Skip to main content
Log in

An Adaptive FEM for a Maxwell Interface Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper develops an adaptive edge finite element method for a Maxwell interface problem: \( {\mathbf{curl}}\mu ^{-1} {\mathbf{curl}}u_\delta +\delta \varepsilon u_\delta =f, \) where \(\delta >0\) is allowed to degenerate to zero. A residual-based a posteriori error estimator is analyzed, with \(\delta \)-uniform lower and (global and local) upper error bounds. \(\delta \)-uniform convergence and optimality of the adaptive algorithm are also established. Numerical results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. \(\hat{z}\) is obtained by multiplying the transposed Jacobian matrix of the affine mapping to the composition of z and the affine mapping (see (5.33) in [39, p. 129]).

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000)

    Book  MATH  Google Scholar 

  3. Alonso Rodriguez, A., Vazquez Hernandez, R.: Iterative methods for the saddle-point problem arising from the HC/EI formulation of the eddy current problem. SIAM J. Sci. Comput. 31, 3155–3178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alonso Rodriguez, A., Valli, A.: Eddy Current Approximation of Maxwell Equations, vol. 4 of Modeling, Simulation and Applications. Springer, Italia (2010)

    Book  MATH  Google Scholar 

  5. Amrouche, A., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three dimensional nonsmooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold, D., Falk, R., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. 85, 197–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Babuska, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics. ETH Zurich, Birkhauser, Basel (2003)

  9. Beck, R., Deuflhard, P., Hiptmair, R., Hoppe, R., Wohlmuth, B.: Adaptive multilevel methods for edge element discretizations of Maxwells equations. Surv. Math. Ind. 8, 271–312 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Beck, R., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B.: Residual based a posteriori error estimators for eddy current computation. M2AN Math. Model. Numer. Anal. 34, 159–182 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Birman, M., Solomyak, M.: L2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42, 75–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bonnet-Ben Dhia, A., Hazard, C., Lohrengel, S.: A singular field method for the solution of Maxwells equations in polyhedral domains. SIAM J. Appl. Math. 59(6), 2028–2044 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bossavit, A.: Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements. Academic Press, New York (1998)

    MATH  Google Scholar 

  15. Brandts, J., Korotov, S., Krizek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55, 2227–2233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  17. Carstensen, C., Hoppe, R.H.W.: Convergence analysis of an adaptive edge finite element method for the 2D eddy current equations. J. Numer. Math. 13, 19–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cessenat, M.: Mathematical Methods in Electromagnetism. World Scientific, River Edge (1998)

    MATH  Google Scholar 

  20. Chen, J., Xu, Y., Zou, J.: An adaptive edge element method and its convergence for a saddle-point problem from magnetostatics. Numer. Methods Part. Differ. Equ. 28, 1643–1666 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. II. Finite Element Methods (part 1). North-Holland, Amsterdam (1991)

    Google Scholar 

  22. Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151, 221–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problems. M2AN Model. Math. Anal. Numer. 33, 627–649 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Costabel, M., Dauge, M., Nicaise, S.: Singularities of eddy current problems. M2AN Math. Model. Numer. Anal. 37, 807–831 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Duan, H.Y., Li, S., Tan, Roger C.E., Zheng, W.Y.: A delta-regularization finite element method for a double curl problem with divergence-free constraint. SIAM J. Numer. Anal. 50, 3208–3230 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Duan, H.Y., Lin, P., Tan, Roger C.E.: Analysis of a continuous finite element method for \(H({\bf curl},{\rm div})\)-elliptic interface problem. Numer. Math. 123, 671–707 (2013)

    Article  MathSciNet  Google Scholar 

  28. Eriksson, K., Estep, E., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numer. 4, 105–158 (1995)

  29. Fernandes, P., Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Model. Methods Appl. Sci. 7, 957–991 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  31. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hiptmair, R., Xu, J.: Nodal auxiliary spaces preconditions in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45, 2483–2509 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hiptmair, R., Zheng, W.: Local multigrid in H(curl). J. Comput. Math. 27, 573–603 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hoppe, R.H.W., Schöberl, J.: Convergence of adaptive edge element methods for the 3D eddy currents equations. J. Comput. Math. 27, 657–676 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kolev, T.V., Vassilevski, P.S.: Parallel auxiliary space AMG for H(curl) problems. J. Comput. Math. 27, 604–623 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Makridakis, ChG, Monk, P.: Time-discrete finite element schemes for Maxwell’s equations. RAIRO Model. Math. Anal. Numer. 29, 171–197 (1995)

    MathSciNet  MATH  Google Scholar 

  37. Mekchay, K., Nochetto, R.H.: Convergcenc of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Monk, P.: A posteriori error indicators for Maxwell’s equations. J. Comput. Appl. Math. 100, 173–190 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford Uinversity Press, Oxford (2003)

    Book  MATH  Google Scholar 

  40. Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Morin, P., Nochetto, R., Siebert, K.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nédélec, J.: Mixed finite elements in R3. Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nicaise, S., Creuse, E.: A posteriori error estimation for the heterogeneous Maxwell equations on isotropic and anisotropic meshes. Calcolo 40, 249–271 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Devore, R.A., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin (2009)

    Google Scholar 

  45. Reitzinger, S., Schöberl, J.: An algebraic multigrid method for finite element discretization with edge elements. Numer. Linear Algebra Appl. 9, 223–238 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Roberts, J.E., Thomas, J.-M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. II. Finite Element Methods (part 1). North Holland, Amsterdam (1991)

    Google Scholar 

  47. Schmidt, A., Siebert, K.G.: Design of Adaptive Finite Element Software: The Finite Element Toolboox ALBERTA. Lecture Notes in Computational Science and Engineering, vol. 42. Springer, Berlin (2005)

  48. Schöberl, J.: A posteriori error estimators for Maxwell equations. Math. Comput. 77, 633–649 (2008)

    Article  MATH  Google Scholar 

  49. Scott, L.R., Zhang, S.Y.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  50. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Verfürth, R.: A Review of a Posteriori Estimation and Adaptive Mesh-Refinement Rechniques. Wiley-Teubner, Stuttgart (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiying Zheng.

Additional information

Huoyuan Duan was partially supported by the National Natural Science Foundation of China under the Grants 11071132, 11171168, 91430106, and 11571266, and the Research Fund for the Doctoral Program of Higher Education of China under Grants 20100031110002 and 20120031110026, and the Scientific Research Foundation for Returned Scholars, Ministry of Education of China, and the Wuhan University start-up fund (2042014kf0218) from the Fundamental Research Funds for the Central Universities. Weiying Zheng was supported in part by National Natural Science Foundation of China under the grants11171334 and 91430215, by the Funds for Creative Research Groups of China 11321061, by National 863 Project of China under the Grant 2012AA01A309, and by the National Magnetic Confinement Fusion Science Program 2015GB110003.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Qiu, F., Tan, R.C.E. et al. An Adaptive FEM for a Maxwell Interface Problem. J Sci Comput 67, 669–704 (2016). https://doi.org/10.1007/s10915-015-0098-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0098-0

Keywords

Mathematics Subject Classification

Navigation