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Abstract. In dynamical systems saddle points partition the domain into
basins of attractions of the remaining locally stable equilibria. This problem
is rather common especially in population dynamics models. Precisely, a par-
ticular solution of a dynamical system is completely determined by its initial
condition and by the parameters involved in the model. Furthermore, when the
omega limit set reduces to a point, the trajectory of the solution evolves towards
the steady state. But, in case of multi-stability it is possible that several steady
states originate from the same parameter set. Thus, in these cases the impor-
tance of accurately reconstruct the attraction basins follows. In this paper we
focus on dynamical systems of ordinary differential equations presenting three
stable equilibia and we design algorithms for the detection of the points lying
on the manifolds determining the basins of attraction and for the reconstruction
of such manifolds. The latter are reconstructed by means of the implicit parti-
tion of unity method which makes use of radial basis functions (RBFs) as local
approximants. Extensive numerical test, carried out with a Matlab package
made available to the scientific community, support our findings.

1 Introduction

Mathematical modelling is applied in major disciplines, such as biology, medicine
and social sciences. The aim of such models lies in the prediction of the temporal
evolution of the considered quantities (populations, cancer, divorces), [1, 23].

In a model involving a set of ordinary differential equations, a particular
solution of the system is completely determined by the initial condition. The
latter establishes the steady state of the solution. Moreover, we may also note
that, under some conditions imposed on the model parameters and depending
on the initial state, the trajectories, i.e. the model solutions, at the end of the
observation period may stabilize at different equilibria. So the phase state of
the dynamical system is partitioned into different regions, called the basins of
attraction, depending on where the trajectories originating in them will ulti-
mately stabilize. Thus, the prediction of a mathematical model depends on the
initial condition. If the latter lies in the basin of attraction of a certain equilib-
rium point, the final configuration will be the one at this specific steady state.
Therefore, it is important to assess, for each possible attractor, the domain of
attraction.
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In order to have a graphical representation of the separatrix manifolds we
study the problem described above in dynamical systems composed by two or
three equations. We have analyzed the problem of the reconstruction of the
domains of attraction for competition models of dimension two and three which
present bistability in [5, 7].

In this paper we instead focus on systems of two or three ordinary differential
equations aimed at finding the basins of attraction of three different stable
equilibria. Moreover, we propose the problem of the separatrix curves or surfaces
that determine the domains of attraction, when bistability occurs, as a particular
case of the algorithm described in this article. Thus, the aim of this work is
to construct approximation surfaces which partition the phase space into three
regions.

The approximation of the attraction basins leads to a method consisting of
two steps:

1. detection of the points lying on the separatrix manifolds,

2. interpolation of such points in a suitable way, [3, 8, 9, 17, 18, 24].

For this purpose we have implemented severalMatlab routines for the approxi-
mation of the points lying on the manifolds determining the basins of attraction,
obtained by a bisection algorithm, and for the graphical representation of such
manifolds. The Matlab software here discussed is available at:

http://hdl.handle.net/2318/1520518.

The separatrix manifolds generated by a saddle point are determined locally
(by linearization) in well-known examples, see e.g. [16]. Specifically, even if some
techniques to prove the existence of invariant sets have already been developed,
none of them, except for particular and well-known cases, allows to have a
graphical representation of the separatrix manifolds, [11, 20]. Such techniques
are based on results from algebraic topology, and thus such methods are not
constructive in the sense that they do not give a precise structure and location
of the invariant sets. Furthermore, numerical tools based on characterizing in
(exponentially) asymptotically autonomous systems a Lyapunov function as a
solution of a suitable linear first-order PDE have already been developed. Such
equation is then approximated using meshless collocation methods, [13, 14].

Our aim is instead more ambitious since, on the contrary, the software pre-
sented here allows to reconstruct the basin of attraction of each equilibrium in
a three-dimensional dynamical system, providing a graphical representation of
the separatrix curves or surfaces. Moreover, we are not restricted to asymptot-
ically autonomous systems and thus the transformations made in order to use
powerful methods, which are well-suited only for autonomous models, are not
here necessary.

The paper is organized as follows. In Section 2 we describe the method used
for approximating the manifolds determining the basins of attraction. Section
3 is devoted to the presentation of the designed algorithms for the detection of
points lying on such surfaces. Section 4 contains our numerical results.
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2 Approximation of manifolds determining the

basins of attraction: interpolation phase

In this section we describe the method used for the reconstruction of the basins
of attraction. The latter are often described by implicit equations, consequently
we use an implicit scheme, specifically the implicit partition of unity method,
to reconstruct the domains of attraction.

