Skip to main content
Log in

Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We investigate two methods to build a polynomial approximation of a model output depending on some parameters. The two approaches are based on pseudo-spectral projection (PSP) methods on adaptively constructed sparse grids, and aim at providing a finer control of the resolution along two distinct subsets of model parameters. The control of the error along different subsets of parameters may be needed for instance in the case of a model depending on uncertain parameters and deterministic design variables. We first consider a nested approach where an independent adaptive sparse grid PSP is performed along the first set of directions only, and at each point a sparse grid is constructed adaptively in the second set of directions. We then consider the application of aPSP in the space of all parameters, and introduce directional refinement criteria to provide a tighter control of the projection error along individual dimensions. Specifically, we use a Sobol decomposition of the projection surpluses to tune the sparse grid adaptation. The behavior and performance of the two approaches are compared for a simple two-dimensional test problem and for a shock-tube ignition model involving 22 uncertain parameters and 3 design parameters. The numerical experiments indicate that whereas both methods provide effective means for tuning the quality of the representation along distinct subsets of parameters, PSP in the global parameter space generally requires fewer model evaluations than the nested approach to achieve similar projection error. In addition, the global approach is better suited for generalization to more than two subsets of directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alexanderian, A., Winokur, J., Sraj, I., Srinivasan, A., Iskandarani, M., Thacker, W., Knio, O.: Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach. Comput. Geosci. 16(3), 1–22 (2012)

    Article  Google Scholar 

  2. Chaloner, K., Verdinelli, I.: Bayesian experimental design: a review. Stat. Sci. 10(3), 273–304 (1995). http://www.jstor.org/stable/2246015

  3. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numerische Mathematik 2(1), 197–205 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conrad, P.R., Marzouk, Y.M.: Adaptive Smolyak pseudospectral approximations. SIAM J. Sci. Comput. 35(6), A2643–A2670 (2013)

  5. Constantine, P., Eldred, M., Phipps, E.: Sparse pseudospectral approximation method. Comput. Methods Appl. Mech. Eng. 229232, 1–12 (2012)

  6. Crestaux, T., Le Maître, O., Martinez, J.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94(7), 1161–1172 (2009)

    Article  Google Scholar 

  7. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Doostan, A., Owhadi, H.: A non-adapted sparse approximation of pdes with stochastic inputs. J. Comput. Phys. 230(8), 3015–3034 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eldred, M., Swiler, L.P., Tang, G.: Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation. Reliab. Eng. Syst. Saf. 96(9), 1092–1113 (2011)

    Article  Google Scholar 

  10. Eldred, M.S.: Design under uncertainty employing stochastic expansion methods. Int. J. Uncertain. Quantif. 1(2), 119–146 (2011)

  11. Fejér, L.: Mechanische quadraturen mit positiven cotesschen zahlen. Mathematische Zeitschrift 37(1), 287–309 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18, 209–232 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Courier Dover Publications, Mineola, NY (2003)

  15. Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19, 293–325 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  16. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52(1), 1–17 (1996)

    Article  Google Scholar 

  17. Hosder, S., Walters, R.W., Balch, M.: Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. In: Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA paper, vol. 1939 (2007)

  18. Huan, X., Marzouk, Y.M.: Simulation-based optimal bayesian experimental design for nonlinear systems. J. Comput. Phys. 232, 288–317 (2012)

    Article  MathSciNet  Google Scholar 

  19. Isukapalli, S., Balakrishnan, S., Georgopoulos, P.: Computationally efficient uncertainty propagation and reduction using the stochastic response surface method. In: 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 2, pp. 2237–2243. IEEE (2004)

  20. Keese, A., Matthies, H.: Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations. Technical Report, Institute of Scientific Computing TU Braunschweig Brunswick (2003)

  21. Kim, D., Rizzi, F., Cheng, K.W., Han, J., Bisetti, F., Knio, O.: Uncertainty quantification of ion chemistry in lean and stoichiometric homogenous mixtures of methane, oxygen, and argon. Combust. Flame 162(7), 2904–2915 (2015)

