Skip to main content
Log in

An Immersed Boundary Method for a Contractile Elastic Ring in a Three-Dimensional Newtonian Fluid

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present an immersed boundary method for modeling a contractile elastic ring in a three-dimensional Newtonian fluid. The governing equations are the modified Navier–Stokes equations with an elastic force from the contractile ring. The length of the elastic ring is time dependent and the ring shrinks with time because of its elastic nature in our proposed model. We dynamically reduce the number of Lagrangian boundary points when the distance between adjacent points is too small. This point-deleting algorithm helps keep the number of immersed boundary points in a single Cartesian mesh grid from becoming too high. We perform numerical experiments with various initial configurations of the contractile elastic ring, and numerical simulations to investigate the effects of the parameters are also conducted. The numerical results show that the proposed method can model and simulate the time-dependent contractile elastic ring in a three-dimensional Newtonian fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pollard, T.D., Cooper, J.A.: Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2008)

    Article  Google Scholar 

  2. Shlomovitz, R., Gov, N.S.: Physical model of contractile ring initiation in dividing cells. Biophys. J. 94, 1155–1168 (2008)

    Article  Google Scholar 

  3. Pelham, R.J., Chang, F.: Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature 419, 82–86 (2002)

    Article  Google Scholar 

  4. Jochova, J., Rupes, I., Streiblova, E.: F-actin contractile rings in protoplasts of the yeast Schizosaccharomyces. Cell Biol. Int. Rep. 15, 607–610 (1991)

    Article  Google Scholar 

  5. Chang, F., Drubin, D., Nurse, P.: cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin. J. Cell Biol. 137, 169–182 (1997)

    Article  Google Scholar 

  6. Bi, E., Maddox, P., Lew, D.J., Salmon, E.D., McMilland, J.N., Yeh, E., Pringle, J.R.: Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis. J. Cell Biol. 142, 1301–1312 (1998)

    Article  Google Scholar 

  7. Mandato, C.A., Berment, W.M.: Contraction and polymerization cooperate to assemble and close actomyosin rings round Xenopus oocyte wounds. J. Cell Biol. 154, 785–797 (2001)

    Article  Google Scholar 

  8. Celton-Morizur, S., Bordes, N., Fraisier, V., Tran, P.T., Paoletti, A.: C-terminal anchoring of mid1p to membranes stabilizes cytokinetic ring position in early mitosis in fission yeast. Mol. Cell Biol. 24, 10621–10635 (2004)

    Article  Google Scholar 

  9. Kamasaki, T., Osumi, M., Mabuchi, I.: Three-dimensional arrangement of F-actin in the contractile ring of fission yeast. J. Cell Biol. 178, 765–771 (2007)

    Article  Google Scholar 

  10. Carvalgo, A., Desai, A., Oegema, K.: Structural memory in the contractile ring makes the duration of cytokinesis independent of cell size. Cell 137, 926–937 (2009)

    Article  Google Scholar 

  11. Bathe, M., Chang, F.: Cytokinesis and the contractile ring in fission yeast: towards a systems-level understanding. Trends Microbiol. 18, 38–45 (2010)

    Article  Google Scholar 

  12. Calvert, M.E., Wright, G.D., Lenong, F.Y., Chiam, K.H., Chen, Y., Jedd, G., Balasubramanian, M.K.: Myosin concentration underlies cell size-dependent scalability of actomyosin ring constriction. J. Cell Biol. 195, 799–813 (2011)

    Article  Google Scholar 

  13. Zhou, M., Wang, Y.L.: Distinct pathways for the early recruitment of myosin II and actin to the cytokinetic furrow. Mol. Biol. Cell. 19(1), 318–326 (2008)

    Article  Google Scholar 

  14. Vavylonis, D., Wu, J.-Q., Hao, S., O’Shaughnessy, B., Pollard, T.D.: Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science 319, 97–100 (2008)

    Article  Google Scholar 

  15. Zhou, Z., Munteanu, E.L., He, J., Ursell, T., Bathe, M., Huang, K.C., Chang, F.: The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis. Mol. Biol. Cell 26(1), 78–90 (2015)

    Article  Google Scholar 

  16. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)

    Article  MATH  Google Scholar 

  17. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–252 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peskin, C.S.: The immersed boundary method. Acta Numerica 1, 479–517 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Bigot, B., Bonometti, T., Lacaze, L., Thual, O.: A simple immersed-boundary method for solid-fluid interaction in constant- and stratified-density flows. Comput. Fluids 97, 126–142 (2014)

