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Abstract In this work we construct a high-order, single-stage, single-step positivity-preserving
method for the compressible Euler equations. Space is discretized with the finite difference
weighted essentially non-oscillatory (WENO) method. Time is discretized through a Lax-
Wendroff procedure that is constructed from the Picard integral formulation (PIF) of the
partial differential equation. The method can be viewed as a modified flux approach, where
a linear combination of a low- and high-order flux defines the numerical flux used for a
single-step update. The coefficients of the linear combination are constructed by solving
a simple optimization problem at each time step. The high-order flux itself is constructed
through the use of Taylor series and the Cauchy-Kowalewski procedure that incorporates
higher-order terms. Numerical results in one- and two-dimensions are presented.
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1 Introduction

The objective of this work is to define a single-stage, single-step finite difference WENO
method that is provably positivity-preserving for the compressible Euler equations. These
equations describe the evolution of density ρ , momentum ρu and energy E of an ideal gas
through  ρ

ρu
E


,t

+∇x ·

 ρu
ρu⊗u+ pI
(E + p)u

= 0. (1)

The energy E is related to the primitive variables ρ , u and pressure p by the equation of
state that we take to be E = p

γ−1 +
1
2 ρ‖u‖2. The ratio of specific heats is the constant γ .

Numerical difficulties for solving this system include the following:
– Low (1st and 2nd) order methods generally suffer from an inordinate amount of numer-

ical diffusion. However, they are oftentimes more robust, and in some cases they have
provable convergence to the correct entropy solution. Historically, 2nd-order schemes
[1–4] have been called “high-resolution” methods when compared to their 1st-order
counterparts [5–8].

– High-order methods [9–11] provide greater accuracy and resolution for much less over-
all computational effort. However, they are oftentimes less robust, and do not necessarily
have provable convergence to the correct entropy solution.

In this work, we define a high-order conservative finite difference method based upon the
Picard integral formulation of the PDE. We make a further modification to the fluxes and
define a numerical scheme that obtains the following properties:

– High-order accuracy in space (5th-order) and time (3rd-order). Our method can be ex-
tended to arbitrary order in space or time.

– A robust scheme that stems from provable positivity preservation of the pressure and
density. Numerical results indicate that high-order accuracy is retained with our positivity-
preserving limiter turned on.

Our scheme is the first single-stage, single-step numerical method that simultaneously at-
tains high-order accuracy, with provable positivity preservation. When compared to other
positivity-preserving schemes, our method has the following advantages:

– In order to retain positivity, we only solve one simple optimization problem per time
step. Unlike positivity-“preserving” methods that use Runge-Kutta discretizations [12,
13], positivity of our solution is guaranteed during the entire simulation because we do
not have internal stages where the solution can go negative.

– Compared to other positivity-preserving schemes [14, 15], the addition of the positivity
preserving limiter introduces none of the additional time step restrictions that are often
introduced in order to retain positivity.

In addition, our method is amenable to adaptive mesh refinement (AMR) technology. At
present, we aim to lay the necessary foundation that would be required to do so. An in depth
investigation of this property is the subject of a future study.

1.1 An overview of the proposed method

The Euler equations define a system of hyperbolic conservation laws. In 1D, such an equa-
tion is given by

q,t + f (q),x = 0, (2)
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where q(t,x) : R+×R→Rm is the unknown vector of m conserved quantities and f : Rm→
Rm is a prescribed flux function. The conserved variables for the 1D Euler equations are
q =

(
ρ,ρu1,E

)T . A typical finite difference solver for (2) discretizes space with a uniform
grid of mx equidistant points in Ω = [a,b],

xi = a+
(

i− 1
2

)
∆x, ∆x =

b−a
mx

, i ∈ {1, . . . ,mx}, (3)

and looks for a pointwise approximation qn
i ≈ q(tn,xi) solution to hold at discrete time levels

tn. In a conservative finite difference WENO method, the update of the unknowns is typically
defined by

qn+1
i = qn

i −
∆ t
∆x

(
Fn

i+ 1
2
−Fn

i− 1
2

)
, (4)

where the numerical flux Fn
i± 1

2
is constructed from a linear combination of the WENO re-

construction procedure applied to stage values from a Runge-Kutta solver.
In this work, we propose the following procedure:

1. Construct a high-order approximation to the time-averaged fluxes [9, 16]

Fn
i :=

1
∆ t

∫ tn+1

tn
f (q(t,xi))dt (5)

at each grid point xi. In this work, we consider the Taylor discretization of Eqn. (5) for
conservative finite difference methods.

2. Construct a high-order in space and time numerical flux F̂n
i− 1

2
based upon applying the

WENO reconstruction procedure to the time-averaged fluxes [16].
3. Replace the flux constructed in Step 2 with

F̃n
i− 1

2
:= θ

n
i− 1

2
(F̂n

i− 1
2
− f̂ n

i− 1
2
)+ f̂ n

i− 1
2
, (6)

where θ n
i− 1

2
∈ [0,1] is found by solving a single optimization problem, and f̂ n

i− 1
2

is a

low-order flux that guarantees positivity of the solution. This procedure is described in
§4.

4. Insert the result of Step 3 into Eqn. (4), and update the solution.

Steps 1 and 2 have already been proposed in [16], where high-order accuracy is obtained
through a flux modification that incorporates the high-order temporal discretization. A re-
view of this procedure is presented in §3. Step 3 can be thought of as a further flux modifi-
cation, where an automatic switch adjusts between the high-order non positivity-preserving
scheme, and a low-order, positivity-preserving scheme. The original idea is attributed to
Harten and Zwas [17], but has since been extended to high-order WENO schemes [12]. The
details of this procedure are presented in §4 and §5.

2 Background

The compressible Euler equations have been an object of study ever since the infancy of
numerical methods [1, 5–8]. In recent years, high-order methods have attracted consider-
able interest because of their ability to obtain higher accuracy on certain problems with an
equivalent computational cost of a low-order method. Among many choices of high-order
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schemes are the classical essentially non-oscillatory (ENO) method [9], the extensions to
finite difference (FD) and finite volume (FV) WENO methods [11, 18, 19], and the dis-
continuous Galerkin (DG) method [20]. These methods all seek to simultaneously obtain
two properties: retain high-order accuracy in smooth regions, and capture shocks without
introducing spurious oscillations near discontinuities of the solution. One added difficulty
with high-order schemes is the necessity of defining and selecting a high-order time inte-
grator. Runge-Kutta methods applied to the method of lines (MOL) approach is the most
widely used discretization for high-order schemes. These methods all treat space and time
as separate entities.

