Skip to main content
Log in

Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Two alternating direction implicit difference schemes are derived for two-dimensional distributed-order fractional diffusion equations. It is proved that the schemes are unconditionally stable and convergent in a discrete \(L^1(L^\infty )\) norm with the convergence orders \(O(\tau ^2|\ln \tau |+h_1^2+h_2^2+\Delta \alpha ^2)\) and \(O(\tau ^2|\ln \tau |+h_1^4+h_2^4+\Delta \alpha ^4),\) respectively, where \( \tau , h_i \;(i=1,2)\) and \(\Delta \alpha \) are the step sizes in time, space and distributed order. Several numerical examples are given to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)

    Article  Google Scholar 

  3. Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar, V.Y.: Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6, 259–279 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Ford, N.J., Morgado, M.L.: Distributed order equations as boundary value problems. Comput. Math. Appl. 64, 2973–2981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caputo, M.: Elasticitàe dissipazione. Zanichelli, Bologna (1969)

    Google Scholar 

  6. Hanyga, A.: Anomalous diffusion without scale invariance. J. Phys. A Math. Theor. 40, 5551–5563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340, 252–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mainardi, F., Mura, A., Pagnini, G., Gorenflo, R.: Time-fractional diffusion of distributed order. J. Vib. Control 14, 1267–1290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Luchko, Y.: Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, 409–422 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. I. Volterra-type equation, Proc. R. Soc. A 465, 1869–1891 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gorenflo, R., Luchko, Y., Stojanović, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, 297–316 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chen, C., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, C., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22, 87–99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Murillo, J.Q., Yuste, S.B.: An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form. J. Comput. Nonlinear Dynam. 6, 021014 (2011)

    Article  Google Scholar 

  17. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, G.H., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, C., Zeng, F.: Finite difference methods for fractional differential equations. Int. J. Bifurc. Chaos 22, 1230014 (2012)

    Article  MathSciNet  Google Scholar 

  22. Chen, C., Liu, F., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algorithms 54, 1–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, C., Liu, F., Anh, V., Turner, I.: Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation. Math. Comput. 81, 345–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cui, M.: Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J. Comput. Phys. 231, 2621–2633 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cui, M.: Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation. Numer. Algorithms 62, 383–409 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, Y.N., Sun, Z.Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Y.N., Sun, Z.Z.: Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation. J. Sci. Comput. 59, 104–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  29. Ford, N.J., Rodrigues, M.M., Xiao, J., Yan, Y.: Numerical analysis of a two-parameter fractional telegraph equation. J. Comput. Appl. Math. 249, 95–106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)

    Article  MathSciNet  Google Scholar 

  31. Ren, J.C., Sun, Z.Z.: Efficient and stable numerical methods for multi-term time fractional sub-diffusion equations. East Asian J. Appl. Math. 4, 242–266 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Diethelm, K., Ford, N.J.: Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, 531–542 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Podlubny, I., Skovranek, T., Jara, B.M., Petras, I., Verbitsky, V., Chen, Y.Q.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Philos. Trans. R. Soc. A 371, 20120153 (2013)

    Article  Google Scholar 

  35. Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. Int. J. Appl. Math. 80, 825–838 (2015)

    MathSciNet  Google Scholar 

  36. Ford, N.J., Morgado, M.L., Rebelo, M.: A numerical method for the distributed order time-fractional diffusion equation. In: ICFDA’14 Catania, 23–25 June 2014. doi:10.1109/ICFDA.2014.6967389

  37. Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction–diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Alikhanov, A.A.: Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation. Appl. Math. Comput. (2015). doi:10.1016/j.amc.2015.06.045

    MathSciNet  Google Scholar 

  39. Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)

    Article  MathSciNet  Google Scholar 

  40. Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69, 926–948 (2015)

    Article  MathSciNet  Google Scholar 

  41. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  Google Scholar 

  43. Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Differ. Equ. 26, 37–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Samarskiĭ, A.A., Andreev, V.B.: Difference Methods for Elliptic Equations. Nauka, Moscow (1976)

    Google Scholar 

  45. Sun, Z.Z.: The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations. Science Press, Beijing (2009)

    Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous referees for their valuable comments and suggestions to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-zhong Sun.

Additional information

The research is supported by the research Grants 11271068, 11401319, 11426137, 61304169 from National Natural Science Foundation of China, BK20130860 from Natural Science Youth Foundation of Jiangsu Province.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Gh., Sun, Zz. Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations. J Sci Comput 66, 1281–1312 (2016). https://doi.org/10.1007/s10915-015-0064-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0064-x

Keywords

Navigation