We will describe such method for a 3D dataset, but it can easily be adapted
to a 2D dataset so as to allow the reconstruction also of implicit curves [12].
However, an implicit approach is not always necessary for the approximation of
some separatrix manifolds. In fact we have already obtained good results with
the explicit partition of unity method, [5, 7]. But the nature of a curve or of a
surface is known only after detecting the points lying on them. Thus, though
such curves or surfaces might usually be expressed by an explicit equation, we
use the more general implicit partition of unity technique. The use of such
method is the key step which allows to reconstruct the basins of attraction of
any stable equilibrium point.

2.1 Implicit surface reconstruction

Given a point cloud data set, i.e. data in the form XN = {xi ∈ R
3, i =

1, . . . , N}, belonging to an unknown two dimensional manifold M , namely a
surface in R

3, we seek another surface M ∗ that is a reasonable approximation
to M . For the implicit approach, we think of M as the surface of all points
x ∈ R

3 satisfying the implicit equation:

f(x) = 0, (1)

for some function f , which implicitly defines the surface M [12]. This means
that the equation (1) is the zero iso-surface of the trivariate function f , and
therefore this iso-surface coincides with M . The surface M ∗ is constructed via
partition of unity interpolation, [12], as shown in Subsection 2.2. Unfortunately,
the solution of this problem, by imposing the interpolation conditions (1), leads
to the trivial solution, given by the identically zero function, [9]. The key to
finding the interpolant of the trivariate function f , from the given data points
xi, i = 1, . . . , N, is to use additional significant interpolation conditions, i.e.
to add an extra set of off-surface points. Once we define the augmented data
set, we can then compute a three dimensional interpolant I to the total set
of points, [12]. A common practice is to assume that in addition to the point
cloud data the set of surface oriented normals ni ∈ R

3 to the surface M at the
points xi is also given. We construct the extra off-surface points by taking a
small step away along the surface normals, i.e. we obtain for each data point xi

two additional off-surface points. One point lies outside the manifold M and is
given by

xN+i = xi + δni,

3



whereas the other point lies inside M and is given by

x2N+i = xi − δni,

δ being the stepsize. The union of the sets X+
δ = {xN+1, . . . ,x2N}, X−

δ =
{x2N+1, . . . , x3N} and XN gives the overall set of points on which the interpo-
lation conditions are assigned. Note that if we have zero normals in the given
normal data set, we must exclude such points, [12].

Now, after creating the data set, we compute the interpolant I whose zero
contour (iso-surface I = 0) interpolates the given point cloud data, and whose
iso-surfaces I = 1 and I = −1 interpolate X+

δ and X−
δ .The values +1 or −1

are arbitrary. Their precise value is not as critical as the choice of δ. In fact
the stepsize can be rather critical for a good surface fit, [2, 12]. A suitable value
for such parameter will be discussed in Section 4. Finally, we just render the
resulting approximating surface M ∗ as the zero contour of the 3D interpolant,
[12]. If the normals are not explicitly given, see [17, 18].

2.2 Partition of unity method and radial basis function

interpolation

In Subsection 2.1 we have presented an approach, to obtain a surface that fits
the given 3D scattered data set, based on the use of implicit surfaces defined in
terms of some meshfree approximation methods such as the partition of unity
interpolation, [6, 8, 12, 22, 25, 26].

Let XN = {xi ∈ R
3, i = 1, . . . , N} be a set of distinct data points or nodes,

arbitrarily distributed in a domain Ω ⊆ R
3, with an associated set FN = {fi, i =

1, . . . , N} of data values or function values, which are obtained by sampling some
(unknown) function f : Ω → R at the nodes, i.e., fi = f(xi), i = 1, . . . , N .

The basic idea of the partition of unity method is to start with a partition of
the open and bounded domain Ω into d subdomains Ωj such that Ω ⊆ ⋃d

j=1 Ωj

with some mild overlap among the subdomains.
Associated with these subdomains we choose a partition of unity, i.e. a

family of compactly supported, non-negative, continuous functions Wj with
supp(Wj) ⊆ Ωj such that

d
∑

j=1

Wj(x) = 1, x ∈ Ω. (2)

The global approximant thus assumes the following form

I(x) =
d

∑

j=1

Rj(x)Wj(x), x ∈ Ω. (3)

For each subdomain Ωj we define a local radial basis function interpolant [19]
Rj : Ω → R of the form

Rj(x) =

Nj
∑

k=1

ckφ(||x− xk||2), (4)
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where φ : [0,∞) → R is called radial basis function, || · ||2 denotes the Euclidean
norm, and Nj indicates the number of data points in Ωj . Moreover, Rj satisfies
the interpolation conditions

Rj(xi) = fi, i = 1, . . . , Nj. (5)

In particular, we observe that if the local approximants satisfy the interpolation
conditions (5), then the global approximant also interpolates at xi, i.e. I(xi) =
f(xi), for i = 1, . . . , Nj .

