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Abstract Meshfree radial basis function (RBF) methods are of intef@ssolving par-
tial differential equations due to attractive convergepoeperties, flexibility with respect
to geometry, and ease of implementation. For global RBF ausththe computational cost
grows rapidly with dimension and problem size, so localiapdroaches, such as partition
of unity or stencil based RBF methods, are currently beingldped. An RBF partition
of unity method (RBF-PUM) approximates functions througtombination of local RBF
approximations. The linear systems that arise are localtructured, but with a global
structure due to the partitioning of the domain. Due to thesipy of the matrices, for large
scale problems, iterative solution methods are neededfotomputational reasons and to
reduce memory requirements. In this paper we implement estddtfferent algebraic pre-
conditioning strategies based on the structure of the miaticombination with incomplete
factorisations. We compare their performance for diffel@derings and problem settings
and find that a no-fill incomplete factorisation of the celitnd of the original discretisa-
tion matrix provides a robust and efficient preconditioner.
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1 Introduction

There is an increasing interest in using methods based dal tzabis function (RBF) ap-
proximation [12] for the solution of partial differentiatjgations (PDESs). The main advan-
tages of these methods are that they are mesh free, whicldgsollexibility with respect
to the geometry of the computational domain; they can betsgigcaccurate for smooth
solution functions [30, 31]; they are comparatively easgpply to high-dimensional prob-
lems, which is vital for application areas such as financanum dynamics, and systems
biology.

The typical form of an RBF approximatianX) to a solution functioru(x), wherex =
(X1,...,%4) €ERY,is

N
ax) =% A (%), @)
]; 1%

whereA; are coefficients to be determined. Heug) is a radial basis function, ang(x) =
o(el[x—=x;l), wherex;, j = 1,...,N are the (scattered) node points at which the individual
RBFs are centred. The paramedas called the shape parameter and controls the flatness of
the RBFs. This shape parameter has a significant influendeecacturacy of the approxi-
mation, as well as on the conditioning of the resulting limgestems.

By requiring the RBF approximation to interpolate the siolutat the node points, we
arrive at a linear system

AA =u, (2)

where theN x N matrix A has entriesij = @;(X), i,j = 1,...N, A = (A1,...,Ax)T, and
u= (u(xy),...,u(xy))". If the basis function that is used has global support, th&ima
A becomes dense, and the computational cost of solving tearligystem (2), especially
in higher dimensions, becomes prohibitive. Furthermosetha shape parametergoes to
zero, the RBFs become flat, and the linear system become®hkeilleconditioned [18,19].
As was noted in [8] for one-dimensional problems, and laig@8B] for multivariate prob-
lems, this ill-conditioning is an artefact of the partiautarmulation of the problem, while
the approximation result itself depends smoothly on tha.daeveral methods have been
proposed to eliminate these conditioning problems. The@orPadé algorithm [17] came
first, and was then followed by the RBF-QR method for the splfig6] and for Cartesian
space [14] and, more recently, the RBF-GA method [15]. Alilefse approaches compute
the same end result as the ill-conditioned formulation timgugh a stable reformulation. In
this paper, we employ the RBF-QR method [14, 25] for consimgdifferentiation matrices.
In order to address the computational cost issues of thaRBF method, we need to
introduce locality. An easy way to do that is to use compastigported RBFs, such as the
Wendland functions [41], but then the spectral converg@noperties are lost. Here we take
another approach, where the infinitely smooth RBFs areust#t in the approximation but
over local subregions of the computational domain. Theipiisg of using RBFs in a par-
tition of unity scheme was mentioned in [2], further dis@adg [12,42], and implemented
and analysed for elliptic PDEs in [24] (see also [34, 36], kehan RBF partition of unity
method (RBF—-PUM) was applied to parabolic PDES). In themebenchmark paper [39],
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many different types of methods, including RBF methods evesaluated for option pricing
problems. The results demonstrated that out of the implesdeRBF methods, the RBF—
PUM approach was the most efficient computationally.

The RBF-PUM discretisation leads to sparse unstructuréda®es. For larger problem
sizes and in higher dimensions, it is therefore necessdeynms of computational efficiency
to use an iterative solver for the linear systems that akeee we use the Krylov subspace
method GMRES [33] in order to take advantage of its theametesidual minimising prop-
erty (seg4): other methods such as Bi-CGSTAB [40] or IDR [38] may be enswitable for
practical implementation with large problems. The RBF-PUuiisltrices are non-symmetric
and moderately ill-conditioned so iterative convergersdgpically very slow. It is therefore
important to have an effective preconditioner for theseesys. In this paper, we design and
evaluate the performance of algebraic preconditionersar (incomplete) LU factorisa-
tion that take advantage of the underlying structure of thefficient matrices. To the best
of our knowledge, this is the first time that any precondiiofor this type of discretisation
has been developed.