  22. Knio, O., Le Maītre, O.: Uncertainty propagation in cfd using polynomial chaos decomposition. Fluid Dyn. Res. 38(9), 616–640 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kronrod, A.S.: Nodes and Weights of Quadrature Formulas: Sixteen-Place Tables. Consultants Bureau, New York (1965)

    MATH  Google Scholar 

  24. Le Maître, O., Knio, O.: Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Scientific Computation, Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  25. Le Maître, O., Reagan, M., Najm, H., Ghanem, R., Knio, O.: A stochastic projection method for fluid flow. II. Random process. J. Comput. Phys. 181, 9–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, R., Ghanem, R.: Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration. Probab. Eng. Mech. 13(2), 125–136 (1998)

    Article  Google Scholar 

  27. Lindley, D.V.: On a measure of the information provided by an experiment. Ann. Math. Stat. 27(4), 986–1005 (1956)

  28. Marzouk, Y., Najm, H.: Dimensionality reduction and polynomial chaos acceleration of bayesian inference in inverse problems. J. Comput. Phys. 228(6), 1862–1902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marzouk, Y., Najm, H., Rahn, L.A.: Stochastic spectral methods for efficient bayesian solution of inverse problems. J. Comput. Phys. 224(2), 560–586 (2007). doi:10.1016/j.jcp.2006.10.010

    Article  MathSciNet  MATH  Google Scholar 

  30. Najm, H.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Ann. Rev. Fluid Mech. 41, 35–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Patterson, T.: The optimum addition of points to quadrature formulae. Math. Comput 22, 847–856 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  32. Prager, J., Riedel, U., Warnatz, J.: Modeling ion chemistry and charged species diffusion in lean methane–oxygen flames. Proc. Combust. Inst. 31(1), 1129–1137 (2007)

    Article  Google Scholar 

  33. Reagan, M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection. Combust. Flame 132(3), 545–555 (2003)

    Article  Google Scholar 

  34. Safta, C.: Private communication (2013)

  35. Safta, C., Najm, H., Knio, O.: TChem. http://www.sandia.gov/tchem/

  36. Sebastiani, P., Wynn, H.P.: Maximum entropy sampling and optimal bayesian experimental design. J. R. Stat. Soc. Ser. B Stat. Methodol. 62(1), 145–157 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Jr., W.C.G., Lissianski, V.V., Qin, Z.: Gri-mech 3.0. http://www.me.berkeley.edu/gri_mech/ (2012)

  38. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4(240–243), 123 (1963)

    MATH  Google Scholar 

  39. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  40. Sraj, I., Iskandarani, M., Thacker, W.C., Srinivasan, A., Knio, O.: Drag parameter estimation using gradients and hessian from a polynomial chaos model surrogate. Mon. Weather Rev. 142(2), 933–941 (2014)

    Article  Google Scholar 

  41. Sraj, I., Iskandarani, M., Srinivasan, A., Thacker, W.C., Winokur, J., Alexanderian, A., Lee, C.Y., Chen, S.S., Knio, O.M.: Bayesian inference of drag parameters using axbt data from typhoon fanapi. Mon. Weather Rev. 141(7), 2347–2367 (2013)

    Article  Google Scholar 

  42. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)

    Article  Google Scholar 

  43. Waldvogel, J.: Fast construction of the fejér and clenshaw-curtis quadrature rules. BIT Numer. Math. 46(1), 195–202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Winokur, J., Conrad, P., Sraj, I., Knio, O., Srinivasan, A., Thacker, W., Marzouk, Y., Iskandarani, M.: A priori testing of sparse adaptive polynomial chaos expansions using an ocean general circulation model database. Comput. Geosci. 17(6), 899–911 (2013). doi:10.1007/s10596-013-9361-3

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research, under Award Number DE-SC0008789. The authors wish to express their gratitude to Dr. Cosmin Safta for providing a pre-release version of TChem that enables the simulation of adiabatic combustion at constant volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Knio.