Solving the j-th interpolation problem (5) leads to a system of linear equa-
tions of the form







φ(||x1 − x1||2) · · · φ(||x1 − xNj
||2)

...
...

...
φ(||xNj

− x1||2) · · · φ(||xNj
− xNj

||2)













c1
...

cNj






=







f1
...

fNj






,

or simply
Φc = f .

Now, we give the following definition (see [26]).

Definition 2.1 Let Ω ⊆ R
3 be a bounded set. Let {Ω}dj=1 be an open and

bounded covering of Ω. This means that all Ωj are open and bounded and that
Ω is contained in their union. A family of nonnegative functions {Wj}dj=1 with

Wj ∈ Ck(R3) is called a k-stable partition of unity with respect to the covering
{Ωj}dj=1 if

1) supp(Wj) ⊆ Ωj;

2)
∑d

j=1 Wj(x) ≡ 1 on Ω;

3) for every β ∈ N
3
0 with |β| ≤ k there exists a constant Cβ > 0 such that

||DβWj ||L∞(Ωj) ≤ Cβ/δ
|β|
j , j = 1, . . . , d,

where δj = diam(Ωj) = sup
x,y∈Ωj

||x− y||2.

In agreement with the statements in [25] we require some additional regu-
larity assumptions on the covering {Ωj}dj=1.

Definition 2.2 Suppose that Ω ⊆ R
3 is bounded and XN = {xi, i = 1, . . . , N} ⊆

Ω are given. An open and bounded covering {Ωj}dj=1 is called regular for (Ω,XN )
if the following properties are satisfied:

(a) for each x ∈ Ω, the number of subdomains Ωj with x ∈ Ωj is bounded by
a global constant K;

(b) each subdomain Ωj satisfies an interior cone condition [26];

5



(c) the local fill distances hXNj
,Ωj

, where XNj
= XN ∩ Ωj, are uniformly

bounded by the global fill distance hXN ,Ω, i.e.

hXN ,Ω = sup
x∈Ω

min
xk∈XN

||x− xk||2.

Let Ck
ν (R

3) be the space of all functions f ∈ Ck whose derivatives of order
|β| = k satisfy Dβf(x) = O(||x||ν2) for ||x||2 → 0. The following convergence
result is well known (see, e.g., [12, 26]).

Theorem 2.1 Let Ω ⊆ R
3 be open and bounded and assume that XN = {xi, i =

1, . . . , N} ⊆ Ω. Let φ ∈ Ck
ν (R

3) be a strictly positive definite function. Let
{Ωj}dj=1 be a regular covering for (Ω,XN ) and let {Wj}dj=1 be k-stable for

{Ωj}dj=1. Then the error between f ∈ Nφ(Ω), where Nφ is the native space
of φ, and its partition of unity interpolant (3) is bounded by

|Dβf(x)−DβI(x)| ≤ Ch
(k+ν)/2−|β|
XN ,Ω |f |Nφ(Ω),

for all x ∈ Ω and all |β| ≤ k/2.

If we compare this result with the global error estimates (see e.g. [26]), we
can see that the partition of unity preserves the local approximation order for the
global fit. This means that we can efficiently compute large RBF interpolants
by solving small RBF interpolation problems and then glue them together with
the global partition of unity {Wj}dj=1.

3 Approximation of manifolds determining the

basins of attraction

This section describes the algorithms implemented for the detection of points
lying on the manifolds delimiting the basins of attraction. In Subsection 3.1 we
discuss the problem of partitioning the phase space in three subregions, when
the system presents three stable equilibria. Moreover, a final remark explains
how the algorithm can be easily adapted in case of bistability.