In the current literature, most papers on preconditionimgRBF interpolation or ap-
proximation consider global approximations like (1). Irtscircumstances, using precon-
ditioners based on approximate cardinal basis functiomspoted on a reduced node set
has been shown to be successful (see, e.g., [4,6,13,20l”20))r case, we are using a lo-
cal approximation, so the coefficient matrices are alre@dyse. Preconditioners utilising
the Toeplitz structure of a discretisation with a logicalartesian node layout are intro-
duced in [3,7]. Although efficient, these may be hard to usethie unstructured sets of
nodes which are useful for non-trivial geometries. In [ldlgebraic preconditioners are
constructed for compactly-supported RBFs, utilising thie-by-two block structure of the
matrix arising from the separation of boundary and inteniodes, in combination with an
additive Schwarz method. A similar type of algebraic pretooner is investigated in [1],
for a special case of complex matrices with symmetric pasitiefinite real and imaginary
parts. In the latter paper, sparsification is used for the B&tmple, in the sense that small
off-diagonal elements are removed, and their mass is add#e: tcorresponding diagonal
element.

The remainder of this paper is structured as follows§2nwe present details of the
RBF discretisation method. This is followed§8 by a description of the set of Poisson test
problems which we use throughout the paper, together withausision of some important
issues concerning node numbering and matrix structurg4]rthe iterative method and
new preconditioners are described, andtthwe make some predictions concerning the
asymptotic convergence rates of the resulting methodallfzim §6, we present the results
of several numerical experiments and draw some conclugic{is

2 The Radial Basis Function Partition of Unity Method

Since in this paper we are mainly interested in the efficievicglifferent preconditioning
approaches, we restrict our attention to a stationary fifE2E with Dirichlet boundary
conditions. We note, however, that the techniques predémeee can also be generalised to
other problem settings, including time-dependent probléie define our model PDE on a
closed domaim2 c RY, with boundaryd Q as follows:

Zu(x) = f(x), inQ, (3a)
u(x) =g(x), atoQ, (3b)
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wherex = (Xq,...,Xq). In the numerical experiments presented later, we &ke —A (the
Laplace operator).

In a partition of unity method, the global approximatiafx)“to the solutionu(x) is
constructed as a weighted sum of local solution&) on overlapping patche®j, | =
1,...,P. Thatis,

P
0(x) = > wj(x)0j(x)- (4)
G(x ];w, X) 0 (x

wherew;j, j = 1,...,P are weight functions. The patch€x need to form a cover of the

domain in the sense that
P

U Q2 Q.

j=1
There should also be an upper boufdor the number of patches that overlap at one given
pointx € Q.

An illustration of typical sets of circular patches usedhistpaper can be seen in Fig-
ure 1 in§3. We define the overlap relative to the minimal patch radiudg such that, for
given patch centres, we fulfil the conditions required fooger. That is, in subfigures 1(a)
and 1(b), a patch radius & would correspond to patch boundaries just touching in the
diagonal direction. With an overlap we use a patch radius Bf= (1+ y)Ro.

The partition of unity weight functiona; are non-negative, compactly supported®n

and satisfy
P

wj(x) =1, VxeQ.
2,

Furthermore, the weight functions need tof&mes continuously differentiable, whepe
is the order of the PDE operatof (for £ = —A, p = 2). We follow the approach in [24,
34,36], and use Shepard’s method [12,37] applied to corypaupportedC? Wendland
functions [41] to construct the weight functions

w=2® g

T’

whereg;(x) is the particular Wendland function supported®n

The PDE (3) is discretised with a collocation method. Wedfwe define a global set
of distinct nodeX = {)_(k}Ezl in Q, requiring the PDE (3a) to be satisfied at interior nodes,
and the boundary condition (3b) to be satisfied at boundadgsiorhat is, we require

P
ZLU(x) = Zl-i”(wj(xk)ﬁ; %)= %),  X%€Q\0Q, (5a)
£

o
{(x) = ij (%0 (%) =9(%), X% €0Q. (5b)
£

For the particular case of the Poisson problem, whgre- —A, the local operator can be
expanded to give

2 (Wj (%0} (%)) = —Awj (%) Tj (%) — 20w (%) - D0} (%) —Wj (%) AT} (%).  (6)

A general exposition for other linear operators can be fdorjd4].
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When using partition of unity approximations such as (5)s itonvenient to work at
the patch level. We therefore now define local subsets of hadX; = {)_q‘}inll ={x €
X|x € Qj}, wheren; is the number of nodes that fall i€2;. In addition, we define the
index mappingk = (i, j) that returns the global indexfor a given local node_(ij. In the
particular case of RBF-PUM, the local solutiamgx) are RBF approximations

000 = 3 Mg, ™

where)/! are coefficients to be determined agtx) = @(¢||x—x'||). However, in the par-
tition of unity setting, it is inconvenient to use the coeéfitsA/ as the degrees of freedom,
as there is more than one coefficient per collocation nodeamegions of overlap between
patches. Instead, we solve for the nodal valygg' Y = 0(x,), wherek = (i, j). That is, we
require the local solution from two adjacent patches to takéhe same value at the node
points in the overlap region. The same requirement expdeissterms of the coefficients
would result in a non-local condition involving all coeffigs in both patches.

