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Abstract This paper is concerned with the construction of high order schemes on
irregular grids for balance laws, including a discussion of an a-posteriori error indi-
cator based on the numerical entropy production. We also impose well-balancing
on non uniform grids for the shallow water equations, which can be extended sim-
ilarly to other cases, obtaining schemes up to fourth order of accuracy with very
weak assumptions on the regularity of the grid. Our results show the expected con-
vergence rates, the correct propagation of shocks across grid discontinuities and
demonstrate the improved resolution achieved with a locally refined non-uniform
grid.

The error indicator based on the numerical entropy production, previously
introduced for the case of systems of conservation laws, is extended to balance
laws. Its decay rate and its ability to identify discontinuities is illustrated on several
tests. The schemes proposed in this work naturally can also be applied to systems
of conservation laws.
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1 Introduction

Many problems arising from engineering applications involve the ability to com-
pute flow fields on complex domains, governed by hyperbolic systems of balance
laws. Often, many scales are involved and this prompts the need for algorithms
that are able to modify the scheme and/or the underlying grid following the evo-
lution of the flow. Several wide purpose codes are available and many of them are
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based on finite volume schemes, see e.g. Fluent [13] or ClawPack [7]. Usually these
codes are second order accurate with high order versions, if available, in progress.
On the other hand they provide the user with the flexibility of an adaptive grid,
which is extremely useful to tackle highly non-homogeneous solutions.

At the same time, high order finite volume schemes are well established in
the literature: from the early review in [33] to the more recent paper [11], exten-
sive studies have been conducted on the construction of high order finite volume
schemes. In this paper we carry out a detailed study of the issues arising in fi-
nite volume algorithms on irregular grids, and in particular we construct finite
volume high order WENO schemes, including the treatment of source terms and
addressing the issue of well balancing for steady state solutions. We concentrate on
the one-dimensional case, since most problems already arise in this setting. These
results can be extended to multidimensional problems discretized with cartesian
grids. Schemes based on cartesian grids can be easily parallelized and boundary
conditions for complex domains can be implemented with the ghost fluid method
as in [16].

Adaptive grids can be constructed either by defining a single non uniform
grid on which all degrees of freedom are located, as in most unstructured grid
managers, or superposing several patches of uniform cartesian grids of different
levels of refinement as in the ClawPack solver [7]. In this latter approach the
different patches must communicate and the enforcement of conservativity and
well balancing for steady states are not straighforward [10]. High order schemes
for the AMR approach can be found in [2,32]. For applications to the shallow
water equations, see the software GeoClaw [7] and [15].

In our case we consider a single highly non-uniform grid. Such grids commonly
arise in h-adaptive methods [17], expecially when using moving mesh methods
[35,34]. In one space dimension, when the grid size varies smoothly, one can
remap the problem to a uniform grid as in [12], but this cannot be expected
to work in more space dimensions of when the grid size can jump abruptly as
in dyadic/quadtree/octree grid refinement. These latter discretization techniques
start from a conforming, often uniform, partitioning of the simulation domain and
allow the local refinement of each control volume by splitting it in 2d parts in d

space dimensions, like in [19] for simplices and [37] for quads. Lower order schemes
on such grids were employed by the authors in [31] in one space dimension and
in [30] in two space dimensions for general conservation laws. Two-dimensional
applications to the shallow water system may be found in [26], or in [25].

The construction of a fifth order WENO scheme for conservation laws on one-
dimensional non-uniform grids, based on the superposition of three parabolas, has
been conducted in [38]. Here we extend this construction to the case of balance
laws, showing how to obtain positive coefficients in the quadrature of the source
term. Moreover we also construct a third order scheme based on [24], charac-
terized by a stencil of three cells. This reconstruction is particularly suited for
two-dimensional problems due to its very compact stencil, see [8].

A first key ingredient of this work is the use of semidiscrete schemes which
permit to decouple the space from the time discretization: in this fashion the non-
uniformity of the grid boils down to an interpolation problem to reconstruct the
boundary extrapolated data which interact through the numerical fluxes. Secondly,
the use of the Richardson extrapolation as in [27] is crucial for the preservation of
steady states on a non uniform grid, since it allows to enforce equilibrium at the
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level of each single cell, thus avoiding the need to account for the non-uniformity
of the grid. This yields automatic well-balancing over the whole grid, unlike in the
block-structured AMR case, where well-balancing has to be enforced not only on
each grid patch but also in the projection and interpolation operators that relate
the solution on different grid levels [10].

Moreover, we extend the entropy indicator of [31] to the case of balance laws.
We show that the numerical entropy production provides a measure of the local
error on the cell also in the case of balance laws on non-uniform grids.

Before giving the outline of the paper, we briefly introduce the setting and the
notation used in the bulk of this work. We consider balance laws with a geometric
source term of the form

ut +∇ · f(u) = g(u, x) (1)

and we seek the solution on a domain Ω, with given initial conditions. The com-
putational domain Ω is an interval, discretized with cells Ij = (xj−1/2, xj+1/2),
such that ∪Ij = Ω. The amplitude of each cell is δj = xj+1/2 − xj−1/2, with cell
center xj = (xj−1/2 + xj+1/2)/2.