Appendix: Global Sensitivity Analysis

Appendix: Global Sensitivity Analysis

1.1 Sensitivity Indices

Following notation of Sect. 2, consider \(F : {\varvec{\xi }}\in \varXi \mapsto F(\varXi ) \in L_2(\varXi ,\rho )\), where \({\varvec{\xi }}=(\xi _1 \cdots \xi _d)\) is a vector of d independent real-valued random variable with joined density \(\rho \). Let \(\mathscr {D}= \{1,\ldots ,d\}\) and for \({\varvec{\mathfrak u}}\in \mathscr {D}\) denote \(|{\varvec{\mathfrak u}}| = \mathrm {Card}({\varvec{\mathfrak u}})\) and \({\varvec{\mathfrak u}}_{\sim } = \mathscr {D}\setminus {\varvec{\mathfrak u}}\), such that \({\varvec{\mathfrak u}}\cup {\varvec{\mathfrak u}}_\sim = \mathscr {D}\), \({\varvec{\mathfrak u}}\cap {\varvec{\mathfrak u}}_\sim =\emptyset \). Given \({\varvec{\mathfrak u}}\in \mathscr {D}\) we denote \({\varvec{\xi }}_{\varvec{\mathfrak u}}\) the sub-vector of \({\varvec{\xi }}\) with components \((\xi _{{{\mathfrak u}}_1} \cdots \xi _{{{\mathfrak u}}_{|{\varvec{\mathfrak u}}|}})\), so \({\varvec{\xi }}= ({\varvec{\xi }}_{\varvec{\mathfrak u}}{\varvec{\xi }}_{{\varvec{\mathfrak u}}_\sim })\). Under the stated assumptions, the function \(F({\varvec{\xi }})\) has a unique orthogonal decomposition of the form [15]

$$\begin{aligned} F({\varvec{\xi }}) = \sum _{{\varvec{\mathfrak u}}\in \mathscr {D}} f_{\varvec{\mathfrak u}}({\varvec{\xi }}_{\varvec{\mathfrak u}}), \quad \left\langle {{f_{\varvec{\mathfrak u}}},{f_{\varvec{\mathfrak v}}}}\right\rangle = 0\ \text{ if } {\varvec{\mathfrak u}}\ne {\varvec{\mathfrak v}}. \end{aligned}$$
(6.1)

The functions \(f_{\varvec{\mathfrak u}}\) can be recursively expressed as [39]

$$\begin{aligned} f_{\varvec{\mathfrak u}}({\varvec{\xi }}_{\varvec{\mathfrak u}}) = \mathbb {E}\left\{ {{\left. {F}\,\right| \,{{\varvec{\xi }}_{{\varvec{\mathfrak u}}}}}}\right\} - \sum _{\begin{array}{c} {\varvec{\mathfrak v}}\in \mathscr {D}\\ {\varvec{\mathfrak v}}\subsetneq {\varvec{\mathfrak u}} \end{array}} f_{\varvec{\mathfrak v}}({\varvec{\xi }}_{\varvec{\mathfrak v}}), \end{aligned}$$

where \(\mathbb {E}\left\{ {{\left. {F}\,\right| \,{{\varvec{\xi }}_{{\varvec{\mathfrak u}}}}}}\right\} \) is the conditional expectation of F given \({\varvec{\xi }}_{\varvec{\mathfrak u}}\), namely

$$\begin{aligned} \mathbb {E}\left\{ {{\left. {F}\,\right| \,{{\varvec{\xi }}_{{\varvec{\mathfrak u}}}}}}\right\} = \int F({\varvec{\xi }}_{\varvec{\mathfrak u}}{\varvec{\xi }}_{{\varvec{\mathfrak u}}_\sim }) \rho ({\varvec{\xi }}_{{\varvec{\mathfrak u}}_\sim }) d{\varvec{\xi }}_\sim . \end{aligned}$$