We now define the vector of local nodal valugs= (0 (1), .- ., 0j ()_(,'“. ))T and the local

coefficient vecton ; = ()\1], ... ,/\,{.)T. From (7), we then have the relations

whereA| = {@h(x)}’,_,, and
_NnNZy _nZa-1
Zu; =Dy Aj=Df A yj,

where DY = {Zqh(¥)}{h,_;. Note that, for distinct node points with positive definite
RBFs such as the Gaussians used for the numerical expesimehts paper, the local RBF
interpolation matrice#\; are guaranteed to be non-singular [35]. We also define a niégo
matrix . _

Wi? = diag L w; (x)), .., 2wj(x)))

associated with each patch. Now, using (6), we can expresslificrete local Laplacian
operators as y
Lj = (WPAj+2W - Df +WDf )AL,

where the gradient operators are vector valued, and thargmalduct is applied in the appro-
priate way. To get the discrete local PDE operator, we alslode the boundary conditions,
which gives

©o J

Lii,m) = Lj(i,m), >_<|j €Q\0Q,
amv )_(1 S aQ?

wheredn, is the Kronecker delta. Finally, we obtain the global disem@perator by, as in a
finite element method, assembling the local matriceimto the global matrist such that

Lj(i,m) == L(mi, j), m(m,j)), j=1,....,R i,m=1...n;

The global right hand sidé = (fy,..., fn)T is defined through

m:{ﬂ&x&eﬂ\ml
9(X), X €9Q.
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With the global vector of nodal values definedwy- (x,,...,xy)", the final (global) linear
system to be solved is
Lu=f. (8)

For small values of the shape parametgihe matrices j, and consequently, become
highly ill-conditioned when computed as described abo®: 12]. This is problematic be-
cause, for smooth solution functions, a small positive stgrameter value typically gives
the best accuracy of the solution [17,22,23]. Furthermoeéning the patches in RBF-
PUM for a fixed e results in a decreasing 'effective’ shape parameter vahs,is, the
shape parameter becomes smaller in relation to the patehld@wvever, the problem of
ill-conditioning for small shape parameters can be avoioe@mploying stable evaluation
methods such as the Contour-Padé approach [17], the RBR&Rod [14,16,25], or the
RBF-GA method [15]. Here we employ the RBF-QR method whicmpty put, corre-
sponds to a change of basis framh} to {h!} in the local problems. This significantly
reduces the condition number &f, and allows for stable evaluation bf for small shape
parameter values.

3 Model problems and ordering issues

To fix ideas, we will focus for the remainder of the paper on specific two-dimensional
model problems. As stated above, we will solve the PDE (3h wit = —A (the Laplace

operator). For simplicity, we use a manufactured soluti@f) from which we can compute
the right-hand-side functionsandg, namely,

u(x) = sin(x¢ + 2x3) — sin(2¢ + (x — 0.5)%). 9)

We solve this problem over two different two-dimensionaygibal domain2: for Model
Problem I, the domain is the squa= [—1, 1]?, and for Model Problem II, the boundary
of Q is defined by

0Q ={(r,0)|r(6) =0.8+0.1(sin(66) +sin(36))}. (10)

This region is illustrated in Figure 1(c).

In Figure 1 we show typical examples of patches and nodelisivns for Model Prob-
lem | (with 16 patches on the square domain) and Model Problgwith 50 patches and
domain boundary defined by (10)). In each case, the patchdaoiés are shown in red,
with patch centres marked as black dots. Points on the dobeaindary (where the Dirich-
let boundary conditions are applied) are represented ngriecles. The amount of overlap
between patches ig= 0.15 for Model Problem |, angt = 0.3 for Model Problem Il. The
square domain is shown with both Cartesian and Halton [2dadshown as blue stars).
The reason for choosing these two types of nodes is that #pgsent extremes in terms
of node distributions: the Cartesian nodes are completelgtsired, while the Halton nodes
are quasi random, and completely unstructured. For gegeaahetries it is not possible to
always have completely structured nodes. A typical scerfaria RBF-PUM discretisation
would be to have unstructured nodes, but of a higher qualiteims of uniformity than
Halton nodes. This is the case that is investigated for MBdeblem I, see Figure 1(c).

The patches similarly have a Cartesian layout for Model lerald and an unstructured
layout for Model Problem II. The number of patches is chosemghat the number of node
points per patch is large enough (5) to provide a reasonable local approximation, while
still small enough € 100) for the conditioning of the local problem to be manadgab
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(a) Model Problem |, 289 Cartesian nodes, 16 patchi{&€3.Model Problem I, 294 Halton nodes, 16 patches.

11 .
057
g0
-0.5
1 ‘ : ‘ ‘
-1 -0.5 0 0.5 1
xy
(c) Model Problem II, 298 unstructured nodes, 50

patches.

Fig. 1: lllustrations of typical patches and node distiis. Patch boundaries are marked with red circles,
interior nodes with blue stars and boundary nodes with gceefes.

One question which needs addressing is how the patcheshandhe nodes within
each patch, should be ordered. This is important as theigppastern ofL in (8) will have
implications for the design of efficient fast solvers. Intparar, as we will consider sparse
factorisation techniques, we are interested in keepingniugix entries as tightly banded as
possible. To this end, we choossr@ake orderindor the patches, where each patch (except
the last) is followed by one of its neighbours. This ordergdllustrated for both model
problems in Figure 2, where the patch ordering follows thes tine.

For Model Problem 1, this is trivial to construct, beginniwih a vertical ordering, and
then alternating the direction in which the columns of pagchre traversed (this could of
course be done equivalently in a horizontal fashion). Fod&ld’roblem 1, it is less ob-
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1t
0.5¢
12 0
-0.5
Sy ‘ : ‘ ‘
-1 -0.5 0 0.5 1
(a1
(a) Patch order for Model Problem |I. (b) Patch order for Model Problem II.