We consider semidiscrete finite volume schemes and denote with Uj(t) the
cell average of the numerical solution in the cell Ij at time t. The semidiscrete
numerical scheme can be written as

d

dt
Uj = − 1

δj

(
Fj+1/2 − Fj−1/2

)
+Gj(U, x). (2)

The numerical fluxes are computed starting from the boundary extrapolated data,
namely

Fj+1/2 = F(U−j+1/2, U
+
j+1/2) (3)

where F is a consistent and monotone numerical flux, evaluated on two estimates
of the solution at the cell interface U±

j+1/2
. These values are obtained with a high

order non oscillatory reconstruction, as described in detail in §2. Finally, Gj is a
consistently accurate discretization of the cell average of the source term on the
cell Ij , see §3.

In order to obtain a fully discrete scheme, we apply a Runge-Kutta method
with Butcher’s tableau (A, b), obtaining the evolution equation for the cell averages

U
n+1
j = U

n
j −

∆t

δj

s∑
i=1

bi

(
F

(i)
j+1/2

− F (i)
j−1/2

)
+ ∆t

s∑
i=1

biG
(i)
j . (4)

Here F
(i)
j+1/2

= F
(
U

(i),−
j+1/2

, U
(i),+
j+1/2

)
and the boundary extrapolated data U

(i),±
j+1/2

are

computed from the stage values of the cell averages

U
(i)
j = U

n
j −

∆t

δj

i−1∑
k=1

aik

(
F

(k)
j+1/2

− F (k)
j−1/2

)
+ ∆t

i−1∑
k=1

aikG
(k)
j .

We point out that the spatial reconstruction procedures of §2 and the well-balanced
quadratures for the source term of §3 must be applied for each stage value of the
Runge-Kutta scheme. In this paper we consider a uniform timestep over the whole
grid. A local timestep keeping a fixed CFL number over the grid can be enforced
using techniques from [31,21].
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We will also consider the preservation of steady state solutions and we will
illustrate these techniques on the shallow water system, namely

u =

(
h

q

)
f(u) =

(
q

q2/h+ 1
2gh

2

)
g(u, x) =

(
0

−ghzx

)
(5)

Here h denotes the water height, q is the discharge and z(x) the bottom topography,
while g is the gravitational constant (see also Figure 4). The preservation of steady
states depends heavily on the structure of the equilibrium solution one wishes to
preserve. Here we will concentrate on the lake at rest solution of the shallow
water equation, given by H(t, x) = h(t, x) + z(x) = constant and q(t, x) = 0.
Many works have been dedicated to this problem since the paper [3] shed light
on the importance of well-balancing (or C-property). For example, see [40] in the
finite difference setting, [41,27,28] in the finite volume setting, [41,39,5] in the
Discontinuous Galerkin framework and [36,6] in the ADER setting.

The structure of the paper is as follows: in §2 we introduce the third order
accurate C-WENO (Compact WENO) reconstruction on non uniform grids, gen-
eralizing the results of [24], and we extend the fifth order accurate WENO recon-
struction on non uniform grids of [38], adding the evaluation of the reconstruction
at the centre of cells which is needed in the computation of the source term. In §3
we extend the construction of well-balanced schemes of [1,27] to the non-uniform
grid setting. Next, in §4 we extend the notion of numerical entropy production
to non uniform grids for balance laws. Finally, §5 contains numerical tests, which
illustrate the consistency between accuracy of the schemes and rate of convergence
of the numerical entropy production, for several types of grids.

2 High order reconstructions on non uniform grids

The mission of reconstruction algorithms is to give estimates of a function at
some points, starting from discrete data. In particular, for finite volume schemes
for balance laws, the starting data are the cell averages of a function v, and we
wish to estimate v at the cell interfaces, and, if needed, at some other internal
points, using a finite dimensional approximation, such as a piecewise polynomial
interpolator. Typically, estimates of v at internal points within a cell are needed
to compute the cell averages of the source term through a quadrature formula.
Thus, the reconstruction will be described as an interpolation algorithm.

Suppose then that we are given the cell averages

V j =
1

δj

∫
Ij

v(x) dx.

of a smooth function v(x). In order to fix ideas, we consider a piecewise polynomial
reconstruction R such that

R(V , x) =
∑
j

χIj (x)Pj(x),

which gives the boundary extrapolated data as

V −j+1/2 = Pj(xj+1/2), V +
j+1/2 = Pj+1(xj+1/2). (6)
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The reconstruction must be conservative, i.e.

1

δj

∫
Ij

R(V , x) dx = V j ,

and high order accurate at the cell interfaces for smooth data, in the sense that

V −j+1/2 = v(xj+1/2) +O(δj)
p, V +

j−1/2 = v(xj−1/2) +O(δj)
p.

Moreover, the reconstruction should be non-oscillatory, preventing the onset of
spurious oscillations. Finally, for accuracy of order higher than 2, the evaluation
of the cell average of the source term requires the reconstruction of the point values
of v at the nodes of the well-balanced quadrature formula. For schemes of order 3
and 4, it is enough to reconstruct v at the cell centers, thus we will require that,
for smooth v(x),

Vj = v(xj) +O(δj)
p.

First order reconstruction

In this case, the reconstruction is piecewise constant, and we have

V −j+1/2 = V j , V +
j−1/2 = V j .

Second order reconstruction

Here, the reconstruction is piecewise linear, and we have

V −j+1/2 = V j + 1
2σjδj , V +

j−1/2 = V j − 1
2σjδj ,

where σj is a limited slope, i.e., chosen a limiter Φ, define the interface slopes as

σj+1/2 =
V j+1 − V j
xj+1 − xj

=
V j+1 − V j
1
2 (δj + δj+1)

(7)

then the limited slope within the Ij cell is given by

σj = Φ
(
σj−1/2, σj+1/2

)
.

