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Abstract Meshfree radial basis function (RBF) methods are of interest for solving par-
tial differential equations due to attractive convergenceproperties, flexibility with respect
to geometry, and ease of implementation. For global RBF methods, the computational cost
grows rapidly with dimension and problem size, so localisedapproaches, such as partition
of unity or stencil based RBF methods, are currently being developed. An RBF partition
of unity method (RBF–PUM) approximates functions through acombination of local RBF
approximations. The linear systems that arise are locally unstructured, but with a global
structure due to the partitioning of the domain. Due to the sparsity of the matrices, for large
scale problems, iterative solution methods are needed bothfor computational reasons and to
reduce memory requirements. In this paper we implement and test different algebraic pre-
conditioning strategies based on the structure of the matrix in combination with incomplete
factorisations. We compare their performance for different orderings and problem settings
and find that a no-fill incomplete factorisation of the central band of the original discretisa-
tion matrix provides a robust and efficient preconditioner.
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1 Introduction

There is an increasing interest in using methods based on radial basis function (RBF) ap-
proximation [12] for the solution of partial differential equations (PDEs). The main advan-
tages of these methods are that they are mesh free, which provides flexibility with respect
to the geometry of the computational domain; they can be spectrally accurate for smooth
solution functions [30,31]; they are comparatively easy toapply to high-dimensional prob-
lems, which is vital for application areas such as finance, quantum dynamics, and systems
biology.

The typical form of an RBF approximation ˆu(x) to a solution functionu(x), wherex =
(x1, . . . ,xd) ∈ R

d, is

û(x) =
N

∑
j=1

λ j φ j(x), (1)

whereλ j are coefficients to be determined. Hereφ(r) is a radial basis function, andφ j(x) =
φ(ε‖x−x j‖), wherex j , j = 1, . . . ,N are the (scattered) node points at which the individual
RBFs are centred. The parameterε is called the shape parameter and controls the flatness of
the RBFs. This shape parameter has a significant influence on the accuracy of the approxi-
mation, as well as on the conditioning of the resulting linear systems.

By requiring the RBF approximation to interpolate the solution at the node points, we
arrive at a linear system

Aλ = u, (2)

where theN×N matrix A has entriesai j = φ j(xi), i, j = 1, . . .N, λ = (λ1, . . . ,λN)T , and
u = (u(x1), . . . ,u(xN))T . If the basis function that is used has global support, the matrix
A becomes dense, and the computational cost of solving the linear system (2), especially
in higher dimensions, becomes prohibitive. Furthermore, as the shape parameterε goes to
zero, the RBFs become flat, and the linear system becomes severely ill-conditioned [18,19].
As was noted in [8] for one-dimensional problems, and later in [23] for multivariate prob-
lems, this ill-conditioning is an artefact of the particular formulation of the problem, while
the approximation result itself depends smoothly on the data. Several methods have been
proposed to eliminate these conditioning problems. The Contour-Padé algorithm [17] came
first, and was then followed by the RBF-QR method for the sphere [16] and for Cartesian
space [14] and, more recently, the RBF-GA method [15]. All ofthese approaches compute
the same end result as the ill-conditioned formulation, butthrough a stable reformulation. In
this paper, we employ the RBF-QR method [14,25] for constructing differentiation matrices.

In order to address the computational cost issues of the global RBF method, we need to
introduce locality. An easy way to do that is to use compactlysupported RBFs, such as the
Wendland functions [41], but then the spectral convergenceproperties are lost. Here we take
another approach, where the infinitely smooth RBFs are stillused in the approximation but
over local subregions of the computational domain. The possibility of using RBFs in a par-
tition of unity scheme was mentioned in [2], further discussed in [12,42], and implemented
and analysed for elliptic PDEs in [24] (see also [34,36], where an RBF partition of unity
method (RBF–PUM) was applied to parabolic PDEs). In the recent benchmark paper [39],
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many different types of methods, including RBF methods, were evaluated for option pricing
problems. The results demonstrated that out of the implemented RBF methods, the RBF–
PUM approach was the most efficient computationally.

The RBF–PUM discretisation leads to sparse unstructured matrices. For larger problem
sizes and in higher dimensions, it is therefore necessary interms of computational efficiency
to use an iterative solver for the linear systems that arise.Here we use the Krylov subspace
method GMRES [33] in order to take advantage of its theoretical residual minimising prop-
erty (see§4): other methods such as Bi-CGSTAB [40] or IDR [38] may be more suitable for
practical implementation with large problems. The RBF-PUMmatrices are non-symmetric
and moderately ill-conditioned so iterative convergence is typically very slow. It is therefore
important to have an effective preconditioner for these systems. In this paper, we design and
evaluate the performance of algebraic preconditioners based on (incomplete) LU factorisa-
tion that take advantage of the underlying structure of the coefficient matrices. To the best
of our knowledge, this is the first time that any preconditioner for this type of discretisation
has been developed.