Over the past decade, there has been a rejuvenation of interest in high-order single-
stage, single-step methods for hyperbolic conservation laws, including the compressible Eu-
ler equations. All of these methods are typically based upon a Taylor temporal discretization
that uses the Cauchy-Kowalewski procedure to exchange temporal for spatial derivatives.
Lax and Wendroff performed this very procedure in 1960 [1], and this technique has since
been called the Lax-Wendroff procedure within the numerical analysis community. Methods
for defining a second and higher-order single-step version of Godunov’s method were inves-
tigated in the 1980s [21–23]. The original high-order ENO method of Harten et. al [9] used
Taylor series for their temporal discretization, although most of the attention they have re-
ceived is for their emphasis on the spatial discretization. In 2001, the preliminary definitions
for the so-called Arbitrary DERivative (ADER) methods [24–26] were put in place. Ad-
ditionally, various FD WENO methods with Lax-Wendroff time discretizations have been
constructed and tested on the Euler equations [16, 27, 28]. Recent ADER methods have
been defined by Balsara and collaborators for hydrodynamics and magnetohydrodynam-
ics [29, 30], and have later been extended to an adaptive mesh refinement (AMR) setting
[31]. Other recent work in single-stage, single-step methods for Euler equations includes
Lax-Wendroff time stepping coupled with DG [32–34], and high-order Lagrangian schemes
[35]. The present work is an extension of the Taylor discretization of the Picard integral
formulation that uses finite differences for its spatial discretization [16], which falls into this
single-stage, single-step class of methods.

Defining high-order numerical schemes that retain positivity of the solution for hydro-
dynamics (or magnetohydrodynamics) simulations is genuinely a non-trivial task. This has
been an ongoing subject of study even for low and the so-called “high-resolution” schemes
[36–43]. All methods that are second or higher order share the same disadvantage that
without care, they may violate a natural weak stability condition that the density and pres-
sure need to keep positive, which is necessary to ensure physical meaningfulness of the
solution and hyperbolicity of the mathematical problem. Of some of the early positivity
works, Perthame and Shu propose a general reconstruction approach to obtain a high-order
positivity-preserving finite volume schemes from a low-order scheme [39]. In addition, they
prove that the explicit Lax-Friedrichs scheme is positivity-preserving with a CFL number
up to 0.5. Later on, a more general result extends the positivity-preserving property to CFL
numbers up to 1 for both explicit and implicit Lax-Friedrichs methods [42]. With those
building blocks, a positivity-preserving limiter is proposed for DG schemes [44–47] and
FD and FV WENO schemes [14, 15] for the Euler equations. In [48], a flux cut-off lim-
iter is also applied to FD WENO schemes to retain positivity. In addition to gas dynamics,
plasma physics is another area where retaining positivity of numerical solutions is critical,
and therefore has seen recent attention in the literature [49, 50]. For example, collision oper-
ators for Vlasov equations require a positive distribution function in order to avoid creating
artificial singularities.
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Our method is based upon a parameterized flux limiter that can be dated back to at
least 1972 with the work of Harten and Zwas [17]. There, the authors propose a second-
order shock-capturing self adjusting hybrid scheme through a simple linear combination
of low- and high-order fluxes that is identical to Eqn. (6). The original idea is to com-
bine a “high-order” flux with a first-order flux such that it has better accuracy in smooth
region and produces a smooth profile around shock regions. A similar approach called flux-
corrected transport is proposed by Boris and Book [51–54], where the purpose of limiting
the high-order flux is to control overshoots and undershoots around shock regions. Sod per-
forms an extensive review of these and other classical finite difference methods in a clas-
sical paper [2]. Xu and Lian recently extend this work to WENO methods that maintain
the maximum-principle-preserving property for scalar hyperbolic conservation laws with
the so-called “parametrized flux limiter” [55, 56]. Later on, these limiters are applied to FD
WENO schemes on rectangular meshes [57] and FV WENO schemes on triangular meshes
[13] for the Euler equations. These limiters are also applied to magnetohydrodynamics with
a constrained transport framework [58]. The basic idea for all of these methods is the same:
modify the high-order non positivity-preserving numerical flux by a linear combination of
a low- and high-order flux in order to retain positivity of the solution. The modification is
carefully designed so that the high-order accuracy remains.

The purpose of this work is to define a single-stage, single-step finite difference WENO
method that is provably positivity-preserving for the compressible Euler equations. Of the
various finite difference schemes constructed from the Picard integral formulation [16], we
begin with the Taylor discretization, and then apply recently developed flux limiters [13, 57]
in order to retain positivity of the solution. One advantage of the chosen limiter is that
positivity is preserved without introducing additional time step restrictions, however, our
primary contribution is that the present method is the first scheme to simultaneously be
high-order, single-stage, single-step and have provable positivity preservation.

The outline of this paper is as follows. In §3, we briefly review the high-order finite dif-
ference WENO method that is based upon the Picard integral formulation of the PDE with a
Taylor temporal discretization [16]. In §4 and §5, we present the positivity-preserving lim-
iter for PIF-WENO schemes applied to the compressible Euler system in single and multiple
dimensions. Numerical examples of the positivity-preserving PIF-WENO scheme applied to
the problems with low density and low pressure is provided in §6. Finally, conclusions and
future work are given in §7.

3 A single-stage single-step finite difference WENO method

The numerical method that is the subject of this work is based upon the Taylor discretization
of the Picard integral formulation of Euler’s equations, which is one of the many methods
developed in [16]. Our focus is on the finite difference WENO method based on a Taylor
discretization of the time-averaged fluxes because it easily lends itself to the positivity-
preserving limiters that are presented in §4. In this section, we review the minimal details
presented in [16] that are necessary to reproduce the present work. In addition, this section
serves to set the notation that is used in upcoming sections.

In two dimensions, a hyperbolic conservation law is defined by a flux function with two
components,

qt + f (q),x +g(q),y = 0, (7)
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where q(t,x,y) : R+×R2 → Rm is the vector of conserved variables, and f ,g : Rm → Rm

are the two components of the flux function. The Euler equations are an example of a set of
equations from this class of problems.