For a collection of limiting functions, see [23]. In our tests, we have chosen the
MinMod limiter.
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POPT

P1RP1L P2C

xj xj+1xj-1

Fig. 1 Compact WENO reconstruction

Third order reconstruction

The third order reconstruction is based on the compact WENO (C-WENO) tech-
nique introduced in [24]. This reconstruction is characterized by a particularly
compact stencil, which is very important when dealing with adaptive grids. More-
over, unlike the classical WENO third order reconstruction based on the combina-
tion of two linear functions, the C-WENO reconstruction contains also a parabola
and it remains uniformly third order accurate throughout the interval Ij on smooth
flows. To our knowledge, the reconstruction presented here is the first extension
of the C-WENO reconstruction to the case of non-uniform grids. Fig. 1 illustrates
the polynomials composing this reconstruction.

The interpolant is piecewise quadratic, and the parabola reconstructed in each
cell is the convex combination of two linear functions P 1

L, P 1
R, and a parabola, P 2

C .
In order to simplify the notation we describe the reconstruction on a reference cell,
labelled with the index j = 0. The two linear functions interpolate v in the sense
of cell averages on the stencils {I−1, I0} and {I0, I+1}. Each of these functions
approximates v with order O(δ0)2 accuracy uniformly on I0. Further, the parabola
P 2
OPT is introduced by the requirement that

1

δ0

∫
I0

P 2
OPT(x) dx = V 0,

1

δ±1

∫
I±1

P 2
OPT(x) dx = V ±1.

This parabola approximates v with order O(δ0)3 accuracy uniformly on I0. Next,
the parabola P 2

C is introduced, defined as

P 2
OPT = α0P

2
C + α+1P

1
R + α−1P

1
L

with α0 = 1
2 , α±1 = 1

4 . The reconstruction is given by

P 2(x) = ω0P
2
C + ω+1P

1
R + ω−1P

1
L.

When the function v is smooth, one would like that ωk = αk + O(δ0)2, to ensure
that P 2 has the same accuracy of P 2

OPT, otherwise, the non linear weights ωk are
designed to switch on only the contribution coming from the one-sided stencil on
which the function is smooth.

For a non uniform grid, the coefficients of the two linear interpolants on the
cell I0 are

P 1
R(x) = V 0 + σ+1/2(x− x0)

P 1
L(x) = V 0 + σ−1/2(x− x0),
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where σ±1/2 have been defined in (7). The optimal parabola is

P 2
OPT = a+ b(x− x0) + c(x− x0)2,

c =
3

2

σ+1/2 − σ−1/2

δ−1 + δ0 + δ+1

b =
(δ0 + 2δ−1)σ+1/2 + (δ0 + 2δ+1)σ−1/2

2(δ−1 + δ0 + δ+1)

a = V 0 − 1
12c δ

2
0 .

As in WENO-like reconstructions, the non linear weights ωk are computed as

ω̃k =
αk

(ε+ ISk)2
, ωk =

ω̃k∑1
l=−1 ω̃l

,

starting from the smoothness indicators ISk defined in [33]. In this case, they are
given by

IS−1 = δ20σ
2
−1/2

IS1 = δ20σ
2
+1/2

IS0 =
1

α2
0

[(
b− α−1σ−1/2 − α+1σ+1/2

)
δ20 + 13

3 c
2 δ40

]
.

Since P 2
OPT is uniformly third order accurate on the whole interval, the boundary

extrapolated data and the value V0 at the cell center are all computed evaluating
the same quadratic polynomial at the corresponding points inside the cell.

Fourth order reconstruction

The fourth order reconstruction is based on the fifth order WENO reconstruc-
tion computed from the convex combination of three parabolas, as in [33]. The
coefficients of the combination of the three parabolas are computed in order to
yield fifth order accuracy at the boundary of the cell, see Fig 2. It is tedious but
straightforward to see that positive coefficients can be found to result in fifth or-
der accuracy at the cell interfaces even on non uniform grids (see below and [38]).
However, there is no set of positive coefficients resulting in fifth order accuracy
at the cell center, see [27]. Here we show that it is possible to find three positive
coefficients giving fourth order accuracy at the center of the cell.

For the sake of completeness, we review the coefficients of the reconstruction
on non uniform grids, as in [38], using the notation established in Fig. 2. Again we
consider a reference cell with index 0. The goal of the reconstruction is to mimic
the quartic polynomial POPT interpolating the data V l, l = −2, . . . , 2 in the sense
of cell averages. Clealy, POPT would provide fifth order accuracy uniformly in the
interval I0, in the case of smooth data.

For each point x̂ in which the reconstruction is needed, we look for three
positive coefficients d−1, d0, d1 that add up to 1 and such that

POPT(x̂) =
1∑

l=−1

dlPl(x̂), (8)
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h0 h1 h2h-1h-2

P0
P1

P-1

POPT

Fig. 2 Parabolic WENO reconstruction

where the Pl’s are the three parabolas, interpolating in the sense of cell averages
the data V l−1, V l, V l+1. The coefficients of the three parabolas can be found in
[38]. Here we give the linear weights that permit to reconstruct the left and right
boundary extrapolated data. To simplify the notation, we write

δkl =
k∑
i=l

δi, (9)

then the coefficients for the boundary extrapolated data V −
+1/2

are

d1 =
δ−1(δ−2 + δ−1)

δ2−2δ
2
−1

d0 =
δ20(δ−2 + δ−1)(δ1−2 + δ2−1)

δ2−2δ
2
−1δ

1
−2

d−1 =
δ20(δ0 + δ1)

δ2−2δ
1
−2

Note that, if δ−2 = δ−1 = δ0 = δ1 = δ2, then d−1 = 3
10 , d0 = 3

5 , d1 = 1
10 , as in the

usual uniform grid case. Similarly, the coefficients for the reconstruction of V +
−1/2

are

d−1 =
δ1(δ1 + δ2)

δ2−2δ
1
−2

d0 =
δ0−2(δ1 + δ2)(δ1−2 + δ2−1)

δ2−2δ
2
−1δ

1
−2

d1 =
δ0−2(δ−1 + δ0)

δ2−2δ
2
−1

We remark that the coefficients dk are positive and add up to 1, so that (8) is a
convex combination, for all possible values of the local grid size δ−2, . . . , δ2.