3.1 Detection of points determining the basins of attrac-

tion of three different equilibria

In order to approximate the basins of attraction, when the system admits three
stable equilibria, the general idea is to find the points lying on the surfaces
determining the domains of attraction and finally to interpolate them with a
suitable method. The steps of the so-called detection-interpolation algorithm are
summarized in the 3D-Detec-Interp Algorithm. At first, we need to consider
a set of points as initial conditions, then we take points in pairs and we proceed
with a bisection routine to determine a point lying on a surface dividing the
domains of attraction, [7]. The simplest idea, which turns out to be also reliable,
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consists in considering the set of initial conditions in a cube domain [0, γ]3, where
γ ∈ R

+.
Once we take points in pairs, if the two initial conditions evolve towards the

first and second equilibrium point, respectively, a bisection routine is performed
to find a point lying on the surface delimiting the basin of attraction of both
the first and the second stable steady state. In the same way, if the trajectories
of the two initial data converge to the first and third stable equilibrium point,
a point lying on the surface determining the domain of attraction of the first
and third attractor is found. Similarly, if the trajectories of the two initial data
converge to the second and third stable equilibrium point, a point lying on the
surface determining the domain of attraction of the second and third stable
steady state is found, (see Step 5 in the 3D-Detec-Interp Algorithm). It
means that the algorithm finds three sets of points, and the latter, taken in pairs,
determine the basins of attraction of the three stable equilibria, (see Step 6

in the 3D-Detec-Interp Algorithm). Moreover, in the detection-interpolation
algorithm, after considering n equispaced initial conditions on each edge of the
cube [0, γ]3, we construct a grid on the faces of the cube, (see Step 2 in the
3D-Detec-Interp Algorithm):

P 1
i1,i2

= (xi1 , yi2 , 0) and P 2
i1,i2

= (xi1 , yi2 , γ), i1, i2 = 1, . . . , n,
P 3
i1,i2

= (xi1 , 0, zi2) and P 4
i1,i2

= (xi1 , γ, zi2), i1, i2 = 1, . . . , n,
P 5
i1,i2 = (0, yi1 , zi2) and P 6

i1,i2 = (γ, yi1 , zi2), i1, i2 = 1, . . . , n,
(6)

and a bisection routine is applied with initial conditions (6), [7].
We now analyze the inputs of the detection-interpolation algorithm:

n ∈ N
+: number of equispaced points on each edge of the cube; it is used to

define the set of initial data.

γ ∈ R
+: edge length of the cube.

tol ∈ R
+: tolerance used during the bisection routine. The latter stops when

the distance between the last two generated midpoints is less than tol.

t ∈ R
+: integration time, used during an integration routine. We cannot

provide a suitable choice for this parameter because it depends on the dynamical
system, but the algorithm checks if the allowed integration time is sufficient.

par ∈ R
l
+: vector of model parameters, where l is the number of model

parameters. The latter must be chosen so that the system presents three stable
equilibria.

npi ∈ N
+: number of equilibrium points to be interpolated, typically the

origin when it is unstable and the point having all non zero coordinates, such
as in population dynamics the coexistence equilibrium, if it is a saddle point.1

E ∈ R
M×3: matrix of the equilibria, where M is the total number of equi-

libria.

1In case of two equilibria a saddle point partitions the phase space into two regions, called

the basins of attraction of the equilibria. In case of three equilibria instead, several saddles

are involved in the dynamics. But the three separating surfaces intersect together at only one

saddle which corresponds to a point where all the populations are nonnegative.
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Step 1: Check if the system presents exactly three stable equilibria.

Step 2: Definition of initial conditions on the faces of the cube of edge γ.

Set s = 1.

Step 3: While s <= 5

Step 4: For i1 = 1, . . . , n

Step 5: For i2 = 1, . . . , n

[q3, q2, q1] = BISECTION(P s
i1,i2

, P s+1
i1,i2

, t, tol,par, E),

the matrices Q3
j3,1

, Q2
j2,1

, Q1
j1,1

are uploaded.

s = s+ 2.

Step 6: Define Q1
J1,k

= [Q2
j2,k

;Q3
j3,k

], Q2
J2,k

= [Q1
j1,k

;Q3
j3,k

],

Q3
J3,k

= [Q1
j1,k

;Q2
j2,k

], k = 1, 2, 3.

Step 7: I1 = INTERPOLATION(Q1
J1,k

, ε1, d
PU
1 ,K1),

I2 = INTERPOLATION(Q2
J2,k

, ε2, d
PU
2 ,K2),

I3 = INTERPOLATION(Q3
J3,k

, ε3, d
PU
3 ,K3), where Q1

J1,k
,

Q2
J2,k

, Q3
J3,k

are the points found by the detection

algorithm and the npi equilibrium points to be interpolated.

The 3D-Detec-Interp Algorithm. The detection-interpolation pseudo-code.
It summarizes the steps needed to determine the points lying on the surfaces
delimiting the basins of attraction and to reconstruct these surfaces.