In the current literature, most papers on preconditioning for RBF interpolation or ap-
proximation consider global approximations like (1). In such circumstances, using precon-
ditioners based on approximate cardinal basis functions computed on a reduced node set
has been shown to be successful (see, e.g., [4,6,13,20,27]). In our case, we are using a lo-
cal approximation, so the coefficient matrices are already sparse. Preconditioners utilising
the Toeplitz structure of a discretisation with a logicallyCartesian node layout are intro-
duced in [3,7]. Although efficient, these may be hard to use for the unstructured sets of
nodes which are useful for non-trivial geometries. In [11],algebraic preconditioners are
constructed for compactly-supported RBFs, utilising the two-by-two block structure of the
matrix arising from the separation of boundary and interiornodes, in combination with an
additive Schwarz method. A similar type of algebraic preconditioner is investigated in [1],
for a special case of complex matrices with symmetric positive definite real and imaginary
parts. In the latter paper, sparsification is used for the RBFexample, in the sense that small
off-diagonal elements are removed, and their mass is added to the corresponding diagonal
element.

The remainder of this paper is structured as follows. In§2, we present details of the
RBF discretisation method. This is followed in§3 by a description of the set of Poisson test
problems which we use throughout the paper, together with a discussion of some important
issues concerning node numbering and matrix structure. In§4, the iterative method and
new preconditioners are described, and in§5 we make some predictions concerning the
asymptotic convergence rates of the resulting methods. Finally, in §6, we present the results
of several numerical experiments and draw some conclusionsin §7.

2 The Radial Basis Function Partition of Unity Method

Since in this paper we are mainly interested in the efficiencyof different preconditioning
approaches, we restrict our attention to a stationary linear PDE with Dirichlet boundary
conditions. We note, however, that the techniques presented here can also be generalised to
other problem settings, including time-dependent problems. We define our model PDE on a
closed domainΩ ⊂ R

d, with boundary∂ Ω as follows:

L u(x) = f (x), in Ω , (3a)

u(x) = g(x), at ∂ Ω , (3b)
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wherex= (x1, . . . ,xd). In the numerical experiments presented later, we takeL = −∆ (the
Laplace operator).

In a partition of unity method, the global approximation ˜u(x) to the solutionu(x) is
constructed as a weighted sum of local solutions ˜u j(x) on overlapping patchesΩ j , j =
1, . . . ,P. That is,

ũ(x) =
P

∑
j=1

w j(x)ũ j(x). (4)

wherew j , j = 1, . . . ,P are weight functions. The patchesΩ j need to form a cover of the
domain in the sense that

P
⋃

j=1

Ω j ⊇ Ω .

There should also be an upper boundK for the number of patches that overlap at one given
point x∈ Ω .

An illustration of typical sets of circular patches used in this paper can be seen in Fig-
ure 1 in§3. We define the overlapγ relative to the minimal patch radiusR0 such that, for
given patch centres, we fulfil the conditions required for a cover. That is, in subfigures 1(a)
and 1(b), a patch radius ofR0 would correspond to patch boundaries just touching in the
diagonal direction. With an overlapγ , we use a patch radius ofR= (1+ γ)R0.

The partition of unity weight functionsw j are non-negative, compactly supported onΩ j

and satisfy
P

∑
j=1

w j(x) = 1, ∀x∈ Ω .

Furthermore, the weight functions need to bep times continuously differentiable, wherep
is the order of the PDE operatorL (for L = −∆ , p = 2). We follow the approach in [24,
34,36], and use Shepard’s method [12,37] applied to compactly supportedC2 Wendland
functions [41] to construct the weight functions

w j(x) =
ϕ j(x)

∑P
j=1 ϕ j(x)

, j = 1, . . . ,P,

whereϕ j(x) is the particular Wendland function supported onΩ j .
The PDE (3) is discretised with a collocation method. We therefore define a global set

of distinct nodesX = {xk}
N
k=1 in Ω , requiring the PDE (3a) to be satisfied at interior nodes,

and the boundary condition (3b) to be satisfied at boundary nodes. That is, we require

L ũ(xk) =
P

∑
j=1

L (w j(xk)ũ j(xk)) = f (xk), xk ∈ Ω \∂ Ω , (5a)

ũ(xk) =
P

∑
j=1

w j(xk)ũ j(xk) = g(xk), xk ∈ ∂ Ω . (5b)

For the particular case of the Poisson problem, whereL = −∆ , the local operator can be
expanded to give

L (w j(xk)ũ j(xk)) = −∆w j(xk)ũ j(xk)−2∇w j(xk) ·∇ũ j(xk)−w j(xk)∆ ũ j(xk). (6)

A general exposition for other linear operators can be foundin [34].



Preconditioning for radial basis function partition of unity methods 5

When using partition of unity approximations such as (5), itis convenient to work at
the patch level. We therefore now define local subsets of nodes asXj = {x j

i }
n j
i=1 = {xk ∈

X |xk ∈ Ω j}, wheren j is the number of nodes that fall inΩ j . In addition, we define the
index mappingk = π(i, j) that returns the global indexk for a given local nodex j

i . In the
particular case of RBF-PUM, the local solutions ˜u j(x) are RBF approximations

ũ j(x) =
n j

∑
i=1

λ j
i φ j

i (x), (7)

whereλ j
i are coefficients to be determined andφ j

i (x) = φ(ε‖x−x j
i ‖). However, in the par-

tition of unity setting, it is inconvenient to use the coefficientsλ j
i as the degrees of freedom,

as there is more than one coefficient per collocation node in the regions of overlap between
patches. Instead, we solve for the nodal values ˜u j(x

j
i )≡ ũ(xk), wherek = π(i, j). That is, we

require the local solution from two adjacent patches to takeon the same value at the node
points in the overlap region. The same requirement expressed in terms of the coefficients
would result in a non-local condition involving all coefficents in both patches.