Formal integration of (7) in time over t ∈ [tn, tn+1] defines the 2D Picard integral for-
mulation [16] as

qn+1 = qn−∆ t (Fn(x,y)),x−∆ t (Gn(x,y)),y , (8a)

where the time-averaged flux is defined as

Fn(x,y) :=
1

∆ t

∫ tn+1

tn
f (q(t,x,y))dt, Gn(x,y) :=

1
∆ t

∫ tn+1

tn
g(q(t,x,y))dt. (8b)

The basic idea of the Picard integral formulation of WENO (PIF-WENO) [16] is to first
approximate the time-averaged fluxes (5) at each grid point using some temporal discretiza-
tion, and then approximate spatial derivatives in (8a) by applying WENO reconstruction to
the resulting time-averaged fluxes. In this work, we approximate Eqn. (8a) with the finite
difference WENO method, and we use a third-order Taylor discretization for (8b). We re-
mark that the positivity-preserving limiter proposed in §4 can be generally applied to any
form of the Picard integral formulation, including Runge-Kutta time discretizations.

Given a domain Ω = [ax,bx]× [ay,by], a finite difference approximation seeks pointwise
approximations qn

i, j ≈ q(tn,xi,y j) to hold at each

xi = ax +

(
i− 1

2

)
∆x, ∆x =

bx−ax

mx
, i ∈ {1, . . . ,mx}, (9a)

y j = ay +

(
j− 1

2

)
∆y, ∆y =

by−ay

my
, j ∈ {1, . . . ,my}, (9b)

for discrete values of t = tn. The 2D PIF-WENO scheme [16] solves Eqn. (7) with a conser-
vative form

qn+1
i, j = qn

i, j−λx

(
F̂n

i+ 1
2 , j
− F̂n

i− 1
2 , j

)
−λy

(
Ĝn

i, j+ 1
2
− Ĝn

i, j− 1
2

)
, (10)

where λx = ∆ t/∆x, λy = ∆ t/∆y, and F̂n
i± 1

2 , j
and Ĝn

i, j± 1
2

are high-order fluxes obtained by

applying the classical WENO reconstruction to the time-averaged fluxes in place of a typical
“frozen-in-time” approximation to the fluxes. This requires a total of two steps: construct a
time-averaged flux, followed by performing a WENO reconstruction to the resulting modi-
fied fluxes.

We first define numerical time-averaged fluxes at each grid point (xi,y j) through Taylor
expansions. After taking temporal derivatives of f and g, we integrate the resulting Taylor
polynomials over [tn, tn+1] to yield

Fn
T (x,y) := f (q(tn,x,y))+

∆ t
2!

d f
dt

(q(tn,x,y))+
∆ t2

3!
d2 f
dt2 (q(tn,x,y)) (11a)

Gn
T (x,y) := g(q(tn,x,y))+

∆ t
2!

dg
dt

(q(tn,x,y))+
∆ t2

3!
d2g
dt2 (q(t

n,x,y)). (11b)

The temporal derivatives that appear can be found via the Cauchy-Kowalewski procedure.
For example, the first two time derivatives of the first component of the flux function are
given by

d f
dt

=−∂ f
∂q
· ( f,x +g,y) , (12a)
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and

d2 f
dt2 =

∂ 2 f
∂q2 ·

(
f,x +g,y , f,x +g,y

)
+

∂ f
∂q
· (− f,x−g,y),t . (12b)

The last time derivative can be further simplified to

−( f,x +g,y),t =
∂ 2 f
∂q2 · (q,x, f,x +g,y)+

∂ f
∂q
· ( f,xx +g,xy)+ (13)

∂ 2g
∂q2 · (q,y, f,x +g,y)+

∂g
∂q
· ( f,xy +g,yy) .

Temporal derivatives of g have a similar structure, and can be found in [16].
We approximate each ∂x,∂xx and ∂y,∂yy in (12a) and (12b) by applying the 5-point finite

difference formulae

ui,x :=
1

12∆x
(ui−2−8ui−1 +8ui+1−ui+2) = u ,x(xi)+O

(
∆x4) (14a)

ui,xx :=
1

12∆x2 (−ui−2 +16ui−1−30ui +16ui+1−ui+2) = u ,xx(xi)+O
(
∆x4) (14b)

in each direction. In order to retain a compact stencil, we compute the cross derivatives ∂xy
with a second-order approximation

ui j,xy :=
1

4∆x∆y
(ui+1, j+1−ui−1, j+1−ui+1, j−1 +ui−1, j−1) , (15)

which is sufficient to retain third-order accuracy in time. After defining these higher deriva-
tives, we define numerical fluxes by Fn

i, j := Fn
T (xi,y j) and Gn

i, j := Gn
T (xi,y j). We then apply

WENO reconstruction in a dimension by dimension fashion to each component of the flux
to construct interface values Fn

i± 1
2 , j

and Gn
i, j± 1

2
. The complete description of this process can

be found in [16].

Remark 1 The Picard integral formulation sets up a discretization for the fluxes, and not
the conserved variables.

The significance of this remark is that further flux modifications can be incorporated into the
Picard integral formulation. Previous finite difference WENO methods with Lax-Wendroff
type time discretizations (e.g. [27, 28]) rely on Taylor expansions of the conserved variables,
and not the fluxes; the Taylor discretization of the Picard integral formulation computes
Taylor expansions of the fluxes, and not the conserved variables. In [27], conservation of
mass comes from the fact that higher derivatives of the conserved variables are computed
with a central stencil. In our scheme, we directly discretize the fluxes, and are automatically
mass conservative because we insert the result into the WENO reconstruction procedure.
Because ours is an operation on the fluxes, we have the opportunity to consider further flux
modifications. In this work, we further modify the fluxes to obtain a provably positivity-
preserving method for Euler equations, which we now describe.
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4 The positivity-preserving method: the 1D case

We begin with the 1D formulation of the proposed positivity-preserving scheme. Recall that
the update for the vector of conserved variables is given by Eqn. (4) for the 1D conservation
law defined in (2). We consider a numerical flux F̂n

i− 1
2

that is high order accurate in time

(and space) that is constructed from the 1D Taylor discretization of the Picard integral for-
mulation (PIF) of FD-WENO [16], and we consider a low-order flux f̂ n

i− 1
2

that is constructed

from the Lax-Friedrichs scheme (that is provably positivity-preserving [39]). Both fluxes are
constructed by looking at the solution qn at time level tn.