For the 5th-order reconstruction at cell center x0, one finds negative coefficients
even for uniform meshes. In fact, see [27], d−1 = − 9

80 , d0 = 49
40 , d1 = − 9

80 . Since
the well balanced quadrature based on the three points x±1/2, x0 is only fourth
order accurate, there is actually no need for fifth order accuracy in this case. Thus,
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d-1

d1
h1>h-1

h-1>h1

Fig. 3 Reconstruction of the point value in the cell center for WENO. Locus of positive linear
weights (dash-dot lines) and the coefficients chosen by (10) (black dots).

we look for positive coefficients d0, d±1 such that 1 =
∑
dl, and V0 is fourth order

accurate,

V0 =
1∑

l=−1

dlPl(x0) = v(x0) +O(δ0)4.

After tedious computations, we find that d1 and d−1 must satisfy

δ1−2d−1 − δ2−1d1 = δ1 − δ−1

Since we wish all coefficients to be positive, the solution must be sought in the
simplex shown in Fig. 3. Clearly, the solution is over-determined, we pick the values
that maximize the size of the minimum coefficient, that is

If δ1 > δ−1


d1 =

1

2

δ−2 + 2δ−1 + δ0
δ1−2 + δ2−1

d−1 =
δ1 − δ−1 + d1δ

2
−1

δ1−2

d0 = 1− d−1 − d1

, else


d−1 =

1

2

δ2 + 2δ1 + δ0
δ1−2 + δ2−1

d1 =
δ−1 − δ1 + d−1δ

1
−2

δ2−1

d0 = 1− d−1 − d1

(10)

where again we have used the convention (9).

3 Well-balanced schemes

It is important to perform numerical integration of a system of balance laws with
schemes that preserve the steady states exactly at a discrete level (well-balanceed
schemes), since only these allow to distinguish small perturbations of these states
from numerical noise [3].

In this section we describe a technique to obtain well-balanced schemes on non-
uniform grids for the shallow water equations, with particular attention to the lake
at rest solution. In this case, beside well-balancing, it is also particularly important
to preserve the positivity of the water height. We use and generalize to nonuniform
meshes the techniques of [1] for obtaining well-balanced schemes irrespectively of
the chosen numerical fluxes and of [27] to obtain high order accuracy through
Richardson extrapolation.

There are two sources of error in well-balanced schemes. We illustrate them
with a very simple example. We consider a first order reconstruction with the
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Lax-Friedrichs numerical flux on the lake at rest solution (see Fig. 4 for notation),
thus we suppose that for every index j, qnj = 0 and hnj + zj = H. The discretized
equation on a uniform grid would be

hn+1
j = hnj + λ

2α
(
hnj+1 − 2hnj + hnj−1

)
qn+1
j = −λ4 g

(
(hnj+1)2 − (hnj−1)2

)
+ λ

2 gh
n
j (zj+1 − zj−1)

where we have already substituted qnj = 0. It is easy to see that in the first equa-
tion, h does not remain constant because the artificial diffusion term introduces a
perturbation whenever z(x) is not constant. In order to prevent this kind of pertur-
bation it is enough to reconstruct along equilibrium variables or to ensure that the
boundary extrapolated values at the interface are continuous when equilibrium oc-
cours. In the second equation, the perturbation due to the artificial diffusion does
not appear exactly because q is an equilibrium variable for the lake at rest equilib-
rium. However there is a lack of balance betweeen the source and the fluxes at the
discrete level: in fact one finds that qn+1

j = −λ4 (z2j+1 − 2zjzj+1 + 2zjzj−1 − z2j−1),
which is in general nonzero, unless the bottom is flat.

For these reasons we use the hydrostatic reconstruction of [1] which ensures that
the reconstruction is continuous across interfaces when the system is in equilibrium
and moreover preserves positivity of the water height. Given a reconstruction
algorithm R with accuracy of order p, reconstruct the equilibrium variables H

and q, obtaining the boundary extrapolated data as in equation (6). In order to
ensure that the water height appearing in the fluxes remains non-negative, one
locally modifies the bottom by computing boundary extrapolated data also for h
and defining

z±j+1/2 = H±j+1/2 − h
±
j+1/2

and these are used to compute the bottom topography at the interface

zj+1/2 = max(z+j+1/2, z
−
j+1/2).

Once these are known, the interface values of h are corrected giving new values

ĥ±j+1/2 = max(H±j+1/2 − zj+1/2, 0).

Note that ĥ±
j+1/2

≥ 0 and that at equilibrium ĥ+
j+1/2

= ĥ−
j+1/2

. The numerical

fluxes (3) are then applied to the states

U±j+1/2 =
[
ĥ±j+1/2, ĥ

±
j+1/2v

±
j+1/2

]
.