We now define the vector of local nodal valuesu j = (ũ j(x
j
1), . . . , ũ j(x

j
n j ))

T and the local

coefficient vectorλ j = (λ j
1 , . . . ,λ j

n j )
T . From (7), we then have the relations

A j λ j = u j ⇒ λ j = A−1
j u j ,

whereA j = {φ j
m(x j

i )}
n j
i,m=1, and

L u j = DL
j λ j = DL

j A−1
j u j ,

whereDL
j = {L φ j

m(xj
i )}

n j
i,m=1. Note that, for distinct node points with positive definite

RBFs such as the Gaussians used for the numerical experiments in this paper, the local RBF
interpolation matricesA j are guaranteed to be non-singular [35]. We also define a diagonal
matrix

WL
j = diag(L w j(x

j
1), . . . ,L w j(x

j
n j

))

associated with each patch. Now, using (6), we can express the discrete local Laplacian
operators as

L̃ j = (W∆
j A j +2W∇

j ·D∇
j +WjD

∆
j )A−1

j ,

where the gradient operators are vector valued, and the scalar product is applied in the appro-
priate way. To get the discrete local PDE operator, we also include the boundary conditions,
which gives

L j(i,m) =

{

L̃ j(i,m), x j
i ∈ Ω \∂ Ω ,

δim, x j
i ∈ ∂ Ω ,

whereδim is the Kronecker delta. Finally, we obtain the global discrete operator by, as in a
finite element method, assembling the local matricesL j into the global matrixL such that

L j(i,m)
+

−→ L(π(i, j), π(m, j)), j = 1, . . . ,P, i,m= 1, . . . ,n j .

The global right hand sidef = ( f1, . . . , fN)T is defined through

fk =

{

f (xk), xk ∈ Ω \∂ Ω ,
g(xk), xk ∈ ∂ Ω .
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With the global vector of nodal values defined byu = (x1, . . . ,xN)T , the final (global) linear
system to be solved is

Lu = f . (8)

For small values of the shape parameterε , the matricesL j , and consequentlyL, become
highly ill-conditioned when computed as described above [18,19]. This is problematic be-
cause, for smooth solution functions, a small positive shape parameter value typically gives
the best accuracy of the solution [17,22,23]. Furthermore,refining the patches in RBF-
PUM for a fixedε results in a decreasing ’effective’ shape parameter value,that is, the
shape parameter becomes smaller in relation to the patch size. However, the problem of
ill-conditioning for small shape parameters can be avoidedby employing stable evaluation
methods such as the Contour-Padé approach [17], the RBF-QRmethod [14,16,25], or the
RBF-GA method [15]. Here we employ the RBF-QR method which, simply put, corre-
sponds to a change of basis from{φ j

m} to {ψ j
m} in the local problems. This significantly

reduces the condition number ofA j , and allows for stable evaluation ofL j for small shape
parameter values.

3 Model problems and ordering issues

To fix ideas, we will focus for the remainder of the paper on twospecific two-dimensional
model problems. As stated above, we will solve the PDE (3) with L = −∆ (the Laplace
operator). For simplicity, we use a manufactured solutionu(x) from which we can compute
the right-hand-side functionsf andg, namely,

u(x) = sin(x2
1 +2x2

2)−sin(2x2
1 +(x2−0.5)2). (9)

We solve this problem over two different two-dimensional physical domainsΩ : for Model
Problem I, the domain is the squareΩ = [−1, 1]2, and for Model Problem II, the boundary
of Ω is defined by

∂ Ω = {(r,θ)|r(θ) = 0.8+0.1(sin(6θ)+sin(3θ))}. (10)

This region is illustrated in Figure 1(c).
In Figure 1 we show typical examples of patches and node distributions for Model Prob-

lem I (with 16 patches on the square domain) and Model ProblemII (with 50 patches and
domain boundary defined by (10)). In each case, the patch boundaries are shown in red,
with patch centres marked as black dots. Points on the domainboundary (where the Dirich-
let boundary conditions are applied) are represented by green circles. The amount of overlap
between patches isγ = 0.15 for Model Problem I, andγ = 0.3 for Model Problem II. The
square domain is shown with both Cartesian and Halton [21] nodes (shown as blue stars).
The reason for choosing these two types of nodes is that they represent extremes in terms
of node distributions: the Cartesian nodes are completely structured, while the Halton nodes
are quasi random, and completely unstructured. For generalgeometries it is not possible to
always have completely structured nodes. A typical scenario for a RBF-PUM discretisation
would be to have unstructured nodes, but of a higher quality in terms of uniformity than
Halton nodes. This is the case that is investigated for ModelProblem II, see Figure 1(c).

The patches similarly have a Cartesian layout for Model Problem I and an unstructured
layout for Model Problem II. The number of patches is chosen such that the number of node
points per patch is large enough (& 15) to provide a reasonable local approximation, while
still small enough (. 100) for the conditioning of the local problem to be manageable.
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(a) Model Problem I, 289 Cartesian nodes, 16 patches.
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(b) Model Problem I, 294 Halton nodes, 16 patches.
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(c) Model Problem II, 298 unstructured nodes, 50
patches.