We propose modifying the high-order flux by

F̃n
i− 1

2
:= θ

n
i− 1

2
(F̂n

i− 1
2
− f̂ n

i− 1
2
)+ f̂ n

i− 1
2
, (16)

where a simple optimization problem is solved for the limiting parameter θ n
i− 1

2
∈ [0,1] at

each time step.
We observe that if θ n

i− 1
2
= 0, the scheme reduces to the first-order Lax-Friedrichs scheme,

which is positivity preserving, and therefore it is always possible to find a value that retains
positive density and pressure. If θ n

i− 1
2
= 1.0, the scheme reduces to the high-order scheme,

but does not guarantee positivity of the numerical solution. In order to retain high-order ac-
curacy, we would like to choose θ n

i− 1
2

as close to 1.0 as possible without violating positivity

of the density and pressure.
The positivity-preserving Algorithm we outline in this section follows a two step proce-

dure: i) guarantee positivity of the density, and then ii) guarantee positivity of the pressure.
The details of this procedure are spelled out in the following subsections.

4.1 Step 1: Maintain positivity of the density

This discussion focuses on the first component of the modified flux

f̃ n,ρ
i+ 1

2
:= θ

n
i+ 1

2
(F̂n,ρ

i+ 1
2
− f̂ n,ρ

i+ 1
2
)+ f̂ n,ρ

i+ 1
2
, (17)

where f̂ n,ρ is the first component of the low-order flux f̂ n, and F̂n,ρ is the first component
of the high-order flux F̂n. In this step, we must assume that the density ρn

i > 0 is positive at
the current time. We further define the low-order update for the density as

ρ̂
n+1
i := ρ

n
i −λ

(
f̂ n,ρ
i+ 1

2
− f̂ n,ρ

i− 1
2

)
,

and define a numerical lower bound of the high-order updated density ρn+1 as εn+1
ρ :=

min(mini
(
ρ̂

n+1
i

)
,ε0). The use of ε0 > 0 guarantees finite wave speeds, because the sound

speed c :=
√

γ p/ρ goes to infinity as ρ→ 0. In our simulations, we take ε0 = 10−13, which
is consistent with recent high-order positivity-preserving work [44]. Thanks to the positivity
of the low-order flux [39], we observe that εn+1

ρ > 0.
After the low- and high-order fluxes have been computed, the update for the density at

a single grid point xi only depends on two values of θ n
i± 1

2
through

ρ
n+1
i

(
θ

n
i− 1

2
, θ

n
i+ 1

2

)
= ρ

n
i −λ

(
f̃ n,ρ
i+ 1

2
− f̃ n,ρ

i− 1
2

)
, λ =

∆ t
∆x

, i ∈ {1,2, . . . ,mx} .
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This, and each of the conserved variables are linear functions with respect to the variable(
θ n

i− 1
2
,θ n

i+ 1
2

)
∈ [0,1]2. To preserve the positivity of the density ρn+1, we want to guarantee

ρ
n+1
i ≥ εn+1

ρ . Therefore, we seek bounds Λ
ρ

± 1
2 ,Ii

such that whenever

(
θ

n
i− 1

2
,θ n

i+ 1
2

)
∈
[

0, Λ
ρ

− 1
2 ,Ii

]
×
[

0, Λ
ρ

+ 1
2 ,Ii

]
⊆ [0,1]2,

we have

ρ
n+1
i

(
θ

n
i− 1

2
,θ n

i+ 1
2

)
= ρ

n
i −λ

(
f̃ n,ρ
i+ 1

2
− f̃ n,ρ

i− 1
2

)
≥ ε

n+1
ρ . (18)

The purpose of defining such a set is that in Step 2 of §4.2, we will further limit the fluxes
to maintain positivity of the pressure.

We insert the definition of ρ̂
n+1
i into Eqn. (18) to see

ρ̂
n+1
i −λ

[
θ

n
i+ 1

2

(
F̂n,ρ

i+ 1
2
− f̂ n,ρ

i+ 1
2

)
−θ

n
i− 1

2

(
F̂n,ρ

i− 1
2
− f̂ n,ρ

i− 1
2

)]
≥ ε

n+1
ρ , (19)

which is equivalent to

θ
n
i− 1

2
∆ fi− 1

2
−θ

n
i+ 1

2
∆ fi+ 1

2
≥ ε

n+1
ρ − ρ̂

n+1
i , (20)

where ∆ fi− 1
2

:= λ (F̂n,ρ
i− 1

2
− f̂ n,ρ

i− 1
2
) is a measure of the deviation of the high- and low-order

fluxes. Note that the right hand side satisfies εn+1
ρ − ρ̂

n+1
i ≤ 0, and therefore there is at least

one solution that can be found for Eqn. (20) (namely θ n
i− 1

2
= θ n

i+ 1
2
= 0).

We determine bounds on Λ
ρ

± 1
2 ,Ii

through a case-by-case discussion based on the signs

of ∆ fi− 1
2

and ∆ fi+ 1
2
. This analysis has already been performed for single [55] and multidi-

mensional [56] scalar problems. There are a total of four cases of Eqn. (20) to consider:

– Case 1. If ∆ fi− 1
2
≥ 0 and ∆ fi+ 1

2
≤ 0, then we set(

Λ
ρ

− 1
2 ,Ii

,Λ
ρ

+ 1
2 ,Ii

)
:= (1,1).

– Case 2. If ∆ fi− 1
2
≥ 0 and ∆ fi+ 1

2
> 0, then we define

(
Λ

ρ

− 1
2 ,Ii

,Λ
ρ

+ 1
2 ,Ii

)
:=

(
1,min

(
1,

εn+1
ρ − ρ̂

n+1
i

−∆ fi+ 1
2

))
.

– Case 3. If ∆ fi− 1
2
< 0 and ∆ fi+ 1

2
≤ 0, then we set

(
Λ

ρ

− 1
2 ,Ii

,Λ
ρ

+ 1
2 ,Ii

)
:=

(
min

(
1,

εn+1
ρ − ρ̂

n+1
i

∆ fi− 1
2

)
,1

)
.

– Case 4. If ∆ fi− 1
2
< 0 and ∆ fi+ 1

2
> 0, there are two sub-cases to consider.
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– Case 4a. If the inequality (20) is satisfied with (θ n
i− 1

2
,θ n

i+ 1
2
) = (1,1) then we set

(
Λ

ρ

− 1
2 ,Ii

,Λ
ρ

+ 1
2 ,Ii

)
:= (1,1) .

– Case 4b. Otherwise, we choose

(
Λ

ρ

− 1
2 ,Ii

,Λ
ρ

+ 1
2 ,Ii

)
:=

(
εn+1

ρ − ρ̂
n+1
i

∆ fi− 1
2
−∆ fi+ 1

2

,
εn+1

ρ − ρ̂
n+1
i

∆ fi− 1
2
−∆ fi+ 1

2

)
.

