Skip to main content
Log in

Babich’s Expansion and High-Order Eulerian Asymptotics for Point-Source Helmholtz Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The usual geometrical-optics expansion of the solution for the Helmholtz equation of a point source in an inhomogeneous medium yields two equations: an eikonal equation for the traveltime function, and a transport equation for the amplitude function. However, two difficulties arise immediately: one is how to initialize the amplitude at the point source as the wavefield is singular there; the other is that in even-dimension spaces the usual geometrical-optics expansion does not yield a uniform asymptotic approximation close to the source. Babich (USSR Comput Math Math Phys 5(5):247–251, 1965) developed a Hankel-based asymptotic expansion which can overcome these two difficulties with ease. Starting from Babich’s expansion, we develop high-order Eulerian asymptotics for Helmholtz equations in inhomogeneous media. Both the eikonal and transport equations are solved by high-order Lax–Friedrichs weighted non-oscillatory (WENO) schemes. We also prove that fifth-order Lax–Friedrichs WENO schemes for eikonal equations are convergent when the eikonal is smooth. Numerical examples demonstrate that new Eulerian high-order asymptotic methods are uniformly accurate in the neighborhood of the source and away from it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, Inc., New York (1965)

    MATH  Google Scholar 

  2. Avila, G.S., Keller, J.B.: The high-frequency asymptotic field of a point source in an inhomogeneous medium. Commun. Pure Appl. Math. 16, 363–381 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babich, V.M.: The short wave asymptotic form of the solution for the problem of a point source in an inhomogeneous medium. USSR Comput. Math. Math. Phys. 5(5), 247–251 (1965)

    Article  MATH  Google Scholar 

  4. Benamou, J.D.: An introduction to Eulerian geometrical optics (1992–2002). J. Sci. Comput. 19, 63–93 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979)

    MATH  Google Scholar 

  6. Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company, Inc., New York, Toronto, London (1955)

    MATH  Google Scholar 

  7. Fomel, S., Luo, S., Zhao, H.-K.: Fast sweeping method for the factored eikonal equation. J. Comput. Phys. 228(17), 6440–6455 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kao, C.Y., Osher, S.J., Qian, J.: Lax–Friedrichs sweeping schemes for static Hamilton–Jacobi equations. J. Comput. Phys. 196, 367–391 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. LeVeque, R.: Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania (2007)

  12. Luo, S., Qian, J.: Factored singularities and high-order Lax–Friedrichs sweeping schemes for point-source traveltimes and amplitudes. J. Comput. Phys. 230, 4742–4755 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luo, S., Qian, J.: Fast sweeping methods for factored anisotropic eikonal equations: multiplicative and additive factors. J. Sci. Comput. 52, 360–382 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, S., Qian, J., Burridge, R.: Fast Huygens sweeping methods for Helmholtz equations in inhomogeneous media in the high frequency regime. J. Comput. Phys. 270, 378–401 (2014)

    Article  MathSciNet  Google Scholar 

  15. Luo, S., Qian, J., Burridge, R.: High-order factorization based high-order hybrid fast sweeping methods for point-source eikonal equations. SIAM J. Numer. Anal. 52, 23–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo, S., Qian, J., Zhao, H.-K.: Higher-order schemes for 3-D traveltimes and amplitudes. Geophysics 77, T47–T56 (2012)

    Article  Google Scholar 

  17. Milnor, J.: Morse Theory. Annals of Mathematic No. 51. Princeton University Press, Princeton, New Jersey (1973)

    Google Scholar 

  18. Ortega, J.: Matrix Theory, a Second Course. Plenum Press, New York (1987)

    Book  MATH  Google Scholar 

  19. Pica, A.: Fast and accurate finite-difference solutions of the 3D eikonal equation parametrized in celerity. In: 67th Annal International Meeting Society of Exploration Geophysicists, pp. 1774–1777 (1997)

  20. Qian, J., Symes, W.W.: An adaptive finite difference method for traveltime and amplitude. Geophysics 67, 167–176 (2002)

    Article  Google Scholar 

  21. Serna, S., Qian, J.: A stopping criterion for higher-order sweeping schemes for static Hamilton–Jacobi equations. J. Comput. Math. 28, 552–568 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Strang, G.: Accurate partial difference methods II. Non-linear problems. Numer. Math. 6, 37–46 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  23. Symes, W.W., Qian, J.: A slowness matching Eulerian method for multivalued solutions of eikonal equations. J. Sci. Comput. 19, 501–526 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vidale, J.E., Houston, H.: Rapid calculation of seismic amplitudes. Geophysics 55, 1504–1507 (1990)

    Article  Google Scholar 

  25. Xiong, T., Zhang, M., Zhang, Y.T., Shu, C.-W.: Fast sweeping fifth order weno scheme for static Hamilton–Jacobi equations with accurate boundary treatment. J. Sci. Comput. 45, 514–536 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, L., Rector, J.W., Hoversten, G.M.: Eikonal solver in the celerity domain. Geophys. J. Int. 162, 1–8 (2005)

    Article  Google Scholar 

  27. Zhang, Y.T., Zhao, H.K., Qian, J.: High order fast sweeping methods for static Hamilton–Jacobi equations. J. Sci. Comput. 29, 25–56 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Qian is supported by NSF Grants DMS-1222368 and DMS-1522249. Yuan is partially supported by the National Natural Science Foundation of China (Project No. 11201508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Yuan, L., Liu, Y. et al. Babich’s Expansion and High-Order Eulerian Asymptotics for Point-Source Helmholtz Equations. J Sci Comput 67, 883–908 (2016). https://doi.org/10.1007/s10915-015-0111-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0111-7

Keywords

Navigation