Fig. 1: Illustrations of typical patches and node distributions. Patch boundaries are marked with red circles,
interior nodes with blue stars and boundary nodes with greencircles.

One question which needs addressing is how the patches, and then the nodes within
each patch, should be ordered. This is important as the sparsity pattern ofL in (8) will have
implications for the design of efficient fast solvers. In particular, as we will consider sparse
factorisation techniques, we are interested in keeping thematrix entries as tightly banded as
possible. To this end, we choose asnake orderingfor the patches, where each patch (except
the last) is followed by one of its neighbours. This orderingis illustrated for both model
problems in Figure 2, where the patch ordering follows the blue line.

For Model Problem I, this is trivial to construct, beginningwith a vertical ordering, and
then alternating the direction in which the columns of patches are traversed (this could of
course be done equivalently in a horizontal fashion). For Model Problem II, it is less ob-
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(a) Patch order for Model Problem I.
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(b) Patch order for Model Problem II.

Fig. 2: Illustrations of thesnakepatch ordering strategy. The blue lines illustrate the order in which the patches
are numbered.

vious how to proceed. We use the following simple heuristic approach. Starting with the
patch whose centre has minimumy co-ordinate, we select a neighbour that is to the left or
else above (in terms of the centre co-ordinates) for as long as possible. When this fails, we
switch direction and look for a neighbour that is to the left or else below, continuing in this
alternating way until all patches have been traversed. Although this approach may some-
times fail (for example, when the domain has thin sections with only one layer of patches
such that changing direction is not possible), the general principle of ordering patches in
terms of nearest neighbours in a linear-like way should still be followed where possible.

Having fixed an order for the patches, we now turn our attention to the ordering of nodes
within each patch, with a similar aim of designing this to minimise the distance between
neighbouring nodes. The strategy we use has two main components. First, each nodexk is
allocated to a home patch, according to its largest weight. That is, it is associated with the
patchΩ j for which w j(xk) ≥ wi(xk), i = 1, . . . ,P, see (4). In the case of a tie, the first patch
with this property is designated the home patch. Secondly, the nodes are then ordered within
each patch as follows: first, nodes in the overlap of the current and preceding patch; then
nodes only in the current patch; finally, nodes in the overlapof the current and the following
patch. In this way, nodes that are located in the overlap regions between patches become
close neighbours in the ordering, leading to a cleaner structure in the final global matrix.
Examples of the sparsity ofL resulting from this patch and node ordering are shown in
Figure 3, where the three subfigures correspond to the three model problem configurations
presented in Figure 1.

4 Iterative method and preconditioning

As the RBF-PUM coefficient matrixL is very sparse, solving system (8) with a direct method
(based on the factorisation ofL into easily invertible matrices) is not appropriate: the perfor-
mance of direct methods scales poorly with problem size in terms of operation counts and
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nz = 11009

(a) Sparsity ofL corresponding to
patches and nodes in Figure 1(a).

nz = 11136

(b) Sparsity ofL corresponding to
patches and nodes in Figure 1(b).

nz = 3283

(c) Sparsity ofL corresponding to
patches and nodes in Figure 1(c).

Fig. 3: Illustrations of typical sparsity patterns ofL corresponding to the sample patch and node combinations
in Figure 1.

memory requirements, especially for high-dimensional PDEproblems. Instead, we adopt an
iterative approach to take full advantage of the sparsity induced by the local approximation.
In this paper, we will focus on the Generalized Minimum Residual (GMRES) method [33].
As mentioned in the introduction, GMRES is usually not the most efficient method in prac-
tice, as it involves storing and re-orthogonalising against an increasing number of vectors
at each iteration. For implementation purposes, the restarted version GMRES(m) should be
used, or an alternative more cost effective Krylov method such as Bi-CGSTAB [40] or IDR
[38]. However, we use GMRES here for its clear theoretical framework as outlined below.

It is well known that the convergence of GMRES (and other iterative methods) can be
improved by introducing the concept of preconditioning. Theoretically, this is equivalent to
replacingL by a preconditioned matrix whose eigenvalue spectrum facilitates faster itera-
tive convergence(see below). Considerable research has been carried out in recent yearsto
find inexpensive ways to generate suitable preconditionersfor a wide variety of problems
with different types of coefficient matrix (see, for example, [5] or any standard textbook
on iterative methods). Here we will employ right preconditioning and solve linear systems
equivalent to (8) of the form

LM−1y = f , Mu = y.

Note that in practice it is not necessary to form the preconditioned matrixLM−1 explicitly
(which would again result in a loss of sparsity): we only needto solve ‘inner’ linear systems
with M as coefficient matrix. The aim is therefore to find a preconditioner M such that
LM−1 has an improved eigenvalue structure, while a system with coefficient matrixM is
cheap to solve. This latter point is primarily what motivates the use of sparse factorisations
as preconditioners.