Fig. 2: lllustrations of thesnakepatch ordering strategy. The blue lines illustrate the ordehich the patches
are numbered.

vious how to proceed. We use the following simple heurisfipraach. Starting with the
patch whose centre has minimuynto-ordinate, we select a neighbour that is to the left or
else above (in terms of the centre co-ordinates) for as Ismupasible. When this fails, we
switch direction and look for a neighbour that is to the lefetse below, continuing in this
alternating way until all patches have been traversed.ofgh this approach may some-
times fail (for example, when the domain has thin sectiorth whly one layer of patches
such that changing direction is not possible), the genetatiple of ordering patches in
terms of nearest neighbours in a linear-like way shouléitstifollowed where possible.

Having fixed an order for the patches, we now turn our attartbdhe ordering of nodes
within each patch, with a similar aim of designing this to miise the distance between
neighbouring nodes. The strategy we use has two main comfsorférst, each node, is
allocated to a home patch, according to its largest weiddat 13, it is associated with the
patchQ; for whichw;(x) > wi(x),i =1,...,P, see (4). In the case of a tie, the first patch
with this property is designated the home patch. Secorftynodes are then ordered within
each patch as follows: first, nodes in the overlap of the octirmed preceding patch; then
nodes only in the current patch; finally, nodes in the oveoliehe current and the following
patch. In this way, nodes that are located in the overlapnsgbetween patches become
close neighbours in the ordering, leading to a cleaner tstreign the final global matrix.
Examples of the sparsity df resulting from this patch and node ordering are shown in
Figure 3, where the three subfigures correspond to the thoelelmproblem configurations
presented in Figure 1.

4 lterative method and preconditioning
As the RBF-PUM coefficient matrik is very sparse, solving system (8) with a direct method

(based on the factorisation bfinto easily invertible matrices) is not appropriate: thefge
mance of direct methods scales poorly with problem sizerimgeof operation counts and
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(a) Sparsity oL corresponding to (b) Sparsity ofL corresponding to (c) Sparsity oL corresponding to
patches and nodes in Figure 1(a)patches and nodes in Figure 1(b)patches and nodes in Figure 1(c).

Fig. 3: lllustrations of typical sparsity patternslo€orresponding to the sample patch and node combinations
in Figure 1.

memory requirements, especially for high-dimensional pBiblems. Instead, we adopt an
iterative approach to take full advantage of the sparsidy@ed by the local approximation.
In this paper, we will focus on the Generalized Minimum RaaldGMRES) method [33].
As mentioned in the introduction, GMRES is usually not thestrefficient method in prac-
tice, as it involves storing and re-orthogonalising agaamsincreasing number of vectors
at each iteration. For implementation purposes, the testaersion GMRESY) should be
used, or an alternative more cost effective Krylov methathsas Bi-CGSTAB [40] or IDR
[38]. However, we use GMRES here for its clear theoreticainework as outlined below.

It is well known that the convergence of GMRES (and otheiatiege methods) can be
improved by introducing the concept of preconditioningedtetically, this is equivalent to
replacingL by a preconditioned matrix whose eigenvalue spectrumitaiet faster itera-
tive convergencésee below)Considerable research has been carried out in recenttgears
find inexpensive ways to generate suitable preconditiofeera wide variety of problems
with different types of coefficient matrix (see, for exampg] or any standard textbook
on iterative methods). Here we will employ right precoratitng and solve linear systems
equivalent to (8) of the form

LMty =f, Mu=y.

Note that in practice it is not necessary to form the predomid matrixLM 1 explicitly
(which would again result in a loss of sparsity): we only neesolve ‘inner’ linear systems
with M as coefficient matrix. The aim is therefore to find a precoonédr M such that
LM~ has an improved eigenvalue structure, while a system witffficeent matrixM is
cheap to solve. This latter point is primarily what motivgathe use of sparse factorisations
as preconditioners.

The GMRES method has the attractive theoretical propertyiofmising the 2-norm
of the residual at each iteration. That is, at iterafiothe residual vector = f- LM*lyi
satisfies

o= min i (LM~r0)|5,
1”12 pie%.pi(o)zlup'( )2
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where Z; is the set of all polynomials of degrée~urthermore, if the preconditioned coef-
ficient matrixLM~1 is diagonalisable, it can be shown that

whereay, ¢ =1,...,N are the eigenvalues &M ! with corresponding eigenvector matrix
Wy -1. If LM~1is normal, then condW, 1) = 1 and,in exact arithmetic, GMRES will
converge ins iterations, wheres is the number of distinct eigenvalues Iof1-1. In prac-
tice, although rounding error pollutes this theoreticalute the rate of convergence is still
essentially bounded by the quantity