Here v±
j+1/2

denotes the velocity, obtained as v±
j+1/2

= q±
j+1/2

/ĥ±
j+1/2

or through

a desingularization procedure as proposed in [20]. Since the reconstruction is con-
tinous at equilibrium, for lake at rest data, for each consistent numerical flux,
one has F(U−

j+1/2
, U+
j+1/2

) = f(U±
j+1/2

). In this fashion Audusse et al. are able to

ensure well-balancing independently on the particular numerical flux used [1].
In order to complete the semidiscrete scheme (2) we still need to specify the

discretization of the source term. For a first order scheme it is enough to choose

Gj =
g

2

(
0

(ĥ−
j+1/2

)2 − (ĥ+
j−1/2

)2

)
. (11)
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Note that at equilibrium, the above expression exactly cancels out the numer-
ical fluxes and thus the lake at rest solution is preserved at the discrete level.
Consistency is obtained through the dependence of ĥ on z.

At second order, the second component of the source term is

Gj,2 =
g

2
( (ĥ−j+1/2)2 − (h−j+1/2)2 + (h+j−1/2 + h−j+1/2)(z+j−1/2 − z

−
j+1/2) (12)

+ (h+j−1/2)2 − (ĥ+j−1/2)2 )

On the lake at rest solution, the two ĥ terms cancel the numerical fluxes, while
the other terms add up to zero, again giving a well-balanced scheme [1]. On the
other hand, off equilibrium, the first and the last two terms cancel by consistency
and the middle term is consistent with the cell average of the source. Clearly,
equation (12) must be applied to both of the stages of the second order Runge-
Kutta method needed to achieve second order accuracy also in time.

For higher orders, we use Richardson extrapolation as in [27]. This technique
is particularly useful on non-uniform grids because it concentrates all the compu-
tational effort for the source term within one cell. In fact, the subcell resolution
required to compute the quadrature of the source term with high order accuracy
can be naturally applied introducing uniformly distributed nodes within each cell.
Thus the high order evaluation of the source term is performed entirely within
one cell and the coefficients of the quadrature formula will not be affected by the
nonuniformity of the mesh. The source can be rewritten as

Gj =
g

2

(
0

(ĥ−
j+1/2

)2 − (h−
j+1/2

)2 + G̃j + (h+
j−1/2

)2 − (ĥ+
j−1/2

)2

)
. (13)

At second order,

G̃j = (h+j−1/2 + h−j+1/2)(z+j−1/2 − z
−
j+1/2) =

∫ xj+1/2

xj−1/2

hzxdx+O(δ2j ).

For order up to four, it is enough to choose

G̃j =
4

3

(
(h+j−1/2 + hj)(z

+
j−1/2 − zj) + (hj + h−j+1/2)(zj − z−j+1/2)

)
− 1

3
(h+j−1/2 + h−j+1/2)(z+j−1/2 − z

−
j+1/2),

where hj and zj denote the reconstruction at the center of the cell, which is why
we have developed high order reconstructions for the point values of the solution in
xj . Again, equation (13) will be applied to all stages of the Runge-Kutta method
used in the fully discrete scheme.

4 Numerical entropy production for balance laws

We wish to devise an error indicator for driving adaptive schemes for balance laws.
In particular we extend the notion of numerical entropy production proposed in
[29,31] to the case of balance laws with a geometric source term.

In the homogeneous case, that is for systems of hyperbolic conservation laws,
the entropy is defined as a convex function η(u) for which there exists a function
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H(x)=h(x)+z(x)
h(x)

z(x)

Fig. 4 Shallow water set up.

ψ(u) (called entropy flux) such that ∇T ηf ′ = ∇Tψ where f ′ denotes the Jacobian
of the flux function f . Then, on smooth solutions,

∂tη + ∂xψ = 0,

while on entropic shocks
∂tη + ∂xψ ≤ 0

in a weak sense, thus singling out the correct unique solutions [9]. One can exploit
this structure at the discrete level to devise a regularity indicator for finite volume
schemes for conservation laws. A fully discrete finite volume conservative scheme
for a hyperbolic system can be written in the form

U
n+1
j = U

n
j − λ

(
Fj+1/2 − Fj−1/2

)
.

Here

Fj+1/2 =
s∑
i=1

biF
(
U

(i),−
j+1/2

, U
(i),+
j+1/2

)
,

F is a consistent and monotone numerical flux and U
(i),±
j+1/2

denote the boundary

extrapolated data computed on the i-th stage value.
Choosing a numerical entropy flux P, consistent with the exact entropy flux

ψ, we can define the quantity

Snj =
1

∆tn

[
η(Un+1)j − η(Un)j + λ

(
Pj+1/2 − Pj−1/2

)]
(14)

where

Pj+1/2 =
s∑
i=1

biP
(
U

(i),−
j+1/2

, U
(i),+
j+1/2

)
In [31] we proved that

Snj =

{
O(hp) on smooth flows

∼ C/h on shocks

where C does not depend on h and p is the order of accuracy of the scheme.
Moreover, if the numerical flux can be written in viscous form as

F(U−, U+) = 1
2 (f(U−) + f(U+))− 1

2Q(U−, U+) (U+ − U−)
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we choose the numerical entropy flux as

P(U−, U+) = 1
2 (ψ(U−) + ψ(U+))− 1

2Q(U−, U+) (η(U+)− η(U−)). (15)

Then we see numerically that the numerical entropy production is essentially neg-
ative definite on smooth flows, in the sense that positive values of Snj may occour
near local extrema, but their amplitude decreases faster than the order of conver-
gence of the scheme. In particular, we have proved this claim for the upwind and
Lax Friedrichs numerical flux applied to first order schemes in the scalar case [31].