The GMRES method has the attractive theoretical property ofminimising the 2-norm
of the residual at each iteration. That is, at iterationi, the residual vectorr i = f −LM−1yi

satisfies

‖r i‖2 = min
pi∈Pi ,pi (0)=1

‖pi(LM−1)r0‖2,
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wherePi is the set of all polynomials of degreei. Furthermore, if the preconditioned coef-
ficient matrixLM−1 is diagonalisable, it can be shown that

‖r i‖2

‖r0‖2
≤ cond2 (WLM−1) min

pi∈Pi ,pi (0)=1
max

1≤ℓ≤N
|pi(αℓ)|

whereαℓ, ℓ = 1, . . . ,N are the eigenvalues ofLM−1 with corresponding eigenvector matrix
WLM−1. If LM−1 is normal, then cond2 (WLM−1) = 1 and,in exact arithmetic, GMRES will
converge ins iterations, wheres is the number of distinct eigenvalues ofLM−1. In prac-
tice, although rounding error pollutes this theoretical result, the rate of convergence is still
essentially bounded by the quantity

ρi = min
pi∈Pi ,pi (0)=1

max
1≤ℓ≤N

|pi(αℓ)| (11)

at each iteration, so fast convergence can be obtained if theeigenvalues ofLM−1 are nicely
clustered. Specifically, if the preconditioned eigenvalues lie ink dense clusters, we expect to
obtain a good approximation to the solution vector ink GMRES iterations.If the precondi-
tioned coefficient matrix is not normal (as is the case here),the factor cond2 (WLM−1) reflects
its degree of non-normality and convergence often exhibitsan initial period of stagnation be-
fore bounds based on eigenvalues alone become descriptive [10]. This phenomenon can be
observed in the convergence plots presented later (Figure7).

In the numerical experiments in§6, we will compare the performance of five different
preconditioners with that of unpreconditioned GMRES. Two of these are based on a straight-
forward incomplete LU factorisation [29] ofL. In the first (L-ILUn), no fill-in is allowed,
that is, the sparsity pattern of the factors is fixed to the same as the sparsity pattern of the
original matrixL (this method is often designated in the literature by ILU(0)). In the second
variant (L-ILUd), a drop tolerance is specified (0.001 in ourexperiments), and any poten-
tial entries in the factors which are less than this value areignored, again ensuring that the
factors remain sparse.

In addition to these two standard methods, we will also use three preconditioners based
on factorisations of an alternative matrix,B, containing only the central band ofL. Figure 4
shows the matrixB for the three configurations we have considered in Figures 1 and 3. In

nz = 7070

(a) Sparsity ofB corresponding to
patches and nodes in Figure 1(a).

nz = 7778

(b) Sparsity ofB corresponding to
patches and nodes in Figure 1(b).

nz = 2101

(c) Sparsity ofB corresponding to
patches and nodes in Figure 1(c).

Fig. 4: Illustrations of typical sparsity patterns ofB corresponding to the sample patch and node combinations
in Figure 1.
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each case, the bandwidthβ of B (such thatbi j = 0 when|i − j| > β ) has been set equal
to maxj n j −1 wheren j is the total number of nodes in patchj. This choice of bandwidth
ensures that we retain information about the closest connections between nodes and patches,
which is located in this central band thanks to the nearest-neighbour philosophy we have
used in numbering of patches and nodes (see§3). In §6, we test three preconditioners based
on B. The first of these is a full LU factorisation ofB (B-LU). Although this will not be
competitive in computational terms, the resulting iteration counts will give an indication of
the amount of information lost by replacing the full coefficient matrixL with the banded
approximationB. As more practical preconditioners, we also use the same twoforms of
ILU factorisation used forL, namely, with no fill-in (B-ILUn) and with a drop tolerance of
0.001 (B-ILUd). A summary of all five preconditioners implemented in§6, together with
the acronyms used to refer to them in the following text, is given in Table 1.

Table 1: Summary of preconditioners implemented

B-LU LU factorisation ofB.
B-ILUn Incomplete LU factorisation ofB using no fill-in.
B-ILUd Incomplete LU factorisation ofB using drop tolerance 0.001.
L-ILUn Incomplete LU factorisation ofL using no fill-in.
L-ILUd Incomplete LU factorisation ofL using drop tolerance 0.001.

Note that, in terms of ILU fixed sparsity patterns, we have included here results only
for the no-fill version (commonly called ILU(0)) and not the more general version, ILU(p)
(see, for example, [32,§10.3.3]) which allows a higher level of fill-in. For the banded fac-
torisation, we observed in our numerical experiments that most of the relevant information
is already captured by B-ILUn, making versions with more fill-in essentially redundant. For
the full factorisation ofL, adding additional fill-in was more beneficial in terms of reducing
iteration counts. However, the amount of extra storage required grew very quickly, making
such methods unattractive when moving to high dimensional problems. We have therefore
omitted results obtained using these methods from this paper.

5 Convergence estimates for GMRES

As described in§4, the asymptotic convergence phaseof GMRES can be quantified by
considering the factorsρi in (11) based on the eigenvaluesαℓ of the coefficient matrix. In
practice, however, the eigenvaluesαℓ are not usually readily available, so it is common to
use instead a related expression, based on a compact and continuous setS which contains
the relevant eigenspectrum (but excludes the origin), of the form

ρi(S) = min
pi∈Pi ,pi (0)=1

max
σ∈S

|pi(σ )|.

To remove the dependence on the iteration numberi, it is often more convenient to consider
the so-calledasymptotic convergence factorof the setS(see e.g. [26,§5.7.6]) defined by

ρ(S) = lim
i→∞

(ρi(S))1/i . (12)
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Although ρ(S) can be difficult to quantify analytically, its value can be estimated using a
computational technique based on conformal mappings. Specifically, if Φ is a conformal
map from the exterior ofSto the exterior of the unit disc that satisfiesΦ(∞) = ∞, thenρ(S)
in (12) can be approximated by the value of|Φ(0)|−1 (see [9] for more details). In what
follows, we apply this technique withS chosen to be the complex hull of the eigenvalue
spectrum being studied.