'[|2
ol

==

< conth (W - min max |pi(ay
< b (W l)pie%,pi(o):llgng‘p'( o)l

=
N

= min max |pi(a 11
P pie%.pi(o):lléé'Sle( ol (11)

at each iteration, so fast convergence can be obtained éiglemvalues oEM~1 are nicely
clustered. Specifically, if the preconditioned eigenvalliein k dense clusters, we expect to
obtain a good approximation to the solution vectok BMRES iterationslf the precondi-
tioned coefficient matrix is not normal (as is the case héhne)factor congl(W, ;1) reflects
its degree of non-normality and convergence often exhéitsitial period of stagnation be-
fore bounds based on eigenvalues alone become descripieThis phenomenon can be
observed in the convergence plots presented later (Figure7

In the numerical experiments §6, we will compare the performance of five different
preconditioners with that of unpreconditioned GMRES. Tiithese are based on a straight-
forward incomplete LU factorisation [29] df. In the first (L-ILUn), no fill-in is allowed,
that is, the sparsity pattern of the factors is fixed to theesamthe sparsity pattern of the
original matrixL (this method is often designated in the literature by ILY)(0) the second
variant (L-ILUd), a drop tolerance is specified (0.001 in edperiments), and any poten-
tial entries in the factors which are less than this valuegmered, again ensuring that the
factors remain sparse.

In addition to these two standard methods, we will also ussethbreconditioners based
on factorisations of an alternative matrk, containing only the central band bf Figure 4
shows the matriB for the three configurations we have considered in Figurasdl3aln

]
il L
| U™ --— :
) -—
= s
N T _! — \
IH !
i = R
g -
B i ' %
i i
Hil .I
nz = 7070 nz=7778 nz = 2101

(a) Sparsity oB corresponding to (b) Sparsity ofB corresponding to (c) Sparsity ofB corresponding to
patches and nodes in Figure 1(a)patches and nodes in Figure 1(b)patches and nodes in Figure 1(c).

Fig. 4: lllustrations of typical sparsity patterns®torresponding to the sample patch and node combinations
in Figure 1.
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each case, the bandwidfhof B (such thath; = 0 when|i — j| > ) has been set equal
to max nj — 1 wheren; is the total number of nodes in pat¢ghThis choice of bandwidth
ensures that we retain information about the closest coiomsdetween nodes and patches,
which is located in this central band thanks to the neareighbour philosophy we have
used in numbering of patches and nodes §&eln §6, we test three preconditioners based
on B. The first of these is a full LU factorisation & (B-LU). Although this will not be
competitive in computational terms, the resulting itematcounts will give an indication of
the amount of information lost by replacing the full coeffici matrixL with the banded
approximationB. As more practical preconditioners, we also use the samefdmos of
ILU factorisation used fot, namely, with no fill-in (B-ILUn) and with a drop tolerance of
0.001 (B-ILUd). A summary of all five preconditioners implented in§6, together with
the acronyms used to refer to them in the following text, v&giin Table 1.

Table 1: Summary of preconditioners implemented

B-LU LU factorisation ofB.

B-ILUn  Incomplete LU factorisation oB using no fill-in.

B-ILUd  Incomplete LU factorisation oB using drop tolerance 0.001.
L-ILUn  Incomplete LU factorisation of using no fill-in.

L-ILUd  Incomplete LU factorisation of using drop tolerance 0.001.

Note that, in terms of ILU fixed sparsity patterns, we havéuded here results only
for the no-fill version (commonly called IL(®)) and not the more general version, 1jt)
(see, for example, [3310.3.3]) which allows a higher level of fill-in. For the banbfac-
torisation, we observed in our numerical experiments thadtrof the relevant information
is already captured by B-ILUn, making versions with moreifilessentially redundant. For
the full factorisation oL, adding additional fill-in was more beneficial in terms ofuethg
iteration counts. However, the amount of extra storageiredwrew very quickly, making
such methods unattractive when moving to high dimensioralpms. We have therefore
omitted results obtained using these methods from thisrpape

5 Convergence estimates for GMRES

As described ing4, the asymptotic convergence phase GMRES can be quantified by
considering the factorg; in (11) based on the eigenvaluesg of the coefficient matrix. In
practice, however, the eigenvalugsare not usually readily available, so it is common to
use instead a related expression, based on a compact amtuoostsetS which contains
the relevant eigenspectrum (but excludes the origin), @faohm

S = [ i(0)].
A= _min _ maxpi(o)]

To remove the dependence on the iteration numbeis often more convenient to consider
the so-callecasymptotic convergence factof the setS(see e.g. [26§5.7.6]) defined by

p(8) =lim (pi(S)"". (12)
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Although p(S) can be difficult to quantify analytically, its value can beiesited using a
computational technique based on conformal mappings.ifg@ly, if @ is a conformal
map from the exterior oBto the exterior of the unit disc that satisfi@go) = oo, thenp(S)
in (12) can be approximated by the value|df(0)|~ (see [9] for more details). In what
follows, we apply this technique witB chosen to be the complex hull of the eigenvalue
spectrum being studied.

We begin with Model Problem | with Cartesian grid points, bate using more points
(N = 1225, with 64 (8&8) patches) than shown in Figure 1(a). Gaussian RBFst) =
exp(—&?r?), with shape parameter = 1.2 are used. Herk (and its associated precondi-
tioned versions) is positive definite, so the convex hulheféigenvalues does not contain the
origin, and the procedure for estimating the asymptotioveayence factor outlined above
can be carried out in all cases. The pictures in Figure 5 shewigenvalues (blue circles) of
the coefficient matrix after the different preconditionkesve been applied, with the convex
hull outlined in red.