We wish to extend this construction to systems of n balance laws. In the case
of separable balance laws in the sense of [41], namely if the source can be written
as

g(u, x) =
M∑
j=1

sj(u, x)z′j(x) (16)

(with sj : Rn × R → Rn), the balance law can be rewritten as an homogeneous
system of n + M equations. For the case M = 1, denoting with A(u) the n × n
Jacobian matrix of the flux f , one has

∂t

(
u

z1

)
+

(
A(u) s1(u, x)

0 0

)
∂x

(
u

z1

)
= 0. (17)

Exploiting this structure one can extend the notion of entropy. In fact the entropy-
entropy flux pair for the balance law must satisfy[

∇Tu ηA(u), ∇Tu η · s1(u, x)
]

=
[
∇Tuψ, ∂z1ψ

]
(18)

Note that the z-derivative of η does not appear in the compatibility condition
above, and thus convexity with respect to z is not required. This construction can
be easily extended for M > 1.

Thus we still have entropy conservation for the balance law in the smooth
case, provided the entropy-entropy flux pair satisfies (18), and the entropy residual
defined in (14) gives a measure of the local error of the numerical scheme.

In the shallow water case, the entropy pair can be chosen as

η(h, u) = 1
2

(
hu2 + gh2

)
+ ghz ψ(h, u) = η(h, u)u+ 1

2gh
2u, (19)

see [4]. Note that the function η represents the total energy of the system including
the potential energy due to the bottom topography. In the following section we
will show that the entropy residual converges with the expected rate on smooth
flows and detects the presence of shocks in the solution.

5 Numerical tests

The following tests asses the accuracy of the high order reconstructions on non-
uniform grids proposed in this work, the well-balancing properties of the fully
discrete schemes for the shallow water equations, the resolution of discontinuities
on non-uniform grids and the performance of the entropy residual as an error
indicator.

In all tests we used the local Lax-Friedrichs numerical flux and the entropy
residual defined with the corresponding numerical entropy flux (15), unless other-
wise stated.
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Fig. 5 Grid spacing for the nonuniform grids used in the numerical tests, shown for the case
of 100 points in [0, 2]. Quasi-regular grids (left) and random grids (right).

Grids In the numerical tests we use several grids that will be referred to as uniform,
quasi-regular, random and locally refined. For simplicity we define them on the
reference interval [0, 1]. The quasi regular grid is obtained as the image of a uniform
grid with spacing δ = 1/N under the map

ϕ(x) = x+ 0.1 ∗ sin(10πx)/5;

The resulting grid spacing is depicted in the left panel of Figure 5: we point out
that

(1− π
5 ) 1

N ≤ δj ≤ (1 + π
5 ) 1

N .

Next, we consider non-uniform rough grids that are obtained moving randomly
the interfaces of a uniform grid, namely starting from a uniform grid with spacing
δ we consider grids with interfaces at

x̃j+1/2 = jδ + ξj
δ
4

where ξj are random numbers uniformly distributed in [−0.5, 0.5]. A realization of
such a grid is shown in the right panel of Figure 5. Here it is easily seen that

3
4

1
N ≤ δj ≤

5
4

1
N .

We use this grid for the purpose of illustration even if of course one would not use
such an irregular grid in an application. This grid will be referred to as random

grid.

In some tests we need a grid which is locally refined around a given point wC .
For this purpose we consider a grid which, on the standard domain [0, 1] is a map
of a uniform grid under the function

ϕ(w) = w + 3w(1− w)(wC − w); (20)

where wC is the location in [0, 1] of the point where the grid should have its
minimum spacing (see e.g. Fig. 11).
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First order Second order

Third order Fourth order

Fig. 6 Error decay under grid refinement for first (top-left), second (top-right), third (bottom-
left) and fourth (bottom-right) order schemes. The dashed line indicates the expected decay
in each case.

5.1 High order schemes on non-uniform grids

Convergence tests Following [40], we compute the flow with initial data given by

z(x) = sin2(πx) h(0, x) = 5 + ecos(2πx) q(0, x) = sin(cos(2πx)) (21)

with periodic boundary conditions on the domain [0, 1]. At time t = 0.1 the solution
is still smooth and we compare the numerical results with a reference solution
computed with the fourth order scheme and 16384 cells. The 1-norm of the errors
appears in Figure 6 and the maximum entropy production is shown in Figure 13
for all schemes and the three grid types considered.

All schemes have the expected accuracy, except for the fourth order scheme
on the random grids, where the accuracy is slightly decreased due to the extreme
irregularity of the grid. We point out however that, despite the reduced decay rate,
the actual values of the error of the fourth order scheme even on the random grid
are orders of magnitude smaller than those obtained with the third order scheme
with the same number of degrees of freedom.

Well-balancing We show a well-balancing test on the lake at rest solution using a
bottom topography described by a uniformly distributed random variable sampled
between 0 and 1, with water heigth at h(x) + z(x) = 1.5. Table 1 shows the well-
balancing errors in the total water height and momentum, in the case of smooth
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‖∆(h+ z)‖∞ ‖q‖∞
Smooth 100 200 400 800 100 200 400 800
p = 1 0 0 0 0 4.51e-16 5.55e-16 5.00e-16 7.68e-16
p = 2 0 2.22e-16 2.22e-16 2.22e-16 3.82e-16 8.47e-16 7.36e-16 1.54e-15
p = 3 0 4.44e-16 4.44e-16 6.66e-16 6.87e-16 1.47e-15 1.67e-15 2.47e-15
p = 4 8.88e-16 6.66e-16 1.55e-15 1.55e-15 9.89e-16 1.82e-15 1.67e-15 1.90e-15

Random
p = 1 2.22e-16 2.22e-16 2.22e-16 2.22e-16 2.08e-16 6.24e-16 6.77e-16 9.65e-16
p = 2 2.22e-16 2.22e-16 2.22e-16 2.22e-16 2.91e-16 7.25e-16 8.95e-16 9.99e-16
p = 3 2.22e-16 6.66e-16 6.66e-16 6.66e-16 5.63e-16 8.47e-16 9.94e-16 1.28e-15
p = 4 6.66e-16 8.88e-16 1.33e-15 1.11e-15 8.68e-16 7.94e-16 1.11e-15 1.43e-15

Table 1 Lake at rest test: well-balancing errors with rough bottom.