We begin with Model Problem I with Cartesian grid points, buthere using more points
(N = 1225, with 64 (8×8) patches) than shown in Figure 1(a). Gaussian RBFs,φ(ε r) =
exp(−ε2r2), with shape parameterε = 1.2 are used. HereL (and its associated precondi-
tioned versions) is positive definite, so the convex hull of the eigenvalues does not contain the
origin, and the procedure for estimating the asymptotic convergence factor outlined above
can be carried out in all cases. The pictures in Figure 5 show the eigenvalues (blue circles) of
the coefficient matrix after the different preconditionershave been applied, with the convex
hull outlined in red.
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Fig. 5: Eigenvalues of the coefficient matrix with various preconditioners for Model Problem I with 1225
Cartesian points and 64 patches together with the associated convex hull used in the calculation ofρ in (12).

The values ofρ associated with the spectra represented in Figure 5 are listed in Table 2.
When no preconditioning is applied, the value ofρ is close to one suggesting that the con-
vergence of unpreconditioned GMRES will be slow: it can be seen that the eigenvalues ofL
itself (Figure 5(a)) are not well clustered. The three preconditioners based onB all lead to
preconditioned spectra which look very similar (Figures 5(b), (c) and (d)), with essentially
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Table 2: Approximate asymptotic convergence factor for Model Problem I with 1225 Cartesian points and 64
patches using different preconditioners.

None B-LU B-ILUn B-ILUd L-ILUn L-ILUd

0.990 0.839 0.839 0.840 0.506 0.132

the same convergence factor. An improvement in GMRES convergence rate is anticipated
with all three. The fact that the two preconditioners based on L lead to very clustered eigen-
values (Figures 5(e) and (f)) is reflected in the much smallervalues ofρ predicted for these
methods, suggesting that they will require few iterations for convergence.

Analogous eigenvalue plots for Model Problem I with 1258 Halton points and 64 patches
are shown in Figure 6. Here, the convex hull of the eigenvalues always contains the origin
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Fig. 6: Eigenvalues of the coefficient matrix with various preconditioners for Model Problem I with 1258
Halton points and 64 patches together with the associated convex hull. Note that the axis limits are the same
for all preconditioned spectra except for the L-ILUn preconditioner.

so the above method for estimating the asymptotic convergence rate is not applicable.

Figure 7 shows the actual residual reduction for Model Problem I using 1225 Carte-
sian points (Figure 7(a)) and 1258 Halton points (Figure 7(b)). All calculations used a zero
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(b) 1258 Halton points.

Fig. 7: Convergence for Model Problem I using 64 patches.

starting guess, and each GMRES iteration was terminated when

‖r i‖2 ≤ 10−8 ‖r0‖2. (13)

These results can be used to compute theresidual reduction factor̃ρ , defined by

ρ̃ =

(

‖r i‖2

‖r0‖2

)1/i

,

where i is the number of iterations required for convergence. Thesevalues are shown in
Table 3. The actual residual reduction factor for the Cartesian points is slightly better than
expected from theory (Table 2) but exhibits the same relative behaviour over the range of
preconditioners.

Table 3: Residual reduction for Model Problem I with 64 patches and 1225 Cartesian points and 1258 Halton
points respectively, using different preconditioners.

None B-LU B-ILUn B-ILUd L-ILUn L-ILUd

1225 Cartesian points 0.898 0.713 0.713 0.711 0.397 0.098
1258 Halton points 0.949 0.891 0.898 0.895 0.940 0.778

6 Numerical results

In this section we present the results of some numerical experiments which investigate the
comparative performance of preconditioned GMRES for the preconditioners listed in Ta-
ble 1. All calculations were carried out with MATLAB [28], and the timings were produced
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usingtic andtoc. The initial guess was zero, and all tests used the GMRES stopping cri-
terion (13). The underlying PDE problems which we solve are Model Problems I and II as
described in§3. However, as we are interested in studying the effect on solver performance
of varying the number of patches, as well as the type and number of points used, we do not
limit ourselves to the configurations shown in Figure 1. Instead we will introduce five sets
of test problems which will help us to isolate these individual effects. In all experiments,
Gaussian RBFs with shape parameterε = 1.2 have been used. The RBF–QR method was
employed in order to ensure stable evaluation of the matrices. It should however be noted
that even if the RBF–QR method involves a change of basis, theresulting differentiation
matrices are the same that would result from a direct use of the Gaussian basis if that was
numerically feasible.