ε ∈ R
3
+: vector of shape parameters for RBFs used for the reconstruction,

via interpolation, of the three surfaces determining the basins of attraction, (see
Subsection 2.2). Thus it is an input of the interpolation routine, (see Step 7

in the 3D-Detec-Interp Algorithm).

dPU ∈ N
3
+: the number of subdomain points along one direction of Ω. It

is an input of the interpolation routine, (see Step 7 in the 3D-Detec-Interp
Algorithm), which is used to construct a grid of equally spaced centres of par-
tition of unity subdomains, [4]. Therefore, di can be chosen taking di = (dPU

i )3,
i = 1, 2, 3, where di is the number of subdomains points used to approximate
the i-th surface.

K ∈ N
3
+: vector containing the number of the nearest points used to es-

timate the normals; input of the interpolation routine, (see Step 7 in the
3D-Detec-Interp Algorithm).

More in detail, after defining the initial data (6), a bisection-like routine is
performed with the latter, (see Step 2-5 in the 3D-Detec-Interp Algorithm).
Such routine integrates the system with a pair of initial conditions for the pa-
rameter set par in an time interval t. Then it checks, among the equilibria
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stored in the matrix E, where the trajectories originating in such initial condi-
tions ultimately stabilize. Then if the two initial conditions evolve toward two
different stable equilibria it provides a point named:

1. q3, if the point lies on the surface delimiting the domain of attraction of
both the first and the second equilibrium point, or

2. q2, if lies on the surface determining the basin of attraction of both the
first and the third equilibrium point, or

3. q1, if the point lies on the surface delimiting the domain of attraction of
both the second and the third equilibrium point.

Summarizing, once we apply the bisection algorithm with initial conditions
(6), three different sets of points are detected. These sets, in pairs, identify the
three basins of attraction. Considering then the method described in Section
2, the associated algorithm interpolates such points and returns values of the
interpolants I1, I2 and I3. They approximate the basins of attraction of the
first, second and third equilibrium point, respectively, (see Step 7 in the
3D-Detec-Interp Algorithm).

Remark 3.1 The separatrix surfaces in case of bistability, investigated in [7],
can be obtained as a particular case of the detection-interpolation algorithm
analyzed in this section. Since in this case we obtain only one manifold, the
input parameters ε, dPU , K in the detection-interpolation algorithm, are scalar
values.

Remark 3.2 The approximation of the basins of attraction for two dimensional
dynamical systems easily follows from the detection-interpolation algorithm. In
the 2D case, we start considering n equispaced initial conditions on each edge of
the square [0, γ]2; thus the bisection routine is applied with the following initial
conditions, [7]:

P 1
i = (xi, 0) and P 2

i = (xi, γ), i = 1, . . . , n,
P 3
i = (0, yi) and P 4

i = (γ, yi), i = 1, . . . , n.
(7)

4 Numerical experiments

In this section we summarize the extensive experiments performed to test our
detection and approximation techniques. Specifically, in Subsection 4.1 and 4.2
respectively, we test the routines for 3D and 2D dynamical systems, considering
the cases in which such models admit both two and three stable equilibria.

For the dynamical systems in consideration we establish conditions to be
imposed on the parameters so that the separatrix manifolds exist. Here, after
detecting the points lying on the latter with the algorithm described in Section
3, at first we compute the normal vectors and consistently orient them to the
surfaces by choosing, for the three different manifolds, the nearest neighbours
Ki, i = 1, 2, 3. Typically we set Ki, i = 1, 2, 3 between 5 and 10. Then we build
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the extra off-surface points by marching a small distance δ along the surface
normals, as shown in Subection 2.1; following [12], we take δ to be 1% of the
maximum dimension of the data. Finally we interpolate the points lying on
the separatrix surfaces with the implicit partition of unity method, described in
Subsection 2.2, using in (4) the compactly supported Wendland’s C2 function,
[26], as local approximants

φ(r) = (1− εr)4+(4εr + 1).

Here r = ‖·‖2 is the Euclidean norm, (·)+ denotes the truncated power function
and ǫ > 0 is the shape parameter. Such parameter determines the size of
the support of the basis function. Its choice can significantly affect the final
result. Specifically, for the three manifolds, we choose the shape parameters
so that 0.01 ≤ εi ≤ 0.1, i = 1, 2, 3. Assuming to have a nearly uniform node
distribution such as the Halton points, according to [4], a possible choice for
the number of subdomains centers consists in constructing a uniform grid of
di = (dPU

i )s centers, where s is the dimension of the dynamical system and

dPU
i = ⌈1/2(Ni/2)

1

s ⌉, i = 1, 2, 3. However, we point out that in our tests we
find good results even with different dPU

i , i = 1, 2, 3. This is due to the fact
that we deal with concrete and unstructured data.