0.4 0.4
3 &
< <
£ E
0.4 0.4
3 0 0.5 1 15 2 0 0.5 1 1.5 2
real(ay) <104 real(ay) real(oy)
(a) No preconditioning. (b) B-LU. (c) B-ILUn.
0.4 0.4 0.4
0.2 0.2 0.2
& & &
E S 0 S 0
E E E
-0.2 -0.2
-0.4 0.4 = -0.4
0 0.5 1 15 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2
real(ay) real(oy) real(oy)
(d) B-ILUd. (e) L-ILUn. (f) L-ILUd.

Fig. 5: Eigenvalues of the coefficient matrix with variougqonditioners for Model Problem | with 1225
Cartesian points and 64 patches together with the asst@aterex hull used in the calculation pfin (12).

The values op associated with the spectra represented in Figure 5 aed listTable 2.
When no preconditioning is applied, the valueoois close to one suggesting that the con-
vergence of unpreconditioned GMRES will be slow: it can bengthat the eigenvalues bf
itself (Figure 5(a)) are not well clustered. The three prelitioners based oB all lead to
preconditioned spectra which look very similar (Figurels)5(c) and (d)), with essentially
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Table 2: Approximate asymptotic convergence factor for Bldtroblem | with 1225 Cartesian points and 64
patches using different preconditioners.

None B-LU B-ILUn B-lLUd L-ILUn L-ILUd

0.990 0.839 0.839 0.840 0.506 0.132

the same convergence factor. An improvement in GMRES cgewvee rate is anticipated
with all three. The fact that the two preconditioners based tead to very clustered eigen-
values (Figures 5(e) and (1)) is reflected in the much smadkres ofp predicted for these
methods, suggesting that they will require few iteratiarsconvergence.

Analogous eigenvalue plots for Model Problem | with 1258tblapoints and 64 patches
are shown in Figure 6. Here, the convex hull of the eigenghleays contains the origin

5 5
25
g 3 3
5 g g 0
25
-1 -5 5
2 1 0 1 2 20 -10 0 10 20 20 -10 0 10 20
real () «10% real(ay) real(a)
(a) No preconditioning. (b) B-LU. (c) B-ILUN.
5 1000 5
25 500 25
o
g 0 g O $ 0
S o S S
2.5 -500 25

5 -1000 5
20 -10 0 10 20 -15 -10 -5 0 5 20 -10 0 10 20
real(ay) real(oy) «10% real(ar)

(d) B-ILUd. (&) L-ILUn. (f) L-ILUd.

Fig. 6: Eigenvalues of the coefficient matrix with variouggonditioners for Model Problem | with 1258
Halton points and 64 patches together with the associateeerdull. Note that the axis limits are the same
for all preconditioned spectra except for the L-ILUn preditioner.

so the above method for estimating the asymptotic convesgggate is not applicable.
Figure 7 shows the actual residual reduction for Model Rnobl using 1225 Carte-
sian points (Figure 7(a)) and 1258 Halton points (Figurg)7@&ll calculations used a zero
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10°¢ 10°¢
none ——none
- --B-LU ---B-LU
—~_ B-LUn| | — . » B-ILUn
=10 -e-piLud| | =10 - e -B-ILUd
= LLun| | = ——L-ILUn
~ L-ILUd ~ L-ILUd
= 4 = 4
=~ 10 1 =10
= R
= =
S 10 S 10°®
108 ) ' ’ ' 1078 : ' : '
0 50 100 150 200 250 0 100 200 300 400 500
iterations (k) iterations (k)
(a) 1225 Cartesian points. (b) 1258 Halton points.
Fig. 7: Convergence for Model Problem | using 64 patches.
starting guess, and each GMRES iteration was terminated whe
Ir'[l2 < 1078 [|r°2. (13)

These results can be used to computeréisédual reduction factop, defined by

i 1/i
[rO2)
wherei is the number of iterations required for convergence. Thedees are shown in

Table 3. The actual residual reduction factor for the Catepoints is slightly better than
expected from theory (Table 2) but exhibits the same reddtiwhaviour over the range of

preconditioners.

Table 3: Residual reduction for Model Problem | with 64 patclnd 1225 Cartesian points and 1258 Halton
points respectively, using different preconditioners.
None B-LU B-ILUn B-ILUd L-ILUn L-ILUd

1225 Cartesian points  0.898  0.713 0.713 0.711 0.397 0.098
1258 Halton points 0.949 0.891 0.898 0.895 0.940 0.778

6 Numerical results

In this section we present the results of some numericalrerpats which investigate the
comparative performance of preconditioned GMRES for trex@nditioners listed in Ta-
ble 1. All calculations were carried out with MATLAB [28], drthe timings were produced
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usingtic andtoc. The initial guess was zero, and all tests used the GMREisigpri-
terion (13). The underlying PDE problems which we solve am® Problems | and Il as
described ir§3. However, as we are interested in studying the effect aresplerformance
of varying the number of patches, as well as the type and nuoflints used, we do not
limit ourselves to the configurations shown in Figure 1.éastwe will introduce five sets
of test problems which will help us to isolate these indialeffects. In all experiments,
Gaussian RBFs with shape parametet 1.2 have been used. The RBF-QR method was
employed in order to ensure stable evaluation of the matriteshould however be noted
that even if the RBF—QR method involves a change of basisiethdting differentiation
matrices are the same that would result from a direct useeoGwussian basis if that was
numerically feasible.