The first four of these test sets are for Model Problem I (on thesquare domain). For each
test problem, the number of points (N), number of patches (P), average number of of points
per patch (p), estimated condition number ofL (κ , calculated using the MATLAB command
condest), and the maximum error in the discrete solution are displayed in Table 4. Test sets

Table 4: Test sets 1–4 for Model Problem I

Cartesian nodes

Test N P p κ max error Test N P p κ max error

Test set 1 Test set 2

1A 441 16 54.1 2.3e+4 2.4e−4 2A 400 25 35.6 4.8e+3 3.6e−3
1B 676 25 53.8 3.8e+4 3.7e−4 2B 576 25 46.2 1.9e+4 1.8e−4
1C 961 36 53.7 5.5e+4 2.9e−4 2C 676 25 53.8 3.8e+4 3.7e−4
1D 1024 49 42.7 2.6e+4 1.2e−4 2D 900 25 71.2 2.5e+5 4.7e−5
1E 1225 64 38.9 4.8e+4 2.3e−5 2E 1089 25 85.7 7.0e+5 1.3e−6

Halton nodes

Test N P p κ max error Test N P p κ max error

Test set 3 Test set 4

3A 460 16 49.6 3.8e+6 1.2e−4 4A 436 25 30.8 3.9+e6 1.4e−2
3B 681 25 48.6 2.0e+7 1.2e−4 4B 583 25 41.2 1.0+e7 1.1e−3
3C 968 36 49.3 6.0e+7 1.7e−4 4C 681 25 48.6 2.0+e7 1.2e−4
3D 1056 49 40.1 6.1e+7 1.0e−4 4D 884 25 62.0 2.1+e8 1.3e−5
3E 1258 64 36.8 1.1e+8 2.0e−4 4E 1090 25 77.9 1.1+e9 1.6e−6

1 and 2 both use Cartesian points. In test set 1,N andP are both increased in such a way that
the resulting error in the solution is kept at a similar level(≃ 1e−4). This results in a set of
coefficient matricesL which are similarly conditioned. Note that problem 1E corresponds to
the configuration which leads to the eigenvalues in Figure 5.Test set 2 is designed to achieve
different levels of accuracy by varyingN while keepingP constant (P = 25). Here it is clear
that there is a correlation between the accuracy of the discretisation and the condition of the
resultingL. Test sets 3 and 4 are designed to be broadly similar, but use Halton points in
place of a Cartesian lattice. The degradation of the condition number ofL associated with
the irregularly scattered points is apparent.

In Table 5 we display iteration counts and computational times for the different precon-
ditioners defined in Table 1 employed on test sets 1 and 2. Let us first focus on iteration
counts. As predicted by the asymptotic convergence rates inTable 2 (which were calculated
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Table 5: Results for test sets 1 and 2 (Cartesian nodes, Modelproblem I). The lowest time for each problem
is shown in bold.

Test set 1

Test none B-LU B-ILUn B-ILUd L-ILUn L-ILUd

Iteration counts

1A 127 35 35 36 10 9
1B 165 43 43 44 12 11
1C 200 51 51 51 14 13
1D 170 52 52 52 25 8
1E 174 55 55 55 20 9

Computational time

1A 1.8e−1 1.1e−1 3.1e−2 5.5e−2 2.9e−2 3.4e−2
1B 2.7e−1 9.5e−2 5.9e−2 7.8e−2 4.1e−2 6.6e−2
1C 4.3e−1 2.0e−1 8.4e−2 1.2e−1 4.0e−2 1.1e−1
1D 3.3e−1 1.3e−1 7.8e−2 1.2e−1 3.9e−2 9.5e−2
1E 4.4e−1 1.9e−1 1.0e−1 1.4e−1 4.6e−2 1.7e−1

Test set 2

Test none B-LU B-ILUn B-ILUd L-ILUn L-ILUd

Iteration counts

2A 32 20 21 36 21 44
2B 127 38 38 38 12 7
2C 165 43 43 44 12 11
2D 170 48 49 49 21 11
2E 180 52 53 54 25 17

Computational time

2A 6.4e−2 3.5e−2 3.2e−2 5.3e−2 2.9e−2 5.7e−2
2B 1.5e−1 6.1e−2 3.3e−2 7.1e−2 1.5e−2 3.9e−2
2C 3.5e−1 1.3e−1 6.0e−2 8.0e−2 2.0e−2 7.6e−2
2D 3.1e−1 1.7e−1 1.1e−1 2.5e−1 1.1e−1 1.7e−1
2E 4.1e−1 2.6e−1 9.6e−2 2.0e−1 7.2e−2 2.6e−1

using problem 1E), the method which converges in the smallest number of iterations is L-
ILUd, followed by L-ILUn, while the three methods based onB have similar performance.
As B-LU uses a full LU factorisation, iteration counts for this preconditioner give a lower
bound on what can be expected from B-ILUn and B-ILUd. It can beseen that, as we have
carefully numbered patches and points to ensure that the central band that is used to formB
is relatively dense, very little is lost in replacing LU by anincomplete version. As well as
considering iteration counts, however, it is of course important to consider the computational
time taken by each method. Those are also listed in Table 5, and include the time taken for
factorisation (where applicable) and the full GMRES solve.Using this measure, the methods
of choice are the factorisations based on ILUn with, for these Cartesian examples, L-ILUn
being slightly faster that the banded version, B-ILUn.

The equivalent results for test sets 3 and 4 (with Halton nodes) are shown in Table 6. As
expected, the poorer conditioning of these matrices is reflected in increased iteration counts
for all of the methods. In particular, the performance of L-ILUn degrades completely (cf.
the eigenvalues for problem 3E shown in Figure 6(e)).This catastrophic behaviour appears
to be restricted to the case with no fill-in only: allowing additional levels of fill-in brings the
iteration counts more in line with the Cartesian results. However, as discussed above, this
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Table 6: Results for test sets 3 and 4 (Halton nodes, Model Problem I). The lowest time for each problem is
shown in bold.