Such choices, described above, are suitable assuming to start with 8 ≤ n ≤ 15
equispaced initial conditions on each edge of the cube [0, γ]3. For the tolerance
used in the bisection routine, a recommended value is 10−3 ≤ tol ≤ 10−5, since
it allows to achieve a good trade-off between accuracy and computational cost.

4.1 3D detection-interpolation tests

A model chosen to test the detection-interpolation algorithm is the classical
three-populations competition model. Letting x, y and z denote the popula-
tions, we consider the following system

dx
dt

= p
(

1− x
u
)

x− axy − bxz,

dy
dt

= q
(

1− y
v
)

y − cxy − eyz,

dz
dt

= r
(

1− z
w
)

z − fxz − gyz,

(8)

where p, q and r are the growth rates of x, y and z, respectively, a, b, c, e, f
and g are the competition rates, u, v and w are the carrying capacities of the
three populations. The model (8) describes the interaction of three competing
populations within the same environment (see e.g. [15]).

There are eight equilibrium points. The origin E0 = (0, 0, 0) and the points
associated with the survival of only one population E1 = (u, 0, 0), E2 = (0, v, 0)
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and E3 = (0, 0, w). Then we have the equilibria with two coexisting populations:

E4 =

(

uq(av − p)
cuva− pq ,

pv(cu − q)
cuva− pq , 0

)

, E5 =

(

ur(bw − p)
fuwb− rp , 0,

wp(fu − r)
fuwb− rp

)

,

E6 =

(

0,
vr(we − q)
gvwe− qr ,

wq(vg − r)
gvwe− qr

)

.

Finally we have the coexistence equilibrium,

E7 =

(

u[p(gvwe− qr) − avr(we − q)− bwq(vg − r)]
p(gvwe − qr) + uva(rc− fwe) + uwb(fq − gcv)

,

v[q(fuwb− pr)− rcu(wb − p)− pew(fu− r)]
q(fuwb− pr) + cuv(ra− gwb) + evw(gp− afu)

,

r[(cuva− pq)− gpv(cu− q)− ufq(va− p)]
r(cuva− pq) + bwu(fq − vcg) + evw(gp− fua)

)

.

Letting p = 1, q = 2, r = 2, a = 5, b = 4, c = 3, e = 7, f = 7, g = 10,
u = 3, v = 2, w = 1, the points associated with the survival of only one
population, i.e. E1 = (3, 0, 0), E2 = (0, 2, 0) and E3 = (0, 0, 1), are stable,
the origin E0 = (0, 0, 0) is an unstable equilibrium and the coexistence equilib-
rium E7 ≈ (0.1899, 0.0270, 0.2005) is a saddle point. The remaining equilibria
E4 ≈ (0.6163, 0.1591, 0), E5 ≈ (0.2195, 0, 0.5317) and E6 ≈ (0, 0.1714, 0.2647)
are other saddle points. The manifolds joining these saddles partition the phase
space into the different basins of attraction, but intersect only at the coex-
istence saddle point, labeled E7.

2 In this situation we can use the detection-
interpolation routine to approximate the basins of attraction. More precisely, we
choose n = 15, γ = 6, tol = 10−3, t = 90, ε = (0.1, 0.09, 0.08), dPU = (3, 4, 4),
K = (7, 8, 6). Figure 1 shows the separatrix points and the basins of attraction
of E1, E2 and E3, (left to right, top to bottom). Finally, in Figure 2 we plot
together the three basins of attraction.

To test our detection-interpolation routine when bistability occurs, we con-
sider the following model, describing a three level food web, with a top predator
indicated by W , the intermediate population V and the bottom prey N that
is affected by an epidemic. It is subdivided into the two subpopulations of

2In case of bistability the manifold through the origin and a saddle point partitions the

phase space into two regions. In case of a system with three equilibria instead, more saddles

are involved in the dynamics. But the three separating manifolds all intersect only at one

saddle with all nonnegative populations.
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Figure 1: Set of points lying on the surfaces determining the domains of attrac-
tion (top left) and the reconstruction of the basin of attraction of E1 (top right),
E2 and E3 (bottom, left to right). The four figures (left to right, top to bottom)
show the progress of the algorithm: first it generates the points on the sepa-
ratrices, then in turn each individual basin of attraction. The black and blue
circles represent the unstable origin, the coexistence saddle point and the stable
equilibria, respectively. Moreover the other saddles (E4, E5 and E6) which, in
pairs, lie on the separatrix manifolds of the attraction basins are identified by
green circles.

susceptibles S and infected I, [10],

dW
dt

= −mW + pVW,

dV
dt

= −lV + eSV − hVW + qIV,

dI
dt

= βIS − nIV − γI − νI,

dS
dt

= aS
(

1− S + I
K

)