The first four of these test sets are for Model Problem | (orstheare domain). For each
test problem, the number of pointd), number of patche$?), average number of of points
per patch p), estimated condition number bf(k, calculated using the MATLAB command
condest), and the maximum error in the discrete solution are digalay Table 4. Test sets

Table 4: Test sets 1-4 for Model Problem |

Cartesian nodes
Test N P p K max error | Test N P p K max error
Testset 1 Test set 2

1A 441 16 541 23e4 2.4e-4 2A 400 25 356 4.8e3 3.6e-3
1B 676 25 53.8 3.8e4 3.7e-4 2B 576 25 46.2 1.9¢4 1.8e-4
1C 961 36 53.7 5.5¢4 2.9e-4 2C 676 25 53.8 3.8e4 3.7e-4
1D 1024 49 427 2.6e4 1.2e-4 2D 900 25 712 2.5e5 4.7e-5
1E 1225 64 389 4.8¢4 2.3e-5 2E 1089 25 85.7 7.0e5 1.3e-6

Halton nodes

Test N P p K max error | Test N P p K max error
Test set 3 Test set 4

3A 460 16 49.6 3.8e6 1.2e-4 4A 436 25 30.8 3.9e6 1l.4e-2
3B 681 25 486 2.0e7 1.2e-4 4B 583 25 412 10e7 1.1e-3
3C 968 36 49.3 6.0e7 1.7e-4 4C 681 25 48.6 20e7 1.2e-4
3D 1056 49 401 6.17 1.0e-4 4D 884 25 620 27%e8 1.3e-5
3E 1258 64 36.8 1.1e8 2.0e-4 4E 1090 25 779 14e9 1.6e-6

1 and 2 both use Cartesian points. In test st &ndP are both increased in such a way that
the resulting error in the solution is kept at a similar Ieizelle— 4). This results in a set of
coefficient matriceg which are similarly conditioned. Note that problem 1E cepends to
the configuration which leads to the eigenvalues in Figuiiest set 2 is designed to achieve
different levels of accuracy by varyirig while keepingP constantP = 25). Here it is clear
that there is a correlation between the accuracy of theetisation and the condition of the
resultingL. Test sets 3 and 4 are designed to be broadly similar, but aterHpoints in
place of a Cartesian lattice. The degradation of the canditumber ofL associated with
the irregularly scattered points is apparent.

In Table 5 we display iteration counts and computationaétrfor the different precon-
ditioners defined in Table 1 employed on test sets 1 and 2. $ st focus on iteration
counts. As predicted by the asymptotic convergence ratéalile 2 (which were calculated
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Table 5: Results for test sets 1 and 2 (Cartesian nodes, Nbodlelem 1). The lowest time for each problem
is shown in bold.

Testset 1
Test none B-LU B-ILUn B-ILUd L-ILUn L-ILUd
Iteration counts

1A 127 35 35 36 10 9
1B 165 43 43 44 12 11
1C 200 51 51 51 14 13
1D 170 52 52 52 25 8
1E 174 55 55 55 20 9

Computational time

1A 18e-1 1.1e-1 31le2 5562 292 34e2
1B 27e-1 95e-2 592 7.8e2 4l1e2 6.6e-2
1C 43e-1 2.0e1 8.4e2 1.2e-1 4.0e-2 11le1
1D 33e1 1361 7.8e2 12e1 39e2 95e2
1E 44e-1 191 10e1 1l4el 4.6e-2 17e-1

Test set 2
Test none B-LU B-ILUn B-ILUd  L-ILUn L-ILUd
Iteration counts

2A 32 20 21 36 21 44
2B 127 38 38 38 12 7

2C 165 43 43 44 12 11
2D 170 48 49 49 21 11
2E 180 52 53 54 25 17

Computational time

2A  6.4e-2 35e2 322 532 292 57e2
2B 15e-1 6.1le2 3.3e-2 7.1e-2 15e-2 39e2
2C 35e1 13e1 6.0e-2 80e2 20e2 7.6e2
2D 31e-l 17e-1 1lle-l 25e1 1llel 1l7e-1
2E  4.1e-1 26e-1 96e-2 20e1 7.2e2 26e-1

using problem 1E), the method which converges in the sntall@mber of iterations is L-
ILUd, followed by L-ILUn, while the three methods basedBmave similar performance.
As B-LU uses a full LU factorisation, iteration counts foiglpreconditioner give a lower
bound on what can be expected from B-ILUn and B-ILUd. It carséen that, as we have
carefully numbered patches and points to ensure that theatéand that is used to fori

is relatively dense, very little is lost in replacing LU by srtomplete version. As well as
considering iteration counts, however, it is of course ingoat to consider the computational
time taken by each method. Those are also listed in Tabledbinaiude the time taken for
factorisation (where applicable) and the full GMRES sol¥sing this measure, the methods
of choice are the factorisations based on ILUn with, for ¢h€srtesian examples, L-ILUn
being slightly faster that the banded version, B-ILUn.