After considering each of the above cases at each grid element xi, we define the follow-
ing set

Sρ

i :=
[

0,Λ ρ

− 1
2 ,Ii

]
×
[

0,Λ ρ

+ 1
2 ,Ii

]
. (21)

The obtained set has the property that ρ
n+1
i (θ n

i− 1
2
,θ n

i+ 1
2
)≥ εn+1

ρ for any (θ n
i− 1

2
,θ n

i+ 1
2
) ∈ Sρ

i .

4.2 Step 2: Maintain positivity of the pressure

The second step focuses on the pressure pn+1
i . We begin with the following Lemma, which

has already been used in the past [12, 44].

Lemma 1 The pressure function satisfies

p
(

qn
i

(
α
−→
θ

1 +(1−α)
−→
θ

2
))
≥ α p

(
qn

i

(−→
θ

1
))

+(1−α)p
(

qn
i

(−→
θ

2
))

for any α ∈ [0,1] and
−→
θ 1,
−→
θ 2 ∈ Sρ

i .

Proof Provided ρ > 0, the pressure function

p(q) := (γ−1)
(

E − ‖ρu‖2

2ρ

)
is concave with respect to the conserved variables q = (ρ,ρu,E ) [12, 40, 44]. By definition
of the limiting parameter, each of the conserved variables are linear functions of

−→
θ , which

means

qn
i

(
α
−→
θ

1 +(1−α)
−→
θ

2
)
= αqn

i

(−→
θ

1
)
+(1−α)qn

i

(−→
θ

2
)
.

Together, and as a result of the construction in Step 1, these imply

p
(

qn
i

(
α
−→
θ

1 +(1−α)
−→
θ

2
))

= p
(

αqn
i

(−→
θ

1
)
+(1−α)qn

i

(−→
θ

2
))

,

≥ α p
(

qn
i

(−→
θ

1
))

+(1−α)p
(

qn
i

(−→
θ

2
))

.

ut
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We define pi

(−→
θ

)
:= p

(
qn

i

(−→
θ

))
for any

−→
θ ∈ [0,1]2 in order to simplify the notation for

the ensuing discussion.
If we use p̂n+1 to denote the low-order pressure solved by the flux f̂ n, we can similarly

define a numerical lower bound for the pressure as εn+1
p := min(mini (p̂i) ,ε0). Next, we

consider the following subset

Sp
i :=

{
(θ n

i− 1
2
,θ n

i+ 1
2
) ∈ Sρ

i : pi

(
θ

n
i− 1

2
,θ n

i+ 1
2

)
≥ ε

n+1
p

}
⊆ Sρ

i , (22)

and we observe that Sp
i is convex, thanks to the result of Lemma 1. We do not attempt to

find the entire boundary of Sp
i because that would be computationally intractable. Instead,

we define a single rectangle Rρ,p
i inside of Sp

i that define bounds on the limiting parameters.
To do this, we consider finitely many points on the boundary of Sp

i . To begin, consider
the four vertices of Sρ

i denoted by Ak1,k2 := (k1Λ
ρ

− 1
2 ,i
,k2Λ

ρ

+ 1
2 ,i
), with k1, k2 being 0 or 1. For

each (k1,k2), we define Bk1,k2 based on two cases:

– Case 1. If pi(Ak1,k2) ≥ εn+1
p , we put Bk1,k2 := Ak1,k2 . The origin always falls into this

case.
– Case 2. Otherwise, we solve the quadratic equation pi(rAk1,k2) = εn+1

p for the unknown
variable r ∈ [0,1], and define Bk1,k2 := rAk1,k2 .

After checking each vertex of Sρ

i , we define

Rρ,p
i :=

[
0,Λ− 1

2 ,Ii

]
×
[
0,Λ+ 1

2 ,Ii

]
⊆ Sp

i ⊆ Sρ

i , (23)

where

Λ− 1
2 ,Ii

:= min
k2=0,1

(
B1,k2

)
, Λ+ 1

2 ,Ii
:= min

k1=0,1

(
Bk1,1

)
. (24)

After performing this two step process at each grid cell xi, the end result of this con-
struction is the following theorem.

Theorem 1 The numerical flux in Eqn. (16) preserves positivity of the solution for any

θ
n
i− 1

2
∈
[
0, min

(
Λ+ 1

2 ,Ii−1
,Λ− 1

2 ,Ii

)]
. (25)

Although we could in principle choose any value in the interval defined in Eqn. (25)
(e.g. θ n

i− 1
2
= 0), in order to retain high-order accuracy, we choose the largest possible value

that we can prove retains positivity. That is, we define

θ
n
i− 1

2
:= min

(
Λ+ 1

2 ,Ii−1
,Λ− 1

2 ,Ii

)
(26)

at each cell interface.
This finishes the discussion for the 1D scheme. We reiterate that this entire process relies

on flux modifications, which the Picard integral formulation was designed to accept, and is
pointed out in Rmk. 1.

Remark 2 The positivity of the solution is guaranteed for the entire simulation.
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One consequence of being a single-stage, single-step method is that we do not have
stages where the density or pressure can become negative, whereas multistage Runge-Kutta
methods typically introduce either additional computational cost or artificial sound speeds
in order to retain positivity. For example, in [14, 15, 44] the limiter is applied after each stage
in the Runge-Kutta method. This introduces additional computational complexity (i.e. there
are multiple applications of the limiter per time step) as well as further constraints on the
time step selection because the limiter relies on positivity of the forward Euler method. The
modifications made in [12, 13] are part of an effort to decrease the computational complexity
by only applying the limiter once per time step. However, this happens at the expense of
potentially introducing negative pressure and density. In order to compensate for this, in
[12, 13] the authors indicate they artificially define the sound speed as c =

√
γ|p|/|ρ| for

each stage in the Runge-Kutta method. This is necessary to implement the characteristic
decomposition required for the high-order WENO reconstruction, and although it does not
affect the refinement study in [12, 13], this treatment may lead to a potential numerical
instability for some extreme cases. A similar issue can be found for the ideal MHD equations
[58].

5 The positivity-preserving method: the 2D case

In this section, we apply the positivity-preserving limiter to the two-dimensional case. Ex-
tensions to a general multi-D case follow from what is provided here.

