Skip to main content
Log in

Solving Multi-linear Systems with \(\mathcal {M}\)-Tensors

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with solving some structured multi-linear systems, especially focusing on the equations whose coefficient tensors are \(\mathcal {M}\)-tensors, or called \(\mathcal {M}\)-equations for short. We prove that a nonsingular \(\mathcal {M}\)-equation with a positive right-hand side always has a unique positive solution. Several iterative algorithms are proposed for solving multi-linear nonsingular \(\mathcal {M}\)-equations, generalizing the classical iterative methods and the Newton method for linear systems. Furthermore, we apply the \(\mathcal {M}\)-equations to some nonlinear differential equations and the inverse iteration for spectral radii of nonnegative tensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. German for “theorem of zeros”, it can be found at https://en.wikipedia.org/wiki/Hilbert%27s_Nullstellensatz.

  2. http://en.wikipedia.org/wiki/Law_of_universal_gravitation.

  3. http://www.nim.nankai.edu.cn/activites/conferences/hy20120530/index.htm.

References

  1. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18(4), 620–709 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubry, P., Lazard, D., Maza, M.M.: On the theories of triangular sets. J. Symb. Comput. 28(1–2), 105–124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubry, P., Maza, M.M.: Triangular sets for solving polynomial systems: a comparative implementation of four methods. J. Symb. Comput. 28(1–2), 125–154 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benzi, M., Golub, G.H.: Bounds for the entries of matrix functions with applications to preconditioning. BIT 39(3), 417–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics. Revised reprint of the 1979 original, vol. 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)

  6. Bu, C., Zhang, X., Zhou, J., Wang, W., Wei, Y.: The inverse, rank and product of tensors. Linear Algebra Appl. 446, 269–280 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Canuto, C., Simoncini, V., Verani, M.: On the decay of the inverse of matrices that are sum of Kronecker products. Linear Algebra Appl. 452, 21–39 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, K., Qi, L., Zhang, T.: A survey on the spectral theory of nonnegative tensors. Numer. Linear Algebra Appl. 20(6), 891–912 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, K.-C., Pearson, K.J., Zhang, T.: Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J. Matrix Anal. Appl. 32(3), 806–819 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, C., Maza, M.M.: Algorithms for computing triangular decomposition of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding, W., Qi, L., Wei, Y.: \({\cal {M}}\)-tensors and nonsingular \({\cal {M}}\)-tensors. Linear Algebra Appl. 439(10), 3264–3278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elsner, L.: Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix. Linear Algebra Appl. 15(3), 235–242 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

  14. Hu, S., Huang, Z.-H., Ling, C., Qi, L.: On determinants and eigenvalue theory of tensors. J. Symb. Comput. 50, 508–531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu, S., Qi, L.: A necessary and sufficient condition for existence of a positive Perron vector. arXiv preprint arXiv:1511.07759, (2015)

  16. Jia, Z., Lin, W.-W., Liu, C.-S.: A positivity preserving inexact Noda iteration for computing the smallest eigenpair of a large irreducible \(M\)-matrix. Numer. Math. 130, 645–679 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl. 31(4):1688–1714 (2009/10)

  19. Li, C., Wang, F., Zhao, J., Zhu, Y., Li, Y.: Criterions for the positive definiteness of real supersymmetric tensors. J. Comput. Appl. Math. 255, 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, X., Ng, M.K.: Solving sparse non-negative tensor equations: algorithms and applications. Front. Math. China 10(3), 649–680 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lim, L.-H.: Singular values and eigenvalues of tensors: A variational approach. In: IEEE CAMSAP 2005: First International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 129–132 (2005)

  22. Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to Z-tensor complementarity problems. arXiv preprint arXiv:1505.00993, (2015)

  23. Matsuno, Y.: Exact solutions for the nonlinear Klein–Gordon and Liouville equations in four-dimensional Euclidean space. J. Math. Phys. 28(10), 2317–2322 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31(3), 1090–1099 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Noda, T.: Note on the computation of the maximal eigenvalue of a non-negative irreducible matrix. Numer. Math. 17, 382–386 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Qi, L.: Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl. 439(1), 228–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rheinboldt, W.C.: Methods for Solving Systems of Nonlinear Equations. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 70, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1998)

  29. Tobler, C.: Low-rank Tensor Methods for Linear Systems and Eigenvalue Problems. Ph.D. thesis, Dissertation, Eidgenössische Technische Hochschule ETH Zürich, Nr. 20320 (2012)

  30. Wang, X., Wei, Y.: \({{\cal H}}\)-tensors and nonsingular \({{\cal H}}\)-tensors. Front. Math. China. doi:10.1007/s11464-014-0186-5