    Article  MathSciNet  Google Scholar 

  20. Chang, P., Liao, C., Hsu, H., Liu, S., Lin, C.: Simulations of laminar and turbulent flows over periodic hills with immersed boundary method. Comput. Fluids 92, 233–243 (2014)

    Article  MathSciNet  Google Scholar 

  21. Cockburn, M., Solano, M.: Solving convection–diffusion problems on curved domains by extensions from subdomains. J. Sci. Comput. 59, 512–543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. De Rosis, A., Ubertini, S., Ubertini, F.: A comparison between the interpolated bounce-back scheme and the immersed boundary method to treat solid boundary conditions for laminar flows in the lattice Boltzmann framework. J. Sci. Comput. 61, 477–489 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hsieh, P.-W., Lai, M.-C., Yang, S.-Y., You, C.-S.: An unconditionally energy stable penalty immersed boundary method for simulating the dynamics of an inextensible interface interacting with a solid particle. J. Sci. Comput. 64, 289–316 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lim, S., Ferent, A., Wang, X.S., Peskin, C.S.: Dynamics of a closed rod with twist and bend in fluid. SIAM J. Sci. Comput. 31(1), 273–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lim, S.: Dynamics of an open elastic rod with intrinsic curvature and twist in a viscous fluid. Phys. Fluids 22(2), 024104 (2010)

    Article  MATH  Google Scholar 

  26. Vahidkhah, K., Abdollahi, V.: Numerical simulation of a flexible fiber deformation in a viscous flow by the immersed boundary-lattice Boltzmann method. Commun. Nonlinear Sci. 17(3), 1475–1484 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, Z.L., Hickel, S., Devesa, A., Berland, J., Adams, N.A.: Wall modeling for implicit large-eddy simulation and immersed-interface methods. Theor. Comput. Fluid Dyn. 28(1), 1–21 (2014)

    Article  Google Scholar 

  28. Posa, A., Balaras, E.: Model-based near-wall reconstructions for immersed-boundary methods. Theor. Comput. Fluid Dyn. 28(4), 473–483 (2014)

    Article  Google Scholar 

  29. Botella, O., Ait-Messaoud, M., Pertat, A., Cheny, Y., Rigal, C.: The LS-STAG immersed boundary method for non-Newtonian flows in irregular geometries: flow of shear-thinning liquids between eccentric rotating cylinders. Theor. Comput. Fluid Dyn. 29, 93–110 (2015)

    Article  Google Scholar 

  30. Zhang, N., Zheng, Z.C.: An improved direct-forcing immersed-boundary method for finite difference applications. J. Comput. Phys. 221(1), 250–268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rosar, M.E., Peskin, C.S.: Fluid flow in collapsible elastic tubes: a three-dimensional numerical model. N. Y. J. Math. 7, 281–302 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Harlow, E., Welch, J.: Numerical calculation of time dependent viscous incompressible flow with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MATH  Google Scholar 

  33. Chorin, A.J.: Numerical solution of the Navier–Stokes equation. Math. Comput. 22(104), 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lai, M.C., Peskin, C.S.: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys. 160, 705–719 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

  36. Bottega, W.J.: On the constrained elastic ring. J. Eng. Math. 24, 43–51 (1988)

    Article  MATH  Google Scholar 

  37. El-Bayoumy, L.: Buckling of a circular elastic ring confined to a uniformly contracting circular boundary. J. Appl. Math. 39(3), 758–766 (1972)

    MATH  Google Scholar 

  38. Choi, H., Lim, M., Kitagaki, R., Noguchi, T., Kim, G.: Restrained shrinkage behavior of expansive mortar at early ages. Constr. Build. Mater. 84(1), 468–476 (2015)

    Article  Google Scholar 

  39. Li, Y., Yun, A., Kim, J.: An immersed boundary method for simulating a single axisymmetric cell growth and division. J. Math. Biol. 65(4), 653–675 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rejniak, K.A.: An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J. Theor. Biol. 247(1), 186–204 (2007)

    Article  MathSciNet  Google Scholar 

  41. Rejniak, K.A., Dillon, R.H.: A single cell-based model of the ductal tumour microarchitecture. Comput. Math. Methods Med. 8(1), 51–69 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The corresponding author (J.S. Kim) was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2014R1A2A2A01003683). W. Lee’s work was supported by the National Institute for Mathematical Sciences (NIMS) grant funded by Korea government (No. B21402-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Jeong, D., Lee, W. et al. An Immersed Boundary Method for a Contractile Elastic Ring in a Three-Dimensional Newtonian Fluid. J Sci Comput 67, 909–925 (2016). https://doi.org/10.1007/s10915-015-0110-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0110-8

Keywords

Navigation