
with variable density in [21]. Finally, a pressure-stabilization technique is used
in the update of pressure so that only a Poisson equation with constant coefficient
needs to be solved at each time step. The scheme is shown to be unconditionally
stable.

The rest of the article is organized as follows. In Section 2, we motivate and
introduce the semi-discrete in time numerical scheme. The scheme is further dis-
cretized in space by finite element method in Section 3. We show that the fully
discrete scheme is unconditionally stable. In section 4, we provide numerical evi-
dence that the scheme is convergent and efficient. We remark that though we solve
the nonlinear Cahn-Hilliard equation by Newton’s method in our simulation, in
principle the scheme can be combined with the nonlinear multigrid solver devel-
oped in [4].

2 A semi-discrete numerical scheme

Let N be a positive integer and 0 = t0 < t1 < · · · < tN = T be a uniform
partition of [0, T ]. Denote by k := tn − tn−1, n = 1, 2 . . . N , the time step size.
We propose the following discrete in time, continuous in space numerical scheme
for the computation of the system (1.2) under the boundary conditions (1.5)-(1.7):
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seek {φn+1, µn+1, pn+1} such that

φn+1 − φn

k
+∇ · (φnun+1) =

1

Pe
∇ ·
(
m(φn)∇µn+1

)
, (2.1)

µn+1 = (φn+1)3 − φn − ε2∆φn+1, (2.2)

∆(pn+1 − pn) = 12η1∇ · un+1, (2.3)

∂nφ
n+1
∣∣
∂Ω

= ∂nµ
n+1
∣∣
∂Ω

= ∂np
n+1
∣∣
∂Ω

= 0, (2.4)

where the velocity is given by

un+1 = − 1

12η(φn)
(∇pn +

γ

ε
φn∇µn+1), (2.5)

Several remarks are in order. First, we note that the semi-implicit discretization
of the nonlinear term (φn+1)3 − φn in Eq. (2.2) is derived from a convex splitting
of the function F (φ), an idea dates back to Eyre [19] (see also [3]). Owing to the
convexity, it is straightforward to verify that the following inequality holds

F (φn+1)− F (φn) ≤ [(φn+1)3 − φn](φn+1 − φn). (2.6)

Next, note that the pressure in the velocity equation (2.5) is explicit, thus upon
substitution of un+1 into the Cahn-Hilliard equation (2.1) allowing for decoupling
the computation of Cahn-Hilliard system (2.1)–(2.2) from the pressure equation
(2.3). This is in particular contrast to the previous work [3, 20] where one has
to solve a coupled nonlinear system by multigrid method. Another advantage of
the scheme (2.5) and (2.3) is that at each time step one needs to solve a pressure
Poisson equation with only constant coefficient for which many efficient solvers
exist.

The time discretization of the Darcy equation can be motivated from the stand-
point of operator-splitting (fractional step method). There are two contributing
forces in the Darcy equation: the pressure gradient and capillary force. The ve-
locity un+1 in Eq. (2.5) can be viewed as an intermediate velocity that takes into
account the capillary forcing term. The pressure gradient from previous time step is
included in un+1 for accuracy, a modification similar to the incremental pressure
projection method for Navier-Stokes equation (cf. [22]). Then the true velocity
must correct the intermediate velocity and satisfy

ũn+1 − un+1 = − 1

12η(φn)
(∇pn+1 −∇pn), ∇ · ũn+1 = 0. (2.7)

It is clear that adding Eqs. (2.5) and (2.7) together will recover the Darcy equation
in (1.2). The true velocity ũn+1 can be eliminated once one applies the divergence
operator to the first equation in (2.7)

∇ · [ 1

12η(φn)
(∇pn+1 −∇pn)] = ∇ · un+1. (2.8)
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As is in the case of Navier-Stokes equation with variable density [23], we note that
Eqs. (2.5) and (2.8) can be interpreted as a direct approximation of the following
perturbed Darcy equation

u = − 1

12η(φ)

(
∇p+

γ

ε
φ∇µ

)
, (2.9)

∇ · u− k∇ · ( 1

12η(φ)
∇pt) = 0. (2.10)

Eqs.(2.9)–(2.10) can be viewed as a penalty method/pseudo-compressibility method
for the Darcy equation with variable viscosity. Formally, Eq. (2.10) is a O(k)
approximation of the divergence free condition irrespective of the value of η(φ).
The choice of a constant η1 in Eq. (2.10) leads to the discretization Eq. (2.3),
and is crucial in proving the unconditional stability of the scheme, see Section
3 below. We remark that the pseudo-compressibility technique, also known as
pressure-stabilization, is well-known in the computation of incompressible flow
with constant density, cf. [24, 25] and references therein. Recently, it has been
generalized to solving incompressible Navier-Stokes equation with variable den-
sity [23].