Recall that our single-stage, single-step update is given by Eqn. (10). Similar to the 1D
case, we use f̂ n

i− 1
2 , j

and ĝn
i, j− 1

2
to denote the low-order positivity-preserving fluxes, and our

numerical method uses modified fluxes through

F̃n
i− 1

2 , j
:= θ

n
i− 1

2 , j
(F̂n

i− 1
2 , j
− f̂ n

i− 1
2 , j

)+ f̂ n
i− 1

2 , j
, (27a)

G̃n
i, j− 1

2
:= θ

n
i, j− 1

2
(Ĝn

i, j− 1
2
− ĝn

i, j− 1
2
)+ ĝn

i, j− 1
2
. (27b)

Identical to the single-dimensional case, the positivity-preserving limiting procedure con-
sists of two steps. If we still use ρ̂n+1 and p̂n+1 to denote the low-order density and pressure
solved by the flux f̂ n and ĝn, we can similarly define the 2D numerical lower bounds for den-
sity and pressure as εn+1

ρ := min
(

mini, j

(
ρ̂

n+1
i, j

)
,ε0

)
and εn+1

p := min
(

mini, j

(
p̂n+1

i, j

)
,ε0

)
.

5.1 Step 1: Maintain positivity of the density

Our fist step is to find local bounds Λ
ρ

L,Ii, j , Λ
ρ

R,Ii, j , Λ
ρ

U,Ii, j and Λ
ρ

D,Ii, j , such that for any

(θ n
i− 1

2 , j
,θ n

i+ 1
2 , j

,θ n
i, j− 1

2
,θ n

i, j+ 1
2
) ∈ Sρ

i, j, we have

ρ
n+1
i, j = ρ

n
i, j−λx

(
f̃ n,ρ
i+ 1

2 , j
− f̃ n,ρ

i− 1
2 , j

)
−λy

(
g̃n,ρ

i, j+ 1
2
− g̃n,ρ

i, j− 1
2

)
≥ ε

n+1
ρ , (28)

where

Sρ

i, j :=
[
0,Λ ρ

L,Ii, j

]
×
[
0,Λ ρ

R,Ii, j

]
×
[
0,Λ ρ

D,Ii, j

]
×
[
0,Λ ρ

U,Ii, j

]
. (29)
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Again, we have used the notation gρ to refer to the first component of the flux function, g.
We define the low-order update as

ρ̂
n+1
i, j := ρ

n
i, j−λx

(
f̂ n,ρ
i+ 1

2 , j
− f̂ n,ρ

i− 1
2 , j

)
−λy

(
ĝn,ρ

i, j+ 1
2
− ĝn,ρ

i, j− 1
2

)
,

and observe that it satisfies ρ̂
n+1
i, j ≥ εn+1

ρ > 0 for all i, j, provided the density is positive at
time tn. Similar to Eqn. (20), we rewrite Eqn. (28) as

θ
n
i− 1

2 , j
∆ fi− 1

2 , j
−θ

n
i+ 1

2 , j
∆ fi+ 1

2 , j
+θ

n
i, j− 1

2
∆gi, j− 1

2
−θ

n
i, j+ 1

2
∆gi, j+ 1

2
≥ ε

n+1
ρ − ρ̂

n+1
i, j , (30)

where we have defined the deviation between the high- and low-order fluxes as



∆ fi− 1
2 , j

:= λx(F̂
n,ρ
i− 1

2 , j
− f̂ n,ρ

i− 1
2 , j

),

∆ fi+ 1
2 , j

:= λx(F̂
n,ρ
i+ 1

2 , j
− f̂ n,ρ

i+ 1
2 , j

),

∆gi, j− 1
2

:= λy(Ĝ
n,ρ
i, j− 1

2
− ĝn,ρ

i, j− 1
2
),

∆gi, j+ 1
2

:= λy(Ĝ
n,ρ
i, j− 1

2
− ĝn,ρ

i, j− 1
2
).

(31)

Similar to the 1D case, we solve (30) based on the signs of ∆ fi± 1
2 , j

and ∆gi, j± 1
2

at each
node (xi,y j). The basic idea requires a total of two steps:

1. Identify the negative values of each of the four numbers

{
∆ fi− 1

2 , j
,−∆ fi+ 1

2 , j
, ∆gi, j− 1

2
,−∆gi, j+ 1

2

}
. (32)

2. Corresponding to the collective negative values, we define upper bounds on the limiting
parameters by solving Eqn. (30) for each value of θ after neglecting any positive val-
ues found. For example, if ∆ fi− 1

2 , j
,−∆ fi+ 1

2 , j
< 0 and ∆gi, j− 1

2
,−∆gi, j+ 1

2
≥ 0, then we

define Λ
ρ

L,Ii, j := Λ
ρ

R,Ii, j := min
(

ε
n+1
ρ −ρ̂

n+1
i, j

∆ f
i− 1

2 , j
−∆ f

i+ 1
2 , j

,1
)
,

Λ
ρ

D,Ii, j := Λ
ρ

U,Ii, j := 1.
(33)

Likewise, if −∆ fi+ 1
2 , j

,∆gi, j− 1
2
< 0 and ∆ fi− 1

2 , j
,−∆gi, j+ 1

2
≥ 0, then we define

Λ
ρ

R,Ii, j := Λ
ρ

D,Ii, j := min
(

ε
n+1
ρ −ρ̂

n+1
i, j

−∆ f
i+ 1

2 , j
+∆g

i, j− 1
2

,1
)
,

Λ
ρ

L,Ii, j := Λ
ρ

U,Ii, j := 1.
(34)

There are a total of 16 cases. Each follow similarly, and are omitted for brevity.
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5.2 Step 2: Maintain positivity of the pressure

Using the same construction from §4.2, we identify a rectangle Rρ,p
i, j ⊆ Sρ

i, j where the pres-
sure satisfies pi, j(θ

n
i− 1

2 , j
,θ n

i+ 1
2 , j

,θ n
i, j− 1

2
,θ n

i, j+ 1
2
) ≥ εn+1

p . Again, we consider the vertices of

the region that were computed in the first step. In 2D, we define them as

Ak1,k2,k3,k4 := (k1Λ
ρ

L,Ii j
,k2Λ

ρ

R,Ii j
,k3Λ

ρ

D,Ii j
,k4Λ

ρ

U,Ii j
), k1,k2,k3,k4 ∈ {0,1}.

We rescale each vertex in an identical manner to the 1D case presented in subsection
4.2. There are two cases:

– Case 1. If pi, j(Ak1,k2,k3,k4)≥ εn+1
p , we define the vertex Bk1,k2,k3,k4 := Ak1,k2,k3,k4 .