The decomposition (6.1) being orthogonal, the variance of F, \(\mathbb {V}\left\{ {F}\right\} \), is decomposed into

$$\begin{aligned} \mathbb {V}\left\{ {F}\right\} = \sum _{\begin{array}{c} {\varvec{\mathfrak u}}\in \mathscr {D}\\ {\varvec{\mathfrak u}}\ne \emptyset \end{array}} V_{\varvec{\mathfrak u}}, \quad V_{\varvec{\mathfrak u}}= \mathbb {V}\left\{ {f_{\varvec{\mathfrak u}}}\right\} . \end{aligned}$$
(6.2)

The partial variance \(V_{\varvec{\mathfrak u}}\) measures the contribution to \(\mathbb {V}\left\{ {F}\right\} \) of the interactions between the variables \({\varvec{\xi }}_{\varvec{\mathfrak u}}\). Since there are \(2^d\) such partial variances, the sensitivity analysis is usually reduced to a simpler characterization, based on first and total-order sensitivity indices associated to individual variables \(\xi _i\) or group of variables \({\varvec{\xi }}_{\varvec{\mathfrak u}}\). The first-order, \(\mathtt S_{\varvec{\mathfrak u}}\), and total-order, \(\mathtt T_{\varvec{\mathfrak u}}\), sensitivity indices associated to \({\varvec{\xi }}_{\varvec{\mathfrak u}}\) are given by [16]

$$\begin{aligned} \mathbb {V}\left\{ {F}\right\} \mathtt S_{\varvec{\mathfrak u}}= \sum _{\begin{array}{c} {\varvec{\mathfrak v}}\in \mathscr {D}\\ {\varvec{\mathfrak v}}\subseteq {\varvec{\mathfrak u}} \end{array}} V_{\varvec{\mathfrak v}}= \mathbb {V}\left\{ {\mathbb {E}\left\{ {{\left. {F}\,\right| \,{{\varvec{\xi }}_{\varvec{\mathfrak u}}}}}\right\} }\right\} , \quad \mathbb {V}\left\{ {F}\right\} \mathtt T_{\varvec{\mathfrak u}}= \sum _{\begin{array}{c} {\varvec{\mathfrak v}}\in \mathscr {D}\\ {\varvec{\mathfrak v}}\cap {\varvec{\mathfrak u}}\ne \emptyset \end{array}} V_{\varvec{\mathfrak v}}= \mathbb {V}\left\{ {F}\right\} - \mathbb {V}\left\{ {\mathbb {E}\left\{ {{\left. {F}\,\right| \,{{\varvec{\xi }}_{{\varvec{\mathfrak u}}_\sim }}}}\right\} }\right\} . \end{aligned}$$
(6.3)

The first-order index \(\mathtt S_{\varvec{\mathfrak u}}\) is then the fraction of variance that arises due to the individual variables in \({\varvec{\xi }}_{\varvec{\mathfrak u}}\) and their mutual interactions, only; the total-order sensitivity index \(\mathtt T_{\varvec{\mathfrak u}}\) is the fraction of the variance arising due to the variables in \({\varvec{\xi }}_{\varvec{\mathfrak u}}\), their mutual interactions and all their interactions with all other variables in \({\varvec{\xi }}_{{\varvec{\mathfrak u}}_\sim }\). Clearly, \(\mathtt S_{\varvec{\mathfrak u}}\le \mathtt T_{\varvec{\mathfrak u}}\), and \(\mathtt T_{\varvec{\mathfrak u}}= 1 - \mathtt S_{{\varvec{\mathfrak u}}_\sim }\) [16].