3 Fully discrete formulation

3.1 Finite element formulation

We note that Eqs. (1.2) can be reformulated without using the explicit velocity.

∂tφ+∇ ·
[ φ

12η(φ)
(∇p+

γ

ε
φ∇µ)

]
=

1

Pe
∇ ·
(
m(φ)∇µ

)
, (3.1)

µ = φ3 − φ− ε2∆φ, (3.2)

∇ ·
[ 1

12η(φ)
(∇p+

γ

ε
φ∇µ)

]
= 0. (3.3)

The corresponding boundary conditions become

∇φ · n|∂Ω = 0, ∇µ · n|∂Ω = 0, ∇p · n|∂Ω = 0. (3.4)

A weak formulation and solutions to the initial-boundary value problem (3.1)–
(3.4) can be defined similarly as [4]. Here we consider mainly the 2D case. H1(Ω)
is the usual Hilbert space, and L2

0(Ω) is a subspace of L2(Ω) whose elements have
zero average.

Definition 1. Let φ0 ∈ H1(Ω). A triple {φ, µ, p} is called a weak solution of
problem (3.1)-(3.4) if it satisfies

φ ∈ L∞(0, T ;H1(Ω)) ∩ L4(0, T ;L∞(Ω)), (3.5)

∂tφ ∈ L
8
5 (0, T ; (H1(Ω))′), (3.6)
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µ ∈ L2(0, T ;H1(Ω)), (3.7)
1

12η(φ)
(∇p+

γ

ε
φ∇µ) ∈ L2(0, T ;L2(Ω)), (3.8)

p ∈ L
8
5 (0, T ;H1(Ω) ∩ L2

0(Ω)), (3.9)

and there hold, for almost all t ∈ (0, T )

〈∂tφ, v〉+
( φ

12η(φ)
[∇p+

γ

ε
φ∇µ],∇v

)
+

1

Pe
(m(φ)∇µ,∇v) = 0, ∀v ∈ H1(Ω),

(3.10)

(µ, ϕ)− (φ3 − φ, ϕ)− ε2(∇φ,∇ϕ) = 0, ∀ϕ ∈ H1(Ω), (3.11)( 1

12η(φ)
[∇p+

γ

ε
φ∇µ],∇q

)
= 0, ∀q ∈ H1(Ω), (3.12)

with initial condition φ(0) = φ0.

Under the boundedness assumption (1.3) on η(φ),m(φ), the existence of such
a weak solution can be established similarly as [4] (see also [5, 26]).

Let Th be a quasi-uniform triangulation of the domain Ω of mesh size h. We
introduce Yh the finite element approximation ofH1(Ω) based on the triangulation
Th. In addition, we define Mh = Yh ∩ L2

0(Ω) := {qh ∈ Yh;
∫

Ω qhdx = 0}. We
assume that Yh × Yh is a stable pair for the biharmonic operator in the sense that
there holds the inf-sup condition

sup
φh∈Yh

(∇φh,∇ϕh)

||φh||H1

≥ c||ϕh||H1 , ∀ϕh ∈ Yh.

We now introduce the fully discrete finite element formulation for problem
(1.2) based on the time discretization (2.1)-(2.5) and the weak formulation (3.10)-
(3.11): find {φn+1

h , µn+1
h , pn+1

h } ∈ Yh × Yh ×Mh such that

(φn+1
h − φnh

k
, vh
)

+
( φnh

12η(φnh)
[∇pnh +

γ

ε
φnh∇µn+1

h ],∇vh
)

+
1

Pe
(m(φnh)∇µn+1

h ,∇vh) = 0, ∀vh ∈ Yh, (3.13)

(µn+1
h , ϕh)−

(
(φn+1
h )3 − φnh, ϕh

)
− ε2(∇φn+1

h ,∇ϕh) = 0, ∀ϕh ∈ Yh,
(3.14)(

∇(pn+1
h − pnh),∇qh

)
= −

( η1

η(φnh)
[∇pnh +

γ

ε
φnh∇µn+1

h ],∇qh
)
, ∀qh ∈ Yh,

(3.15)

with initial condition φ0
h = φ0h, where φ0h is the projection of φ0 in Yh.

