Skip to main content
Log in

Alternating Proximal Gradient Method for Convex Minimization

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we apply the idea of alternating proximal gradient to solve separable convex minimization problems with three or more blocks of variables linked by some linear constraints. The method proposed in this paper is to firstly group the variables into two blocks, and then apply a proximal gradient based inexact alternating direction method of multipliers to solve the new formulation. The main computational effort in each iteration of the proposed method is to compute the proximal mappings of the involved convex functions. The global convergence result of the proposed method is established. We show that many interesting problems arising from machine learning, statistics, medical imaging and computer vision can be solved by the proposed method. Numerical results on problems such as latent variable graphical model selection, stable principal component pursuit and compressive principal component pursuit are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aybat, N.S., Iyengar, G.: An alternating direction method with increasing penalty for stable principal component pursuit. Comput. Optim. Appl. 61, 635–668 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate Gaussian for binary data. J. Mach. Learn. Res. 9, 485–516 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computation: numerical methods. Prentice-Hall Inc, Upper Saddle River (1989)

    MATH  Google Scholar 

  4. Boley, D.: Local linear convergence of the alternating direction method of multipliers on quadratic or linear programs. SIAM J. Optim. 23, 2183–2207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)

    Article  MATH  Google Scholar 

  6. Cai, J., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58, 1–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inform. Theory 56, 2053–2080 (2009)

    Article  MathSciNet  Google Scholar 

  11. Chandrasekaran, V., Parrilo, P.A., Willsky, A.S.: Latent variable graphical model selection via convex optimization. Ann. Stat. 40, 1935–1967 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chandrasekaran, V., Sanghavi, S., Parrilo, P., Willsky, A.: Rank-sparsity incoherence for matrix decomposition. SIAM J. Optim. 21, 572–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. (2014). doi:10.1007/s10107-014-0826-5

  14. Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64, 81–101 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Combettes, P.L., Pesquet, J.-C.: A Douglas–Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Topics Signal Proc. 1, 564–574 (2007)

    Article  Google Scholar 

  16. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. SIAM J. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. d’Aspremont, A., El Ghaoui, L., Jordan, M.I., Lanckriet, G.R.G.: A direct formulation for sparse PCA using semidefinite programming. SIAM Rev. 49, 434–448 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deng, W., Lai, M., Peng, Z., Yin, W.: Parallel multi-block ADMM with \(o(1/k)\) convergence. tech. report, UCLA CAM, 13–64 (2013)

  19. Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. (2015)

  20. Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimization. PhD thesis, Massachusetts Institute of Technology (1989)

  23. Eckstein, J.: Some saddle-function splitting methods for convex programming. Optim. Methods Softw. 4, 75–83 (1994)

    Article  MathSciNet  Google Scholar 

  24. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fazel, M., Pong, T., Sun, D., Tseng, P.: Hankel matrix rank minimization with applications to system identification and realization. SIAM J. Matrix Anal. Appl. 34, 946–977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432–441 (2008)

    Article  MATH  Google Scholar 

  27. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems, M. Fortin and R. Glowinski (eds.), North-Hollan, Amsterdam (1983)

  28. Glowinski, R.: Numerical methods for nonlinear variational problems. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  29. Glowinski, R., Le Tallec, P.: Augmented lagrangian and operator-splitting methods in nonlinear mechanics. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  30. Goldfarb, D., Ma, S.: Fast multiple splitting algorithms for convex optimization. SIAM J. Optim. 22, 533–556 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. tech. report, Department of IEOR, Columbia University. Preprint available at arXiv:0912.4571, (2010)

  32. Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. 141, 349–382 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7, 1588–1623 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Han, D., Yuan, X.: Local linear convergence of the alternating direction method of multipliers for quadratic programs. SIAM J. Numer. Anal. 51, 3446–3457 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. He, B., Hou, L., Yuan, X.: On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming. SIAM J. Optim. 25, 2274–2312 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22, 313–340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. He, B., Yuan, X.: On the \({O}(1/n)\) convergence rate of Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. He, B., Yuan, X.: On nonergodic convergence rate of Douglas-Rachford alternating direction method of multipliers. Numer. Math. 130, 567–577 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. He, B.S., Liao, L., Han, D., Yang, H.: A new inexact alternating direction method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. He, B.S., Tao, M., Yuan, X.M.: Convergence rate and iteration complexity on the alternating direction method of multipliers with a substitution procedure for separable convex programming (2012). http://www.optimization-online.org/DB_FILE/2012/09/3611.pdf

  42. Hong, M., Chang, T.-H., Wang, X., Razaviyayn, M., Ma, S., Luo, Z.-Q.: A block successive upper bound minimization method of multipliers for linearly constrained convex optimization (2014). arXiv:1401.7079

  43. Hong, M., Luo, Z.: On the linear convergence of the alternating direction method of multipliers. Preprint (2012). arXiv:1208.3922