– Case 2. We solve the quadratic equation pi, j(rAk1,k2,k3,k4) = εn+1
p for the unknown r ∈

[0,1] and put Bk1,k2,k3,k4 := rAk1,k2,k3,k4 .

In the final step, we identify a rectangular box inside Sp
i, j through

Rρ,p
i, j := [0,ΛL,Ii, j ]× [0,ΛR,Ii, j ]× [0,ΛD,Ii, j ]× [0,ΛU,Ii, j ], (35)

where
ΛL,Ii, j := min

k2,3,4∈{0,1}

(
B1,k2,k3,k4

)
, ΛR,Ii, j := min

k1,3,4∈{0,1}

(
Bk1,1,k3,k4

)
,

ΛD,Ii, j := min
k1,2,4∈{0,1}

(
Bk1,k2,1,k4

)
, ΛU,Ii, j := min

k1,2,3∈{0,1}

(
Bk1,k2,k3,1

)
.

(36)

After repeating this procedure for each node (xi,y j), we finish by defining the scaling pa-
rameter as

θ
n
i− 1

2 , j
:= min(ΛR,Ii−1, j ,ΛL,Ii, j ), θ

n
i, j− 1

2
:= min(ΛU,Ii, j−1 ,ΛD,Ii, j ), (37)

and insert the result into Eqn (27) to define our modified fluxes. This finishes the discussion
for the 2D scheme, and a similar positivity-preserving theorem follows as in Thm. 25.

6 Numerical results

In this section, we perform numerical simulations with our proposed positivity-preserving
method on 1D and 2D compressible Euler equations.

6.0.1 Implementation details

The parameters we use for our WENO reconstructions include a power parameter p= 2, and
a regularization parameter ε = 10−6, and a gas constant of γ = 1.4. In addition, we follow
common practice and use a global (as opposed to a local) value for α in the Lax-Friedrichs
flux splitting for all of our simulations. This introduces additional numerical dissipation that
helps to prevent unphysical oscillations in this high-order scheme. Contrary to what typi-
cally happens with first-order finite volume schemes, the additional numerical dissipation
introduced by this choice does not introduce an exorbitant amount of artificial diffusion.
In every simulation save one, the CFL number is 0.35. All of our numerical results can be
found in the open source software package FINESS [59].
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Table 1 Accuracy test of the 2D smooth vortex. We show the L1-errors and L∞-errors at time t = 0.01 of the
density. The solutions converge at fifth-order accuracy.

Mesh L1-Error Order L∞-Error Order
80×80 2.970e-06 - 2.494e-04 -

160×160 1.627e-07 4.190 2.442e-05 3.353
320×320 7.384e-09 4.462 1.390e-06 4.135
640×640 2.428e-10 4.927 4.718e-08 4.881

6.1 Accuracy test

To test the accuracy of our method, we use the smooth vortex problem with low density and
low pressure [12, 15]. Initially, we have a mean flow

(ρ,u1,u2,u3, p) = (1,1,1,0,1), (38)

with perturbations on the velocities u1, u2 and the temperature T = p/ρ , given by

(δu1,δu2) =
ε

2π
e0.5(1−r2)(−y,x), δT =− (γ−1)ε2

8γπ2 e1−r2
, r2 := x2 + y2.

The initial pressure and density are determined by keeping the entropy S = p/ργ constant.
The domain is (x,y) ∈ [−5,5]× [−5,5] with periodic boundary condition on all sides. The
vortex strength ε is set as 10.0828 such that the lowest density and lowest pressure in the
center of the vortex are 7.8×10−15 and 1.7×10−20 respectively.

A convergence study is presented in Table 1. The L1-errors and L∞-errors of the density
are computed at a final time of t = 0.01. We observe the fifth-order accuracy of the proposed
scheme, which is comparable with those demonstrated in [12, 15]. In [15], the authors took
∆ t = ∆x

5
3 in order to make the spatial error dominate the numerical error. We find this

treatment is not necessary to observe high-order spatial accuracy because of the short the
final time. In our table, we only present the results with a constant CFL number of 0.35
that has been chosen for this, and all other simulations save one. Without the addition of
the positivity limiter, we observe negative density and negative pressure with the Taylor
formulation of the PIF-WENO scheme that appears in the center of vortex.

6.2 1D Sedov blast wave problem

The first 1D problem we considered is the 1D Sedov blast problem originally from the book
by Sedov [60]. The problem describes an intense explosion in a gas where the disturbed air
is separated from the undisturbed air by a shock wave. Initially, we deposit a quantity of
energy E = 3200000 into the center cell of the domain with the length of ∆x, and the energy
in every other cell is set to 10−12. The other quantities are initialized with a constant values
of ρ = 1 and u1 = 0. The numerical results are displayed in Fig. 1, where we see the shock
wave is captured with the proposed limiter used. In Fig. 1, we use the exact solution given in
Sedov’s book [60] as the reference solution. Our results are in agreement with other recent
work [12, 15, 44].
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6.3 1D double rarefaction problem

The second 1D problem we considered is the double rarefaction problem. It is a Riemann
problem with an initial condition of ρL = ρR = 7, u1

L = −1, u1
R = 1 and pL = pR = 0.2.

The exact solution consists of two rarefaction waves traveling in opposite directions, which
results in the creation of a vacuum in the center of the domain. Only with the proposed
limiter are we are able to solve this low density and low pressure problem with the high-
order finite difference WENO method. For this problem only, we find it is necessary to
reduce the CFL number from 0.35 to 0.15 in order to avoid introducing spurious oscillations
near the top of the rarefactions. The numerical results are presented in Fig. 2, where we use
the same resolution of ∆x = 1/200 as those in reference [12, 15, 44]. Our results are in
agreement with the exact solution. Here, the exact solution is a highly resolved solution
with ∆x = 1/1000. Other Riemann problems have been investigated, and our method gives
similar results as those found elsewhere in the literature (e.g. [38, 40]).

6.4 2D Sedov blast wave problem

We also consider a 2D version of the Sedov blast wave problem. In 2D case, the problem
has an exact self-similar solution and we expect the numerical result has a similar structure.
In the simulation, we only compute one quadrant of the whole domain, where we choose
the computation domain to be (x,y) ∈ [0,1.1]× [0,1.1]. Similar to the 1D case, we deposit
a quantity of energy E = 0.244816 into the lower left corner cell, and set the energy in
every other cell to be E = 10−12. The other initial values are identical to the 1D case. We
apply solid wall boundary conditions along the bottom (x = 0) and left (y = 0) boundaries
so that the setup is equivalent to computing the whole domain [−1.1,1.1]× [−1.1,1.1] with
E = 0.979264. The density is presented in Fig. 3, from which we can see the result has a
nice self-similar structure. Additionally, we observe that the density cut at y = 0 agrees with
the exact solution.