Remark 1. In the case of constant viscosity coefficient, i.e. η(φ) ≡ η1, Eq. (3.15)
reduces to (

∇(pn+1
h +

γ

ε
φnh∇µn+1

h ),∇qh
)

= 0, ∀qh ∈ Yh,
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which is the finite element counterpart of Eq. (3.12). The authors in [3,4,20] treat
exclusively the case of constant viscosity. It is remarkable that the scheme with
explicit pressure in Eq. (3.13) is still unconditionally stable.

3.2 Stability of the fully discrete scheme

Our aim in this subsection is to show that the fully discrete scheme (3.13)–(3.15)
is energy stable for all h, k, ε > 0. Without ambiguity, we denote by (f, g) the L2

inner product between functions f and g. First of all, we claim that at each time
step Eq. (3.13)–(3.15) are uniquely solvable.

Proposition 1. For any mesh parameters k, h and any ε > 0, there exists a unique
solution {φn+1

h , µn+1
h , pn+1

h } to the scheme (3.13)–(3.15).

We note that Eq. (3.15) is decoupled from the Cahn-Hilliard Eqs. (3.13)–
(3.14). The unique solvability of (3.13)–(3.14) can be established by reformulating
the equations as a convex minimization problem [27]. Another approach is to
explore the monotonicity associated with the convex splitting scheme, cf. [14].
Here we omit the details for brevity.

Now, we show that the fully discrete scheme is unconditionally stable. For that,
we introduce a discrete energy functional

E(φnh) = γ

∫
Ω

1

ε
F (φnh) +

ε

2
|∇φnh|2 dx. (3.16)

Theorem 2. Let {φn+1
h , µn+1

h , pn+1
h } be the unique solution of the scheme (3.13)–

(3.15). Define un+1
h := − 1

12η(φnh) [∇pnh + γ
εφ

n
h∇µ

n+1
h ]. Then for any k, h, ε > 0,

the scheme (3.13)–(3.15) satisfies a modified energy law(
E(φn+1

h ) +
k

24η1
||∇pn+1

h ||2L2

)
−
(
E(φnh) +

k

24η1
||∇pnh||2L2

)
≤ −6k||

√
η(φnh)un+1

h ||2L2

− kγ

εPe
||
√
m(φnh)∇µn+1

h ||2L2 −
γε

2
||∇(φn+1

h − φnh)||2L2 . (3.17)

Proof. Utilizing the definition

un+1
h := − 1

12η(φnh)
[∇pnh +

γ

ε
φnh∇µn+1

h ], (3.18)

one sees that the scheme (3.13)–(3.15) can be reformulated as

(φn+1
h − φnh

k
, vh
)
−
(
φnhu

n+1
h ,∇vh

)
+

1

Pe
(m(φnh)∇µn+1

h ,∇vh) = 0, ∀vh ∈ Yh,
(3.19)

(µn+1
h , ϕh)−

(
(φn+1
h )3 − φnh, ϕh

)
− ε2(∇φn+1

h ,∇ϕh) = 0, ∀ϕh ∈ Yh,
(3.20)(

∇(pn+1
h − pnh),∇qh

)
= 12η1

(
un+1
h ,∇qh

)
, ∀qh ∈ Yh. (3.21)
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Taking the test function vh = kµn+1
h in Eq. (3.19) gives

(
φn+1
h − φnh, µn+1

h

)
− k
(
φnhu

n+1
h ,∇µn+1

h

)
+

k

Pe
||
√
m(φnh)∇µn+1

h ||2L2 = 0.