− cV S − βSI + γI,

(9)

where m and l are the mortality rates of W and V respectively, ν is the natural
plus disease-related mortality for the bottom prey, p and h are the predation
rates. The disease, spreading by contact at rate β, can be overcome, so that
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Figure 2: Reconstruction of the basins of attraction with parameters p = 1,
q = 2, r = 2, a = 5, b = 4, c = 3, e = 7, f = 7, g = 10, u = 3, v = 2, w = 1.

infected return to class S at rate γ. Then the gain obtained by the intermediate
population from hunting of susceptibles is denoted by e, which must clearly
be smaller than the damage inflicted to the susceptibles c, i.e. e < c, the
corresponding loss rate of infected individuals in the lowest trophic level due
to capture by the intermediate population is n, while q < n denotes the return
obtained by V from capturing infected prey. In this lowest trophic level, only
the healthy prey reproduce at net rate a, while the prey environment carrying
capacity is K. The equilibria are the origin E0 = (0, 0, 0, 0), E1 = (0, 0, 0,K),
the disease-free equilibrium with all the trophic levels E2 and the steady state
in which only the intermediate population and the bottom healthy prey thrive
E3:

E2 =

(

apKe−mecK − apl

ahp
,
m

p
, 0,K

ap− cm

ap

)

, E3 =

(

0,
a(Ke− l)

ecK
, 0,

l

e

)

.

Then we have the point at which just the bottom prey thrives, with endemic
disease, E4 and two equilibria in which the top predators disappear, E5 and E6:

E4 =

(

0, 0,
a(Kβγ + kβν − γ2 − 2γν − ν2)

β(aγaν +Kβν)
,
γ + ν
β

)

,

E5,6 =

(

0,
βŜ − γ − ν

n , l − eŜ
q , Ŝ

)

,

where Ŝ are the roots of ÃS2 + B̃S + C = 0.
With the parameters values l = 10, e = 2, q = 1, β = 1.6, n = 5, γ =

1, ν = 3, a = 8, K = 6, c = 0.5, the equilibria E3 ≈ (0, 2.6666, 0, 5) and
E4 ≈ (0, 0, 1.8421, 2.5) are both stable and E5 ≈ (0, 0.7244, 0.4721, 4.7639) is
the saddle point that partitions the domain in the W = 0 three-dimensional
phase subspace. Thus system (9) is reduced to a system of three equations and
therefore we can reconstruct the separatrix surface in such subspace with the
routine described in Subsection 3.1. The separatrix points and the separatrix
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surface, shown in Figure 3 (left) and (right) respectively, are the result of the
detection-interpolation algorithm with n = 11, γ = 10, tol = 10−4, t = 30,
ε = 0.6, dPU = 4, K = 7.
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6
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Figure 3: Set of points lying on the surface separating the domains of attraction
of E3 and E4 (left) and the reconstruction of the separatrix surface (right). The
black and blue circles represent the unstable origin, the saddle point and the
stable equilibria, respectively.

4.2 2D detection-interpolation tests

To give an example for a dynamical system of dimension two, we can consider the
competition model analyzed in [21]. Letting P and Q denote two populations
gathering in herds, we consider the following system describing the competition
of two different populations within the same environment:

dQ
dτ

= r

(

1− Q
KQ

)

Q− q
√
Q
√
P,

dP
dτ

= m

(

1− P
KP

)

P − p
√
Q
√
P ,

(10)

where r and m are the growth rates of Q and P , respectively, q and p are the
competition rates, KQ, and KP are the carrying capacities of the two popula-
tions.

Since singularities could arise in the Jacobian when one or both populations
vanish, we define the following new variables, as suggested in [21]:

X(t) =

√

Q(τ)

KQ
, Y (t) =

√

P (τ)

KP
, t = τ

q
√

KP

2
√

KQ

,

a =
pKQ

qKP
, b =

r
√

KQ

q
√

KP

, c =
m
√

KQ

q
√

KP

.

(11)
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Thus the adimensionalized, singularity-free system for (10) is

dX
dt

= b(1−X2)X − Y,

dY
dt

= c(1 − Y 2)Y − aX.

(12)

We can easily verify that the origin E0 = (0, 0), and the points associated with
the survival of only one population E1 = (KQ, 0) E2 = (0,KP ) are equilibria
of (10). To study the remaining equilibria we consider the adimensionalized
system, in fact the coexistence equilibria are the roots of the eighth degree
equation

cb3X8 − 3cb3X6 + 3cb3X4 − cb(b2 + 1)X2a+ cb = 0.