1.2 Sensitivity Indices of PC Expansion

The partial variances and sensitivity indices of F can be easily computed from the PC expansion of F in the form (2.5)

$$\begin{aligned} F({\varvec{\xi }}) \approx \sum _{{\varvec{k}}\in \mathscr {K}} f_{\varvec{k}}\varPsi _{\varvec{k}}({\varvec{\xi }}), \end{aligned}$$

where \(\mathscr {K}\) is the multi-index set of polynomial tensorizations as discussed in Sect. 2.1 (see (2.4)). Owing to the linear structure and polynomial form of the PC expansion, one can easily partition \(\mathscr {K}\) into distinct subsets \(\mathscr {K}_{\varvec{\mathfrak u}}\) contributing to the PC expansion of \(f_{\varvec{\mathfrak u}}({\varvec{\xi }}_{\varvec{\mathfrak u}})\) [6, 42]. Specifically, the PC approximation of \(f_{\varvec{\mathfrak u}}\) is

$$\begin{aligned} f_{\varvec{\mathfrak u}}({\varvec{\xi }}_{\varvec{\mathfrak u}}) \approx \sum _{{\varvec{k}}\in \mathscr {K}_{\varvec{\mathfrak u}}} f_{\varvec{k}}\varPsi _{\varvec{k}}({\varvec{\xi }}), \quad \mathscr {K}_{\varvec{\mathfrak u}}\doteq \{ {\varvec{k}}\in \mathscr {K}; k_{1\le i\le d} >0 \text{ if } i\in {\varvec{\mathfrak u}}, k_{1\le i\le d}=0 \text{ if } i\notin {\varvec{\mathfrak u}}\}. \end{aligned}$$

Observe that \(\mathscr {K}_\emptyset = \{ (0 \cdots 0\})\). Then, \(\forall {\varvec{\mathfrak u}}\in \mathscr {D}, {\varvec{\mathfrak u}}\ne \emptyset \), we have \(V_{\varvec{\mathfrak u}}\approx \sum _{{\varvec{k}}\in \mathscr {K}_{\varvec{\mathfrak u}}} f_{\varvec{k}}^2\), while the variance of F is approximated by

$$\begin{aligned} \mathbb {V}\left\{ {F}\right\} \approx \sum _{{\varvec{k}}\in \mathscr {K}\setminus \mathscr {K}_\emptyset } f_{\varvec{k}}^2. \end{aligned}$$

The approximations for the first and total-order sensitivity indices \(\mathtt S_{\varvec{\mathfrak u}}\) and \(\mathtt T_{\varvec{\mathfrak u}}\) can be easily derived through (6.3), by taking the corresponding unions of subsets \(\mathscr {K}_{\varvec{\mathfrak v}}\). For instance, in the case of singleton \({\varvec{\mathfrak u}}= \{i\}\), we have

$$\begin{aligned}&\mathtt S_{\{i\}} \approx \frac{ 1 }{\mathbb {V}\left\{ {F}\right\} } \sum _{{\varvec{k}}\in \mathscr {K}^\mathtt S_{{\{i\}}}} f_{\varvec{k}}^2, \quad \mathscr {K}^{\mathtt S}_{\{i\}} \doteq \{ {\varvec{k}}\in \mathscr {K}; k_i >0 , k_{j\ne i}=0 \}, \end{aligned}$$
(6.4)
$$\begin{aligned}&\mathtt T_{\{i\}} \approx \frac{ 1 }{\mathbb {V}\left\{ {F}\right\} } \sum _{{\varvec{k}}\in \mathscr {K}^\mathtt T_{{\{i\}}}} f_{\varvec{k}}^2, \quad \mathscr {K}^{\mathtt T}_{\{i\}} \doteq \{ {\varvec{k}}\in \mathscr {K}; k_i >0 \}. \end{aligned}$$
(6.5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winokur, J., Kim, D., Bisetti, F. et al. Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification. J Sci Comput 68, 596–623 (2016). https://doi.org/10.1007/s10915-015-0153-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0153-x

Keywords

Navigation