(3.22)

Next, we test Eq. (3.20) with ϕh = −(φn+1
h − φnh). By utilizing the identity

2a(a− b) = a2 − b2 + (a− b)2, one obtains

−
(
µn+1
h , φn+1

h − φnh
)

+
(
(φn+1
h )3 − φnh, φn+1

h − φnh
)

+
ε2

2
[||∇φn+1

h ||2L2 − ||∇φnh||2L2 + ||∇(φn+1
h − φnh)||2L2 ] = 0. (3.23)

Adding Eq. (3.22) and inequality (3.23) together, in view of the inequality
(2.6), one has

(
F (φn+1

h )− F (φnh), 1
)

+
ε2

2
[||∇φn+1

h ||2L2 − ||∇φnh||2L2 ]− k
(
φnhu

n+1
h ,∇µn+1

h

)
≤ − k

Pe
||
√
m(φnh)∇µn+1

h ||2L2 −
ε2

2
||∇(φn+1

h − φnh)||2L2 .

The preceding inequality, upon multiplied by γ
ε , can be written as

E(φn+1
h )− E(φnh)− kγ

ε

(
φnhu

n+1
h ,∇µn+1

h

)
≤ − kγ

εPe
||
√
m(φnh)∇µn+1

h ||2L2

− γε

2
||∇(φn+1

h − φnh)||2L2 . (3.24)

Now we take inner product of Eq. (3.18) with 12kη(φnh)un+1
h to get

12k||
√
η(φnh)un+1

h ||2L2 = −k
(
∇pnh,un+1

h

)
− kγ

ε

(
φnh∇µn+1

h ,un+1
h

)
. (3.25)

We proceed to take the test function qh = k
12η1

pnh in Eq. (3.21). We have

k

24η1
[||∇pn+1

h ||2L2 − ||∇pnh||2L2 ] =
k

24η1
||∇(pn+1

h − pnh)||2L2 + k
(
∇pnh,un+1

h

)
.

(3.26)

To control k
24η1
||∇(pn+1

h − pnh)||2L2 , we test Eq. (3.21) with qh = pn+1
h − pnh and

apply the Cauchy-Schwartz inequality so that

||∇(pn+1
h − pnh)||2L2 ≤ 12η1||un+1

h ||L2 ||∇(pn+1
h − pnh)||L2 .

It follows that

k

24η1
||∇(pn+1

h − pnh)||2L2 ≤ 6kη1||un+1
h ||2L2 ≤ 6k||

√
η(φnh)un+1

h ||2L2 , (3.27)
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where the last inequality follows from the assumption η1 ≤ η(φ). Taking sum of
Eq. (3.25) and Eq. (3.26), using the inequality (3.27), one concludes that

k

24η1
[||∇pn+1

h ||2L2 − ||∇pnh||2L2 ] ≤ −6k||
√
η(φnh)un+1

h ||2L2 −
kγ

ε

(
φnh∇µn+1

h ,un+1
h

)
.

(3.28)

The modified energy law (3.17) then follows from the sum of inequality (3.24)
and inequality (3.28).

4 Numerical Experiments

In this section, we perform some numerical tests to verify the accuracy and ef-
ficiency of the numerical scheme (3.1)–(3.3). Throughout, we take Yh to be the
P1 or P2 finite element function space. It is known [28] that such Yh × Yh pair
is stable for the approximation of biharmonic operator. In principle, any inf-sup
compatible approximation spaces for biharmonic operators can be used. We solve
the nonlinear equations (3.1)-(3.2) by the classical Newton’s method.

4.1 Convergence, energy dissipation and mass conservation

Our aim here is to show numerically that our scheme is first order accurate in
time, energy-dissipative and mass-conservative. We consider the problem in a unit
square Ω = [0, 1]× [0, 1] with the following initial condition for φ

φ0 = 0.24 cos(2πx) cos(2πy) + 0.4 cos(πx) cos(3πy). (4.1)

We impose homogeneous Neumann boundary condition for both φ and µ, and
no-flow boundary condition for velocity (hence homogeneous Neumann boundary
condition for pressure).

As the Cahn-Hilliard equation does not have a natural forcing term which can
be employed to manufacture exact solutions, we verify the convergence rate by
Cauchy convergence test. Specifically, we discretize the domain with a uniform
triangulation of spacing h =

√
2

2n , for n = 5, 6, · · · 9, i.e., 2n + 1 grid points in x
and y directions, respectively. The final time is T = 0.2. We calculate the rate
at which the Cauchy difference of the computed solutions at successive resolution
converges to zero in the H1 and L2 norm, respectively. Given η1 ≤ η2, we take a
truncated viscosity function as follows

η(φ) =


η1, for φ > 1,

1 + φ

2
η1 +

1− φ
2

η2, for φ ∈ [−1, 1],

η2, for φ < −1.