Fig. 7 LeVeque’s test (22). Third order scheme on a uniform (blue circles) and quasi-regular
grid (red crosses) on top of a reference solution (black solid line).

nonuniform grids and random grids. Here ∆(h+ z)j+1/2 = (h+ z)j+1 − (h+ z)j .
All data are close to machine precision, as expected.

Small perturbation of a lake at rest The domain is x ∈ [0, 2], the bottom and initial
total height are given by

z(x) =

{
0.25(1 + cos(10π(x− 0.5))) 1.2 ≤ x ≤ 1.4

0 otherwise
H(x, 0) = 1+0.001χ[1.1,1.2](x)

(22)
This test was first used by LeVeque in [22] with a second order scheme, but

here we use it with a smaller perturbation for the third and fourth order schemes,
as in [27]. This test requires a well-balanced scheme to resolve correctly the small
perturbations which otherwise would be hidden by numerical noise. The solutions
are shown in Fig 7 and 8 for the third order scheme and Fig 9 and 10 for the
fourth order one. In each of the figures the numerical solution obtained with the
uniform grid is compared with the one obtained on a non-uniform mesh. It can
be seen that the pulse is well-resolved in all cases and the results obtained with
a uniform grid can be perfectly superposed on those computed with the uniform
ones. In this test, the parameter ε in the nonlinear weights of the WENO schemes
is set to 10−12, as pointed out in [27].

Moving water equilibria Since our schemes are well-balanced around the lake-at-
rest equilibrium, one does not expect them to compute moving water equilibria



Well-balanced high order schemes on non-uniform grids and entropy residuals 17

Fig. 8 LeVeque’s test (22). Third order scheme on uniform (blue circles) and random grid
(red crosses) on top of a reference solution (black solid line)

Fig. 9 LeVeque’s test (22). Fourth order scheme on uniform (blue circles) and quasi-regular
grid (red crosses), on top of a reference solution (black solid line)

Fig. 10 LeVeque’s test (22). Fourth order scheme on uniform (blue circles) and random grids
(red crosses), on top of a reference solution (black solid line).

at machine precision. Here we show two tests. In the first case we consider a
transcritical steady state with a shock, over the parabolic hump

z(x) =

{
(0.2− 0.05 ∗ (x− 10)2) 8 ≤ x ≤ 12

0 otherwise

in the domain [0, 25]. We consider the steady state solution with q(x) = 0.18, with
Dirichlet boundary conditions q = 0.18 at x = 0 and h = 0.33 at x = 25. The
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Fig. 11 Steady solution with transcritical shock, approximated with a third order scheme
(uniform and adapted grids). The dashed line in the left panel is the local grid size in the
non-uniform grid.

Fig. 12 Steady solution with transcritical shock, approximated with a fourth order scheme
(uniform and adapted grids). The dashed line in the left panel is the local grid size in the
non-uniform grid.

p = 1 p = 2 p = 3 p = 4
Uniform error rate error rate error rate error rate

100 1.96e-1 – 5.54e-2 – 2.02e-2 – 2.92e-3 –
200 1.17e-1 0.74 1.42e-2 1.96 4.26e-3 2.24 1.40e-4 4.38
400 6.35e-2 0.89 3.29e-3 2.11 4.87e-4 3.13 5.12e-6 4.77
800 3.26e-2 0.96 8.08e-4 2.03 3.89e-5 3.65 1.60e-7 5.00

Adapted
100 9.20e-2 – 6.96e-3 – 9.78e-4 – 4.54e-5 –
200 4.67e-2 0.97 1.71e-3 2.02 7.97e-5 3.62 1.36e-6 5.07
400 2.34e-2 0.99 4.25e-4 2.01 6.57e-6 3.60 3.87e-8 5.13
800 1.17e-2 1.00 1.06e-4 2.01 5.63e-7 3.55 1.25e-9 4.95

Table 2 Well-balancing errors for the subcritical steady state with gaussian bottom.

solution has a steady shock at x = 11.665504281554291. The computation was
initialized with the exact steady state solution (see for example the Appendix A
of [18]) and the numerical integration was performed until t = 50.

We show the solutions computed with uniform grids and with a grid refined
ad-hoc around the shock position (see Eq (20)) with the scheme of order three
(Figures 11) and four (Figure 12). The figures report with a dashed line the local
cell size of the nonuniform grid, which is refined close to the shock. The right
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panels of each figure show a zoom on the shock and it is clear that the adapted
solution (in red with crosses) approximates better the exact solution (thin black
line) than the solution obtained with a uniform grid with the same numer of points
(blue line with dots), with no spurious oscillations.