Test set 3

Test none B-LU B-ILUn B-ILUd L-ILUn L-ILUd

Iteration counts

3A 156 52 58 54 97 19
3B 231 100 112 106 167 49
3C 297 114 135 123 159 65
3D 310 108 118 115 202 60
3E 355 161 174 166 310 75

Computational time

3A 2.5e−1 1.0e−1 5.4e−2 1.9e−1 2.2e−1 1.7e−1
3B 5.5e−1 3.0e−1 1.6e−1 2.6e−1 3.1e−1 4.3e−1
3C 8.6e−1 3.9e−1 3.1e−1 4.1e−1 3.4e−1 8.5e−1
3D 9.5e−1 3.4e−1 2.1e−1 3.5e−1 6.3e−1 7.9e−1
3E 1.4e−0 6.3e−1 4.2e−1 6.2e−1 1.1e−0 1.1e−0

Test set 4

Test none B-LU B-ILUn B-ILUd L-ILUn L-ILUd

Iteration counts

4A 189 72 72 72 79 16
4B 209 80 91 84 147 34
4C 231 100 112 106 167 49
4D 262 107 125 124 176 66
4E 295 120 135 172 368 152

Computational time

4A 3.1e−1 1.1e−1 1.0e−1 1.8e−1 1.6e−1 1.6e−1
4B 4.6e−1 2.7e−1 1.9e−1 2.5e−1 2.4e−1 2.3e−1
4C 4.9e−1 3.0e−1 1.8e−1 3.0e−1 4.2e−1 3.9e−1
4D 6.5e−1 5.2e−1 2.8e−1 4.2e−1 4.1e−1 8.8e−1
4E 9.0e−1 6.9e−1 3.0e−1 8.8e−1 1.6e−0 2.8e−0

comes at the price of significantly increasing the amount of memory needed. The compara-
tive merits of other methods in Table 6 are essentially the same as for the Cartesian example,
although the reduction in iteration counts (relative to theunpreconditioned case) is less in all
cases here. This is not surprising as the Halton points do nothave the rigid banded substruc-
ture of the Cartesian points, which is more amenable to efficient factorisation. In addition,
the bandwidth measureβ in B has been tailored to the Cartesian case (where it can be eas-
ily calculated): using the same measure in the Halton case does not necessarily guarantee
inclusion of all closest connections due to the lack of structure. However, the factorisations
based onB still work well as preconditioners and, in terms of computational times, B-ILUn
is clearly the most efficient method overall.

To conclude this section, we introduce a final set of test problems, test set 5, for Model
Problem II using unstructured nodes, andP= 50 patches. Details of the configurations used
are given in Table 7. Note that the values ofN have been chosen to roughly correspond
to those used in test sets 1–4. The corresponding iteration counts and computational times
are shown in Table 8. Despite the irregularity of the computational domain, the results are
very similar to those obtained using Halton points on the square domain, with B-ILUn again
being the method of choice.
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Table 7: Test set 5 for Model Problem II

Test N P p κ max error

5A 398 50 13.2 1.6e+6 8.8e−1
5B 695 50 23.4 9.7e+5 2.8e−4
5C 994 50 33.4 1.9e+7 2.2e−4
5D 1094 50 36.9 8.6e+6 8.4e−6
5E 1292 50 43.7 1.6e+7 1.7e−6

Table 8: Results for test set 5 (Model Problem II). The lowesttime for each problem is shown in bold.

Test none B-LU B-ILUn B-ILUd L-ILUn L-ILUd

Iteration counts

5A 207 67 68 67 48 14
5B 235 76 78 76 85 13
5C 279 99 119 99 195 23
5D 304 102 120 102 255 26
5E 322 133 149 132 415 53

Computational time

5A 2.1e−1 7.3e−2 5.8e−2 7.3e−2 3.9e−2 3.0e−2
5B 4.9e−1 1.3e−1 8.8e−2 1.3e−1 9.9e−2 8.4e−2
5C 7.5e−1 2.6e−1 2.1e−1 2.6e−1 4.4e−1 2.8e−1
5D 9.1e−1 2.9e−1 2.1e−1 2.9e−1 7.4e−1 3.7e−1
5E 1.1e−0 5.6e−1 3.3e−1 5.3e−1 2.0e−0 7.9e−1

7 Conclusions

In this paper, we have introduced and evaluated algebraic preconditioners for RBF-PUM
discretisations. These preconditioners are free of any assumptions on the node layout or
geometry of the computational domain. The only property that is used is the knowledge that
there is a patch structure and that nodes can be ordered accordingly. This is important so
that the preconditioner is generally applicable.

The performance of the preconditioners, as well as the conditioning of the original ma-
trix, is negatively affected by the use of the highly unstructured nodes. However, in our
experiments we do not observe any adverse effect of changingthe computational domain.
The preconditioner that performed best overall, and that werecommend for use, is the no
fill-in incomplete factorisation of the central band, denoted by B-ILUn.

The B-ILUn preconditioner is also the most sparse of the tested preconditioners. This
property becomes increasingly important when moving to larger matrix sizes and/or higher
dimensional problems, in which case memory requirements become a limiting factor. How
the preconditioner performs in higher dimensions will be the subject of further studies.
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