(4.2)
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Thus the truncated viscosity function satisfies η1 ≤ η ≤ η2. We also choose a
regularized degenerate mobility function

m(φ) =
√

(1 + φ)2(1− φ)2 + ε2. (4.3)

The parameters are ε = 0.05, Pe = 20, γ = 0.005, η1 = 0.0042, η2 = 0.083. We
expect that the global error in φ and p at final time T is e = O(k) + O(h) in H1

norm and e = O(k) + O(h2) in L2 norm. Thus if we choose a linear refinement
path as k = 0.2√

2
h, we expect to see first order convergence rate in time. The results

in Table 1 and 2 confirm this global first order convergence.

Table 1: H1 Cauchy convergence test. The triangulation is uniform in space h =√
2

2n , for n = 5, 6, · · · 9. The final time is T = 0.2, and the refinement path is linear
k = 0.2√

2
h. The viscosity function and mobility function are defined in (4.2) and

(4.3), respectively. The other parameters are ε = 0.05, Pe = 20, γ = 0.005,
η1 = 0.0042, η2 = 0.083. The expected Cauchy difference at T measured in H1

norm is O(k) +O(h) = O(k).
32− 64 rate 64− 128 rate 128− 256 rate 256− 512

φ 7.88e− 2 1.03 3.85e− 2 1.04 1.88e− 2 1.04 9.16e− 3
p 7.60e− 3 0.68 4.73e− 3 1.00 2.38e− 3 1.01 1.18e− 3

Table 2: L2 Cauchy convergence test. The setup and parameters are the same as
in Table 1 The Cauchy difference at T measured in L2 norm is expected to be
O(k) +O(h2) = O(k).

32− 64 rate 64− 128 rate 128− 256 rate 256− 512

φ 5.39e− 3 1.06 2.58e− 3 1.01 1.28e− 3 1.02 6.35e− 4
p 3.78e− 4 0.65 2.41e− 4 0.94 1.26e− 4 1.01 6.27e− 5

Next, we verify that our numerical scheme is energy-dissipative. The fully
discrete counterpart of the energy functional (1.1) associated with the system (1.2)
is defined as

E(φn+1
h ) = γ

∫
Ω

1

ε
F (φn+1

h ) +
ε

2
|∇φn+1

h |2 dx. (4.4)

On the other hand, one can also define an approximate energy functional associated
with the fully discrete numerical scheme (3.13)-(3.15) according to the modified
energy law (3.17)

Eapp(φ
n+1
h , pn+1

h ) = E(φn+1
h ) +

k

24η1
||∇pn+1

h ||2L2 . (4.5)
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One can see that formallyEapp(φn+1
h , pn+1

h ) is a first order approximation ofE(φn+1
h )

for fixed η1. We observe from Fig. 1 that both energy functional are non-increasing
at each time step where the same parameters as above are used and we have set
h =

√
2

128 and k = 0.1.
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0.005
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Figure 1: The discrete energy plotted as a function of time for the simulation with
initial condition (4.1), upper dash curve for Eapp(φn+1

h , pn+1
h ), lower solid curve

for E(φn+1
h ). We have set h =

√
2

128 and k = 0.1. The rest of the parameters are the
same as Table 1.

Finally, we show that our scheme conserves mass, i.e.,
∫

Ω φ
n
h = const. for any

n such that nk ≤ T . Note that
∫

Ω φ0dx = 0. After projection into the P1 finite
element space in our computation, we have

∫
Ω φ

0
hdx = 8.14e−6. Fig. 2 shows that

this exact value is preserved during the evolution, which verifies that our scheme
is conservative.

4.2 Spinodal Decomposition

To further validate our numerical scheme, we simulate the spinodal decomposition
of a binary fluid in a Hele-Shaw cell and examine the effect of γ on the coarsen-
ing process, see [3, 20]. Recall that γ has the meaning of a scaled surface tension,
τ = 2

√
2

3 γ, where τ is the physical surface tension [1, 7]. There are two mecha-
nisms responsible for the coarsening process in the Cahn-Hilliard-Hele-Shaw sys-
tem (1.2): chemical diffusion and viscous Darcy dissipation, cf. the energy dissi-
pation inequality (1.8). When γ = 0, the system (1.2) reduces to the Cahn-Hilliard
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Figure 2: Time evolution of the discrete mass
∫