In order to quantify the improvement due to the adapted grid and the rate
of convergence of the schemes on moving water equilibria, we consider a smooth
test problem, namely a subcritical steady flow over the smooth bump z(x) =

0.2e−(x−12.5)2 on the domain [0, 25]. The numerical scheme was initialized with
the exact solution and the flow computed until t = 10. Since the behaviour of the
errors on the water height and on momentum is very similar, only the former are
reported in Table 2. The first and second order schemes show the expected rates
of convergence, while the third and fourth order ones have convergence rates well
above the expected values (respectively 3.60 and 5.00).

We also consider nonuniform grids that are finer on the hump and coarser
on the flat portion of the bottom function, namely those given by Eq. (20) with
w = 12.5/25 = 0.5. The errors on the adapted grids are much smaller than the cor-
responding uniform grids and the convergence rates are confirmed also on nonuni-
form grids.

5.2 Numerical entropy production

Rate of decay on smooth flows. Figure 13 shows the numerical entropy production
in the smooth test (21) on several grid types. It is apparent that the decay rate, as
expected, follows the order of accuracy of the corresponding schemes. Moreover,
comparing this figure with Figure 6, we note that the entropy decay mimics exactly
the behaviour of the error, even in the case of the slight deterioration of accuracy
observed on the random grid for the fourth order scheme.

Two shocks. We set up initial data with a flat bottom, water at rest and h(0, x) =

e−50x2

on the domain [−2, 2]. As the flow evolves, two shocks form and separate
from each other: at t = 0.2 the computed water height is depicted in the top-
left plot of Figure 14. Each of the other panels of Figure 14 shows the entropy
residual obtained with four different grid sizes. The results for second, third and
fourth order schemes appear in the top-right, lower left and lower right panels
respectively. In all three cases it can be seen that the numerical entropy production
on the two shocks increases under grid refinement like 1/h. On the other hand,
the magnitude of the peak of the numerical entropy production does not depend
on the order of the scheme. This is to be contrasted with the numerical entropy
production on smooth flows just shown, where one observes entropy residuals of
O(hp), where p is the order of the scheme.

Due to the different orders of magnitude of the numerical entropy production
in the smooth regions of the flows and around shocks, it can be concluded that
the entropy residual provides an effective discontinuity detector, expecially in the
case of high order schemes.
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First order Second order

Third order Fourth order

Fig. 13 Numerical entropy production decay under grid refinement for first (top-left), second
(top-right), third (bottom-left) and fourth (bottom-right) order schemes. The dashed line
indicates the expected decay in each case.

Stream on artificial river bed. In the domain [−.5, 1.5] we consider the bottom to-
pography and initial conditions:

z(x) =

{
sin(10πx)x(1− x) x ∈ [0, 1]

0 otherwise
(23)

H(0, x) =

{
1.0 x < −0.2

0.5 x ≥ −0.2
q(0, x) =

{
1
2

√
3
2g x < −0.2

0.0 x ≥ −0.2

We integrate with free flow boundary conditions until t = 0.4, when the shock
originated from the Riemann problem has overcome the irregularity in the bot-
tom topography (see the left panel of Figure 15). The right panel compares the
numerical entropy production of the second order scheme with grid size from 200
to 1600. The peaks in the numerical entropy production clearly show the location
of the shocks and have the expected O(1/h) behaviour.

Finally, we wish to illustrate the importance of choosing the numerical entropy
flux customized on the numerical flux used by the scheme, as in (15). Figure
16 shows the numerical entropy production on the test (23) computed with the
numerical entropy flux of (15) (green line with circles) and with the numerical
entropy flux Ψ(U−, U+) = 1

2 (U− + U+) (blue line with dots). Note that also the
alternative flux considered here is consistent with the exact entropy flux ψ and
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Fig. 14 Entropy production on shocks under grid refinement for several schemes. Top-left:
water height. Top-right: second oder scheme. Bottom-left: third order scheme. Bottom right:
fourth order scheme. N = 800 (black solid line), N = 400 (red line with circles), N = 200
(green line with crosses), N = 100 (blue line with stars).

Fig. 15 Stream on artificial river bed. Left: water height. Right: numerical entropy production.
N = 1600 (black solid line), N = 800 (red line with circles), N = 400 (green line with crosses)
and N = 200 points (blue line with stars).

therefore will provide entropy residuals with the same rate of decay of the local
error of the scheme.

However, in all cases, it is clear that using the local Lax-Friedrichs flux for both
the conservation law and the computation of the numerical entropy flux leads to
much smaller positive overshoots in the numerical entropy production and thus a
much more reliable error indicator.
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First order Second order

Third order Fourth order

Fig. 16 Comparison of the numerical entropy production with two different numerical entropy
fluxes.

6 Conclusions

In this work we have derived formulas for high order schemes for balance laws on
non-uniform grids. It includes the extension of the third order compact WENO
reconstruction of [24] to non uniform grids and high order reconstructions to com-
pute the cell average of the source term, needed by high order finite volume schemes
on balance laws. Farther, we illustrate how well balancing on equilibrium solutions
can be enforced for high order schemes on irregular grids.

We also include the extension of the entropy indicator we proposed in [31] and
[29] to the case of balance laws. The proofs given in [31] carry over to the case of
balance laws with geometric source terms, and prove that the entropy indicator
provides a measure of the local truncation error on smooth flows, and it reliably
selects the location of discontinuities.

Several numerical tests are included, to show the achievement of the expected
accuracy of the schemes proposed, even on extremely irregular grids, and the
improvement obtained with ad-hoc chosen grids.

Future work on this topic will be dedicated to the construction of adaptive
cartesian grids of octree type, driven by the entropy error indicator, for balance
laws, with particular attention on the enforcement of equilibrium solutions at the
discrete level.
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