Observe that in our test we have to take into account that E
′

1 = (1, 0) and
E

′

2 = (0, 1), corresponding to E1 = (KQ, 0) and E2 = (0,KP ) of system (10),
are not critical points of the system (12).

With the parameters r = 0.7895, m = 0.7885, p = 0.225, q = 0.2085,
Kp = 12 and Kq = 10, the points E1 = (10, 0), E2 = (0, 12) and E3 ≈
(7.0127, 8.9727) are stable equilibria of the system (10). Instead of integrating
the latter we consider the model (12), whose three stable equilibria are E∗

1 ≈
(−1.1342, 1.1237), E∗

2 ≈ (1.1342,−1.1237), E
′

3 ≈ (0.8374, 0.8647), whereas the
origin is the saddle point through which all the three curves go. Note that when
three stable attractors are present there are also other saddles involved in the
dynamics, namely E4 ≈ (−0.9585,−0.2692), E5 ≈ (0.9585, 0.2692) and E6 ≈
(0.3055, 0.9575). Observe that, applying the transformations (11), obviously E

′

3

corresponds to E3, while E∗
1 and E∗

2 are not feasible, but roughly speaking,
they represent E1 and E2. In fact the trajectories converging to E∗

1 and E∗
2 ,

under the biological constraint X ≥ 0, Y ≥ 0, stop on the axes evolving toward
the biological equilibria E

′

1 and E
′

2. Therefore we consider E∗
1 , E

∗
2 and E

′

3. To
apply the algorithm with initial conditions (7) we need a further consideration.
Specifically, we have to translate the problem in the positive plane with the
substitutions

X
′

= X +
γ

2
and Y

′

= Y +
γ

2
, (13)

where γ is the length of the square. At this point we can apply the detection-
interpolation algorithm. More precisely, we choose: n = 13, γ = 3, tol = 10−4,
t = 40, ε = (0.1, 0.06, 0.08), dPU = (4, 3, 3), K = (4, 6, 6). Figure 4 shows how
the algorithm works. It generates first the points lying on the curves determining
the domains of attraction (top left), then subsequently the basins of attraction
of E∗

1 (top right), E∗
2 (bottom left) and E

′

3 (bottom right), in the original system
X and Y . Finally, in Figure 5 we plot together the three basins of attraction,
always in the original system. Using again the transformation (11) we obtain
the curves separating the basins of attraction of E1, E2 and E3, shown in Figure
7 (left).

To test our detection-interpolation algorithm when bistability occurs we
choose the parameters as follows: r = 0.7895, m = 0.7885, p = 0.225, q =
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Figure 4: Set of points lying on the curves determining the domains of attraction
(top left) and the reconstruction of the basin of attraction of E1 (top right), E2

and E3 (bottom, left to right). The four figures (left to right, top to bottom)
show the progress of the algorithm: first it generates the points on the separatri-
ces, then in turn each individual basin of attraction. The black and blue circles
represent the origin and the stable equilibria, respectively. Moreover the other
saddles (E4, E5 and E6) that lie on the separatrix manifolds of the attraction
basins are identified by green circles.

0.2085, Kp = 12 and Kq = 10. With this choice the equilibria E1 = (10, 0) and
E2 = (0, 16.5) are stable, the origin E0 is unstable and E3 ≈ (3.8757, 3.1919) is
the saddle coexistence equilibrium point partitioning the phase space domain of
the system (10). The stable equilibria of (12) are E∗

1 ≈ (1.3436,−1.2482), E∗
2 ≈

(−1.3436, 1.2482) and the coexistence saddle point is E
′

3 ≈ (0.6717, 0.4252). In
view of the above considerations we can identify E∗

1 and E∗
2 with E

′

1 = (1, 0)
and E

′

2 = (0, 1). After translating the problem in the positive plane with the
substitutions (13), we can apply the detection-interpolation routine. In this case
we choose: n = 15, γ = 4, tol = 10−4, t = 40, ε = 0.1, dPU = 3, K = 4. Figure
6 shows the separatrix points (left) and the separatrix curve (right) in the phase
plane of the system (12). Using again the transformation (11) we obtain the
curve separating the basins of attraction of E1, E2, shown in Figure 7 (right).
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Figure 5: Reconstruction of the basins of attraction with parameters r = 0.7895,
m = 0.7885, p = 0.225, q = 0.2085, Kp = 12 and Kq = 10.
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Figure 6: Set of points lying on the curve separating the domains of attraction
of E1 and E2 (left) and the reconstruction of the separatrix curve (right). The
black and blue circles represent the unstable origin, the coexistence saddle point
and the stable equilibria, respectively.
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