Ω φ
n
hdx. h =

√
2

128 , k = 1.0
128 , and the

other parameters are given in Table 1.

equation with the surface energy

Efree(φ) =

∫
Ω

1

4
(1− φ2)2 +

ε2

2
|∇φ|2 dx, (4.6)

in which the coarsening process is mediated only by diffusion (no fluid flow). For
γ > 0, the flow is surface tension driven. Larger γ would improve the fluid flow,
and therefore enhance the viscous Darcy dissipation. Thus the scaled surface en-
ergy Efree would be smaller when compared at a given time. Note that it is not
entirely clear from (1.8) that the scaled surface energy would decay faster for larger
γ, as the variables φ, µ,u depend on γ in a nonlinear fashion.

The parameters for the computations are similar to those in [3]: Ω = [0, 6.4]×
[0, 6.4], ε = 0.03, h = 6.4

√
2

256 , k = 0.05, Pe = 1.0, η = 0.083 and m(φ) =√
(1 + φ)2(1− φ)2 + ε2. We use three values 0.0, 0.06, 0.12 for γ. The case of

γ = 0.0 is included for comparison purpose. For the initial condition of the phase
field variable, we take a random field of values φ0 = φ̄ + r(x, y) with an average
composition φ̄ = −0.05 and random r ∈ [−0.05, 0.05]. The boundary conditions
are given in (1.5)-(1.7). Fig. 3 shows the filled contour plot of φ in gray scale for
cases γ = 0.0, 0.06, 0.12. Fig. 4 shows the evolution of the discrete scaled surface
energy (4.6) in the time interval [0, 5].

The results showing in Figure 3 are comparable to those in [3, 20]. At early
stage of spinodal decomposition (t = 1), the patterns in the three cases are statis-
tically similar. Later on, the systems with larger γ tend to straighten their interface
faster, and the identified fluid islands are fatter, which indicate a faster coarsening
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t=1

t=3

t=5
γ = 0.0 γ = 0.06 γ = 0.12

Figure 3: Snapshots of coarsening of a binary fluid during spinodal decomposition
with γ = 0.06 (second column), 0.12 (third column), respectively. The case of
γ = 0 (first column) is included for comparison purpose. White corresponds to
φ ≈ 1, and black corresponds to φ ≈ −1. The parameters are ε = 0.03, M(φ) =√

(1− φ2)2 + ε2, Pe = 1, η = 1 k = 0.05, h = 6.4
√

2
256 .

rate. At t = 5, the patterns in the second column and third column of Fig. 3
reveal the phenomenon of islands merging due to fluid flow, in comparison with
the case γ = 0 (first column) where coarsening is mainly realized through surface
diffusion. The larger γ is, the richer the islands connection is. In addition, one can
observe the Ostwald ripening in all three cases: larger droplets grow at the expense
of smaller ones.

Coarsening rate can be tied with the energy decay rate [29]. Fig. 4 further cor-
roborates the conclusion that larger γ leads to faster coarsening rate. The discrete
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scaled energy matches with each other at the early stage of spinodal decomposi-
tion. At later time, the energy is decreasing slightly faster for the cases with larger
γ.

0 1 2 3 4 5
2

3

4

5

6

7

8

9

10

11

Time

E
n

e
rg

y

 

 

γ=0.12
γ=0.06

γ=0

Figure 4: The discrete scaled surface energy (4.6) plotted as a function of time
for the simulation of spinodal decomposition. The case of γ = 0 is included for
comparison purpose. The rest of the parameters are the same as in Figure 3.

4.3 Interface break-up and adaptive mesh refinement

As shown in [9,27,30] among many others, at least 4 to 8 grid cells across the inter-
facial region are needed for low order methods such as P1 finite element to resolve
the interface dynamics accurately. Thus adaptive mesh refinement is indispensable
to achieve accuracy and efficiency for low order methods. In this set of numerical
experiments, we show that our numerical scheme effected with the adaptive mesh
refinement of FreeFem++ [31] is capable of capturing the topological transition of
the interface (e.g. interface break-up) smoothly.