  44. Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from a few entries. IEEE Trans. Info. Theory 56, 2980–2998 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lauritzen, S.: Graphical models. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  46. Li, L., Toh, K.-C.: An inexact interior point method for \(l_1\)-regularized sparse covariance selection. Math. Program. Comput. 2, 291–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lin, T., Ma, S., Zhang, S.: An extragradient-based alternating direction method for convex minimization. to appear in Foundations of Computational Mathematics (2015)

  48. Lin, T., Ma, S., Zhang, S.: On the global linear convergence of the ADMM with multi-block variables. SIAM J. Optim. 25, 1478–1497 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lin, T., Ma, S., Zhang, S.: On the sublinear convergence rate of multi-block ADMM. J. Oper. Res. Soc. China 3, 251–274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low rank representation. in NIPS (2011)

  51. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  52. Liu, R., Lin, Z.: Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning. in ACML (2013)

  53. Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007)

    Article  Google Scholar 

  54. Ma, S.: Alternating direction method of multipliers for sparse principal component analysis. J. Oper. Res. Soc. China 1, 253–274 (2013)

    Article  MATH  Google Scholar 

  55. Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. Series A 128, 321–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ma, S., Xue, L., Zou, H.: Alternating direction methods for latent variable gaussian graphical model selection. Neural Comput. 25, 2172–2198 (2013)

    Article  MathSciNet  Google Scholar 

  57. Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for compressed MR imaging using total variation and wavelets. in CVPR, pp. 1–8 (2008)

  58. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20, 336–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23, 475–507 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Parikh, N., Boyd, S.: Block splitting for large-scale distributed learning. in NIPS (2011)

  61. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2233–2246 (2012)

    Article  Google Scholar 

  62. Qin, Z., Goldfarb, D., Ma, S.: An alternating direction method for total variation denoising. Optim. Methods Softw. 30, 594–615 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52, 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  64. Scheinberg, K., Ma, S., Goldfarb, D.: Sparse inverse covariance selection via alternating linearization methods. in NIPS (2010)

  65. Scheinberg, K., Rish, I.: Learning sparse Gaussian Markov networks using a greedy coordinate ascent approach. In: Proceedings of the 2010 European conference on machine learning and knowledge discovery in databases: Part III, ECML PKDD’10, Berlin, Heidelberg, Springer-Verlag, pp. 196–212 (2010)

  66. Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21, 57–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  67. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc. B. 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  68. Wang, C., Sun, D., Toh, K.-C.: Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm. SIAM J. Optim. 20, 2994–3013 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. Wang, X., Hong, M., Ma, S., Luo, Z.-Q.: Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers. Pacific J. Optim. 11, 645–667 (2015)

    MathSciNet  MATH  Google Scholar 

  70. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1, 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  71. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput. 2, 203–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wright, J., Ganesh, A., Min, K., Ma, Y.: Compressive principal component pursuit. Inf. Inference J. IMA 2, 32–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  73. Xue, L., Ma, S., Zou, H.: Positive definite \(\ell _1\) penalized estimation of large covariance matrices. J. Am. Stat. Assoc. 107, 1480–1491 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  74. Yang, J., Yuan, X.: Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82, 301–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  75. Yang, J., Zhang, Y.: Alternating direction algorithms for \(\ell _1\) problems in compressive sensing. SIAM J. Sci. Comput. 33, 250–278 (2011)

    Article  MathSciNet  Google Scholar 

  76. Yang, J., Zhang, Y., Yin, W.: A fast TVL1-L2 algorithm for image reconstruction from partial fourier data. IEEE J. Sel. Top. Signal Proces. Spec. Issue Compress. Sens. 4, 288–297 (2010)

    Article  Google Scholar 

  77. Yuan, M., Lin, Y.: Model selection and estimation in the Gaussian graphical model. Biometrika 94, 19–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  78. Yuan, X.: Alternating direction methods for sparse covariance selection. J. Sci. Comput. 51, 261–273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  79. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3, 253–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  80. Zhou, Z., Li, X., Wright, J., Candès, E.J., Ma, Y.: Stable principal component pursuit. Proceedings of International Symposium on Information Theory (2010)

  81. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15, 265–286 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to Professor Wotao Yin for reading an earlier version of this paper and for valuable suggestions and comments. The author thanks the associate editor and two anonymous referees for their constructive comments that have helped improve the presentation of this paper greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqian Ma.

Additional information

This research was supported in part by a Direct Grant of the Chinese University of Hong Kong (Project ID: 4055016) and the Hong Kong Research Grants Council General Research Fund Early Career Scheme (Project ID: CUHK 439513).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S. Alternating Proximal Gradient Method for Convex Minimization. J Sci Comput 68, 546–572 (2016). https://doi.org/10.1007/s10915-015-0150-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0150-0

Keywords

Mathematics Subject Classification

Navigation