The equivalent results for test sets 3 and 4 (with Halton spdee shown in Table 6. As
expected, the poorer conditioning of these matrices isateftiein increased iteration counts
for all of the methods. In particular, the performance ofllUh degrades completely (cf.
the eigenvalues for problem 3E shown in Figure 6(€l)is catastrophic behaviour appears
to be restricted to the case with no fill-in only: allowing &dthal levels of fill-in brings the
iteration counts more in line with the Cartesian resultswkleer, as discussed above, this
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Table 6: Results for test sets 3 and 4 (Halton nodes, Moddl&rol). The lowest time for each problem is
shown in bold.

Test set 3
Test none B-LU B-ILUn B-ILUd L-ILUn L-ILUd
Iteration counts

3A 156 52 58 54 97 19

3B 231 100 112 106 167 49
3C 297 114 135 123 159 65
3D 310 108 118 115 202 60
3E 355 161 174 166 310 75

Computational time

3A  25e-1 10e1l 54e-2 191 22e1 17e-1
3B 55e-1 3.0el1l 16e-1 26e-1 3lel 43e1l
3C 86e-1 39e1 3lel 4lel 34el1 85el
3D 95e-1 34e1 2l1le-l 35e1 631 791
3E 14e-0 6.3e-1 42e1 6.2e1 1.1e0 1.1e0

Testset 4
Test none B-LU B-ILUn B-ILUd  L-ILUn L-ILUd
Iteration counts

4A 189 72 72 72 79 16
4B 209 80 91 84 147 34
4C 231 100 112 106 167 49
4D 262 107 125 124 176 66
4E 295 120 135 172 368 152

Computational time

4A  3.1e-1 1l.le-l1 1.0e-1 18e-1 1.6e-1 1l6e-1
4B 46e-1 27e-1 191 25e-1 24e1 23e1l
4C  49e-1 3.0e-1 18e-1 3.0e-1 42e1 391
4D 6.5e-1 52e-1 28e-1 421 41el 88el
4E 9.0e-1 69e-1 30e-1 88e1 1.6e0 28e0

comes at the price of significantly increasing the amount efiory needed. The compara-
tive merits of other methods in Table 6 are essentially theesas for the Cartesian example,
although the reduction in iteration counts (relative touhpreconditioned case) is less in all
cases here. This is not surprising as the Halton points dbawat the rigid banded substruc-
ture of the Cartesian points, which is more amenable to effidactorisation. In addition,

the bandwidth measui in B has been tailored to the Cartesian case (where it can be eas-
ily calculated): using the same measure in the Halton case dot necessarily guarantee
inclusion of all closest connections due to the lack of stmec However, the factorisations
based orB still work well as preconditioners and, in terms of compiataél times, B-ILUn

is clearly the most efficient method overall.

To conclude this section, we introduce a final set of testlprob, test set 5, for Model
Problem Il using unstructured nodes, @é 50 patches. Details of the configurations used
are given in Table 7. Note that the valuesMfhave been chosen to roughly correspond
to those used in test sets 1-4. The corresponding iterationts and computational times
are shown in Table 8. Despite the irregularity of the comjportal domain, the results are
very similar to those obtained using Halton points on theasgdomain, with B-ILUn again
being the method of choice.
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Table 7: Test set 5 for Model Problem Il

Test N P p K max error

5A 398 50 132 1.6e6 8.8e-1
5B 695 50 234 9.7e5 2.8e-4
5C 994 50 334 1.9e7 2.2e-4
5D 1094 50 36.9 8.6e6 8.4e-6
5E 1292 50 43.7 1.6e7 1.7e-6

Table 8: Results for test set 5 (Model Problem II). The lowiese for each problem is shown in bold.
Test none B-LU B-ILUn B-lLud L-ILUn L-ILUd
Iteration counts

5A 207 67 68 67 48 14
5B 235 76 78 76 85 13
5C 279 99 119 99 195 23
5D 304 102 120 102 255 26
5E 322 133 149 132 415 53

Computational time

5A 21le-1 7.3e-2 58e2 7.3e-2 39e-2 3.0e2
5B 49e-1 13e-1 88e2 13e1 992 84e2
5C 75e-1 26e1 2le-l 26e1 44e1 28el
5D 9.1e-1 291 2le-l 291 7.4e1 37e1
5E 1.1e0 56e-1 33e-1 53e1 20e0 7.9e1

7 Conclusions

In this paper, we have introduced and evaluated algebraicopditioners for RBF-PUM
discretisations. These preconditioners are free of anyngsisons on the node layout or
geometry of the computational domain. The only propertyithased is the knowledge that
there is a patch structure and that nodes can be ordereddagigr This is important so
that the preconditioner is generally applicable.

The performance of the preconditioners, as well as the tondig of the original ma-
trix, is negatively affected by the use of the highly unstuued nodes. However, in our
experiments we do not observe any adverse effect of chatiggngomputational domain.
The preconditioner that performed best overall, and thategemmend for use, is the no
fill-in incomplete factorisation of the central band, destbby B-ILUN.

The B-ILUn preconditioner is also the most sparse of theetepreconditioners. This
property becomes increasingly important when moving tgdamatrix sizes and/or higher
dimensional problems, in which case memory requiremerderbe a limiting factor. How
the preconditioner performs in higher dimensions will be slabject of further studies.
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