The set-up of the experiment is similar to the Rayleigh-Taylor instability. We
consider a light fluid layer initially sandwiched by two heavy fluid layers in a
square domain Ω = [0, 2π] × [0, 2π]. For simplicity, we assume that the den-
sity variance of two fluids is small so that a Boussinesq approximation can be em-
ployed. Specifically, we take the background density as 1.0 and add the following
buoyancy term to the Darcy equation in (1.2)

−b(φ)ŷ = −G(ρ(φ)− ρ̄)ŷ = −Gρ1 − ρ2

2
(φ− φ̄)ŷ := −λ(φ− φ̄)ŷ,
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where ŷ is the unit vector pointing upwards (ŷ = (0, 1)), G is the gravitational
constant, ρ(φ) = 1+φ

2 ρ1 + 1−φ
2 ρ2 with ρ2 ≈ ρ1 = 1.0, ρ̄ is the spatially averaged

density , φ̄ is the spatially averaged order parameter, and λ = Gρ1−ρ2
2 . Introducing

two flat interfaces with small perturbations

y1(x) = π − (0.5 + 0.1 cos(x)), y2(x) = π + (0.5 + 0.1 cos(x)),

then the initial condition for the phase field variable is defined as (see also [2])

φ0 = tanh
(y − y1(x)√

2ε

)
tanh

(y − y2(x)√
2ε

)
.

Fig. 5 shows the initial configuration of the phase field variable where ε = 0.01.

Figure 5: The initial configuration of the phase field variable. ε = 0.01. Three
contours in the upper interfacial layer correspond to φ = 0.9, 0,−0.9 from top to
bottom.
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In the following computation, we take ε = 0.01, Pe = 100, γ = 0.25,m(φ) =
1.0, λ = 2.946, and η(φ) = 1+φ

2 η1 + 1−φ
2 η2 with η1 = 0.1, η2 = 0.5. For time

stepsize, we choose k = 0.005. In space, we use the P2 finite element space for
all variables, and we adapt the mesh every five time steps according to the Hessian
of the order parameter such that at least 2 grid cells are located across the diffuse
interface. Homogeneous Neumann boundary conditions are imposed for φ and µ,
and no-penetration boundary condition is prescribed on velocity. Snapshots of the
zero contour of the order parameter are shown in Fig. 6, along with the underlying
meshes. In the language of sharp interface models, the upper interface is unstably
stratified. The heavy fluid layer penetrates the light fluid layer, eventually causes
the light fluid layer breaking up into three drops. The break-up event of the zero
contour is captured by our numerical algorithm. The effectiveness of the empirical
adaptive mesh refinement can be observed from Fig. 6 as well where one can not
differentiate the triangles in the interfacial region due to the dense density there.

5 Conclusions

In this paper, we have presented a novel time discretization scheme for the Cahn-
Hilliard-Hele-Shaw system with variable viscosity and mobility that models two-
phase flow in a Hele-Shaw cell or porous media. The scheme is very efficient since
the update of pressure is completely decoupled from that of phase field variable,
and the pressure update involves only a Poisson problem with constant coefficient.
The fully discrete numerical scheme effected with finite-element method is shown
to be unconditionally stable. We verify the first order in time convergence of the
fully discrete scheme by performing Cauchy convergence test. We also test our
scheme on simulating spinodal decomposition of a binary fluid in a Hele-Shaw
cell. Our results are comparable to those produced by coupled schemes as reported
in [3,20]. Finally, we show that our numerical scheme effected with adaptive mesh
refinement is able to capture topological transitions of the interface smoothly. To
the best of the author’s knowledge, this is the first numerical scheme that decouples
the pressure and the phase field variables in the numerical simulation of Cahn-
Hilliard-Hele-Shaw system while maintaining unconditional stability.

There are several potential extensions of the current work. The decoupling fea-
ture in the design is especially attractive for the numerics of Cahn-Hilliard fluid
models which typically require nonlinear solvers for stability’s concern. The ex-
tension of the current scheme to the case of variable density, or to the case of
coupled Cahn-Hilliard-Stokes-Darcy system in karstic geometry would be inter-
esting [18, 26]. On the theoretical side, the rigorous error analysis of the scheme,
especially with variable mobility and viscosity, is a challenging topic.
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Figure 6: Snapshots of the zero contour of φ (left column) and the associated
meshes (right column). ε = 0.01, Pe = 100, γ = 0.25, m(φ) = 1.0, λ = 2.946,
k = 0.005 and η(φ) = 1+φ

2 η1 + 1−φ
2 η2 with η1 = 0.1, η2 = 0.5.
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