Skip to main content
Log in

A Fast Gradient Projection Method for a Constrained Fractional Optimal Control

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Optimal control problems governed by a fractional diffusion equation tends to provide a better description than one by a classical second-order Fickian diffusion equation in the context of transport or conduction processes in heterogeneous media. However, the fractional control problem introduces significantly increased computational complexity and storage requirement than the corresponding classical control problem, due to the nonlocal nature of fractional differential operators. We develop a fast gradient projection method for a pointwise constrained optimal control problem governed by a time-dependent space-fractional diffusion equation, which requires the computational cost from \(O(M N^3)\) of a conventional solver to \(O(M N\log N)\) and memory requirement from \(O(N^2)\) to O(N) for a problem of size N and of M time steps. Numerical experiments show the utility of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, O.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  3. Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  4. Chan, T.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 9, 766–771 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Lu, Z.: Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem. Comput. Method. Appl. Mech. Eng. 199(23–24), 1415–1423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Davis, P.J.: Circulant Matrices. American Mathematical Society, Province (1979)

    MATH  Google Scholar 

  7. Dorville, R., Mophou, G.M., Valmorin, V.S.: Optimal control of a nonhomogeneous Dirichlet boundary fractional diffusion equation. Comput. Math. Appl. 62(3), 1472–1481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, N., Ge, L., Liu, W.: Adaptive finite element approximation for an elliptic optimal control problem with both pointwise and integral control constraints. J. Sci. Comput. 60(1), 160–183 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Einstein, A.E.: Investigations on the Theory of the Brownian Movement, Translation. Dover, Mineola (1956)

    MATH  Google Scholar 

  10. Frederico, G., Torres, D.: Fractional optimal control in the sense of caputo and the fractional Noethers theorem. Int. Math. Forum 3, 479–493 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Gray, R.M.: Toeplitz and Circulant Matrices: A Review. Now Publishers Inc, Hanover (2006)

    MATH  Google Scholar 

  12. Ito, K., Kunisch, K.: Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces. Nonlinear Anal. 41, 573–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ito, K., Kunisch, K.: The primal-dual active set method for nonlinear optimal control problems with bilateral constraints. SIAM J. Control Optim. 43, 357–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ito, K., Kunisch, K.: Semismooth Newton methods for time-optimal control for a class of ODEs. SIAM J. Control Optim. 48, 3997–4013 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ito, K., Kunisch, K.: Minimal effort problems and their treatment by semismooth Newton methods. SIAM J. Control Optim. 49, 2083–2100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, R., Liu, W., Ma, H., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41(5), 1321–1349 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs: C Series in Information and Computational Science 41. Science Press, Beijing (2008)

    Google Scholar 

  18. Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Neittaanmaki, P., Tiba, D., Dekker, M.: Optimal Control of Nonlinear Parabolic Systems: Theory: Algorithms and Applications. Marcel Dekker, New York (1994)

    MATH  Google Scholar 

  22. Niu, H., Yang, D.: Finite element analysis of optimal control problem governed by Stokes equations with \(L^2\)-norm state-constraints. J. Comput. Math. 29, 589–604 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  25. Roos, H., Reibiger, C.: Numerical analysis of a system of singularly perturbed convection–diffusion equations related to optimal control. Numer. Math. Theor. Meth. Appl. 4, 562–575 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)

    MATH  Google Scholar 

  27. Strang, G.: A proposal for Toeplitz matrix calculations. Stud. Appl. Math. 74(2), 171–176 (1986)

    Article  MATH  Google Scholar 

  28. Tian W., Zhou H., Deng W.: A class of second order difference approximations for solving space fractional diffusion equations. arXiv:1201.5949 [math.NA]

  29. Vallejos, M.: Multigrid methods for elliptic optimal control problems with pointwise state constraints. Numer. Math. Theor. Meth. Appl. 5, 99–109 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, H., Du, N.: A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation. J. Comput. Phys. 253, 50–63 (2013)

    Article  MathSciNet  Google Scholar 

  32. Wang, H., Wang, K., Sircar, T.: A direct \(O(N log^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51, 1088–1107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Additional information

This work was supported by the National Natural Science Foundation of China under Grants 11371229, 91130010, and 11471194, by the National Science Foundation under Grants EAR-0934747 and DMS-1216923 and, by the China Scholarship Council (File No. 201308370102).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, N., Wang, H. & Liu, W. A Fast Gradient Projection Method for a Constrained Fractional Optimal Control. J Sci Comput 68, 1–20 (2016). https://doi.org/10.1007/s10915-015-0125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0125-1

Keywords

Navigation