6.5 2D Shock diffraction problem

The second 2D problem we consider is the shock diffraction problem. The computational
domain is [0,1]× [6,11]

⋃
[1,13]× [0,11]. There is a shock wave of Mach number 5.09

initially located at {x = 0.5,6≤ y≤ 11}. As time evolves, the wave moves into undisturbed
air with a density of ρ = 1.4 and pressure of p = 1. We use an inflow boundary condition at
{x = 0,6≤ y≤ 11}, and an outflow boundary condition at {x = 13,0≤ y≤ 11}, {1≤ x ≤
13,y = 0} and {0 ≤ x ≤ 13,y = 11}. For the other parts of the boundary where {0 ≤ x ≤
1,y = 6} and {x = 1,0 ≤ y ≤ 6}, solid wall boundary conditions are applied. As the shock
passes the corner, negative density and negative pressure is observed without the addition
of the positivity limiter to the Taylor PIF-WENO scheme. This issue is resolved with the
proposed modifications to the older scheme. In Fig. 4, we present results for the density and
pressure at time t = 2.3.

7 Conclusions and future work

In this paper we propose a high-order, single-stage, single-step, positivity-preserving method
for the compressible Euler equations. The base scheme is the Taylor discretization of the
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Fig. 1 1D Sedov blast wave problem. These panels show plots at time t = 0.001 of (a) the density, (b) the
pressure and (c) the velocity u1. The solid lines are the exact solutions. The solution was obtained on a mesh
with ∆x = 1/200 and a CFL of 0.35.
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Fig. 2 1D double rarefaction problem. These panels show plots at time t = 0.6 of (a) the density, (b) the
pressure and (c) u1. The solid lines are the exact solutions. The solution is obtained on a mesh with ∆x =
1/200 and a smaller CFL of 0.15 that help to reduce unphysical oscillations.



18 David C. Seal et al.

(a)
 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(b)
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

Density

Fig. 3 2D Sedov blast wave problem. These panels show plots at time t = 1 of (a) the density, and (b) a slice
of the density along y = 0. The solid line in (b) is the exact solution. The solution is obtained on a 160×160
mesh and a CFL number of 0.35.
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Fig. 4 2D Shock diffraction problem. These panels show plots at time t = 2.3 of (a) the density, and (b)
the pressure. A total of 20 equally spaced contour lines from ρ = 0.0662 to 7.07 are plotted in (a). We use
40 equally spaced contour lines from p = 0.091 to 37 are in (b). The solution is computed on a mesh with
∆x = ∆y = 1/30 and a CFL number of 0.35.

Picard integral formulation of the PDE, where a single finite difference WENO reconstruc-
tion is applied once per time step. A positivity-preserving limiter is introduced in such a
way that the positivity of the solution is preserved for the entire simulation, which adds
a degree of robustness to our scheme. In addition, we have no excessive CFL restriction
in order to retain positivity, which makes our new method more efficient compared to re-
cent positivity-preserving methods. We demonstrate the effectiveness and efficiency of the
positivity-preserving schemes on one- and two-dimensional problems with low density and
pressure. High-order accuracy is retained after the introduction of our positivity preserv-
ing limiter on a test problem that has near zero pressure and density. Future work includes
the construction of positivity-preserving multiderivative methods [61], applying the pro-
posed method to other systems such as magnetohydrodynamics, as well as incorporating
our method into an AMR framework.
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low densities. J. Comput. Phys., 92(2):273–295, 1991.

37. J.-L. Estivalezes and P. Villedieu. A new second order positivity preserving kinetic
schemes for the compressible euler equations. In S. M. Deshpande, S. S. Desai, and
R. Narasimha, editors, Fourteenth International Conference on Numerical Methods
in Fluid Dynamics, volume 453 of Lecture Notes in Physics, pages 96–100. Springer
Berlin Heidelberg, 1995.

38. J.-L. Estivalezes and P. Villedieu. High-order positivity-preserving kinetic schemes for
the compressible Euler equations. SIAM J. Numer. Anal., 33(5):2050–2067, 1996.

39. B. Perthame and C.-W. Shu. On positivity preserving finite volume schemes for Euler
equations. Numer. Math., 73(1):119–130, 1996.



Positivity-preserving Picard integral formulated finite difference WENO 21

40. T. Tang and K. Xu. Gas-kinetic schemes for the compressible Euler equations:
positivity-preserving analysis. Z. Angew. Math. Phys., 50(2):258–281, 1999.

41. Bruno Dubroca. Solveur de Roe positivement conservatif. C. R. Acad. Sci. Paris Sér. I
Math., 329(9):827–832, 1999.

42. H.-Z. Tang and K. Xu. Positivity-preserving analysis of explicit and implicit Lax-
Friedrichs schemes for compressible Euler equations. J. Sci. Comput., 15(1):19–28,
2000.

43. Gérard Gallice. Positive and entropy stable Godunov-type schemes for gas dynamics
and MHD equations in Lagrangian or Eulerian coordinates. Numer. Math., 94(4):673–
713, 2003.

44. X. Zhang and C.-W. Shu. On positivity-preserving high order discontinuous Galerkin
schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys.,
229(23):8918–8934, 2010.

45. X. Zhang and C.-W. Shu. Positivity-preserving high order discontinuous Galerkin
schemes for compressible Euler equations with source terms. J. Comput. Phys.,
230(4):1238–1248, 2011.

46. X. Zhang, Yi. Xia, and C.-W. Shu. Maximum-principle-satisfying and positivity-
preserving high order discontinuous Galerkin schemes for conservation laws on tri-
angular meshes. J. Sci. Comput., 50(1):29–62, 2012.

47. K. Kontzialis and J. A. Ekaterinaris. High order discontinuous Galerkin discretizations
with a new limiting approach and positivity preservation for strong moving shocks.
Comput. & Fluids, 71:98–112, 2013.

48. X. Y. Hu, N. A. Adams, and C.-W. Shu. Positivity-preserving method for high-
order conservative schemes solving compressible Euler equations. J. Comput. Phys.,
242:169–180, 2013.

49. J. A. Rossmanith and D. C. Seal. A positivity-preserving high-order semi-Lagrangian
discontinuous Galerkin scheme for the Vlasov-Poisson equations. J. Comput. Phys.,
230(16):6203–6232, 2011.
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