  31. Wang, Y., Zhou, G., Caccetta, L.: Nonsingular \({{\cal H}}\)-tensors and their criteria. J. Ind. Manag. Opt. 12(4), 1173–1186 (2016)

  32. Yang, Q., Yang, Y.: Further results for Perron–Frobenius theorem for nonnegative tensors II. SIAM J. Matrix Anal. Appl. 32(4), 1236–1250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, Y., Yang, Q.: Further results for Perron–Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31(5), 2517–2530 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, L., Qi, L.: Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor. Numer. Linear Algebra Appl. 19(5), 830–841 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, L., Qi, L., Xu, Y.: Linear convergence of the LZI algorithm for weakly positive tensors. J. Comput. Math. 30(1), 24–33 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, L., Qi, L., Zhou, G.: \(M\)-tensors and some applications. SIAM J. Matrix Anal. Appl. 35(2), 437–452 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhou, G., Qi, L., Wu, S.-Y.: Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor. Front. Math. China 8(1), 155–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Academic Press Inc, Boston (1997)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and two referees for their detailed comments which greatly improve the presentation. We would like to thank the useful discussions with Professors Liqun Qi, Zhongxiao Jia, and Michael K. Ng on this topic. The first author also would like to thank Dr. Ziyan Luo for providing an interesting application [22] of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Wei.

Additional information

Weiyang Ding: This author is supported by the National Natural Science Foundation of China under Grant 11271084. Yimin Wei: This author is supported by the National Natural Science Foundation of China under Grant 11271084.

Appendix

Appendix

Consider the following the ordinary differential equation with Dirichlets boundary condition

$$\begin{aligned} \left\{ \begin{array}{l} u(x)^{m-2} \cdot u''(x) = -f(x),\ x \in (0,1), \\ u(0) = g_0,\ u(1) = g_1, \end{array}\right. \end{aligned}$$

where \(f(x) > 0\) in (0, 1) and \(g_0,g_1>0\).

Partition the interval [0, 1] into \(n-1\) small intervals with the same length \(h=1/(n-1)\), and denote

$$\begin{aligned} \begin{aligned} \mathbf{u}_h&= \Big [u(0),u(h),\dots ,u\big ((n-1)h\big )\Big ]^\top , \\ \mathbf{v}_h&= \Big [-u^{(4)}(0),-u^{(4)}(h),\dots ,-u^{(4)}\big ((n-1)h\big )\Big ]^\top , \\ \mathbf{f}_h&= \Big [g_0/h^2,f(h),\dots ,f\big ((n-2)h\big ),g_1/h^2\Big ]^\top , \end{aligned} \end{aligned}$$

where u(x) is the exact solution of the above boundary-value problem.

The discretization tensor \(\mathcal {L}_h\) of the operator \(u \mapsto u^{m-2} \cdot u''\) is introduced in the first section, and our numerical solution \(\widehat{\mathbf{u}}_h\) is obtained by solving the unique positive solution of an \(\mathcal {M}\)-equation \(\mathcal {L}_h \widehat{\mathbf{u}}_h^{m-1} = \mathbf{f}_h\). It is well-known that the truncated error of the discretization

$$\begin{aligned} \textstyle \frac{u(x-h) - 2u(x) + u(x+h)}{h^2} - u''(x) =\frac{h^2}{12} u^{(4)}(x) + O(h^4). \end{aligned}$$

Thus we have

$$\begin{aligned} \mathcal {L}_h \mathbf{u}_h^{m-1} - \mathcal {L}_h \widehat{\mathbf{u}}_h^{m-1} = \mathcal {L}_h \mathbf{u}_h^{m-1} - \mathbf{f}_h = \textstyle \frac{h^2}{12} \cdot \mathbf{u}_h^{[m-2]} \circ \mathbf{v}_h + O(h^4), \end{aligned}$$

which further implies that

$$\begin{aligned} d_h(\mathbf{u}_h,\widehat{\mathbf{u}}_h) := \big \Vert \mathcal {L}_h \mathbf{u}_h^{m-1} - \mathcal {L}_h \widehat{\mathbf{u}}_h^{m-1}\big \Vert _\infty \le \textstyle \frac{h^2}{12} \cdot \Vert u\Vert _{L^\infty }^{m-2} \cdot \Vert u^{(4)}\Vert _{L^\infty } + O(h^4). \end{aligned}$$

It can be verified that \(d_h(\cdot ,\cdot )\) is a metric in the cone \(\{\mathbf{x}>\mathbf{0}:\, \mathcal {L}_h \mathbf{x}^{m-1} > \mathbf{0}\}\). Then we can say that the numerical solution \(\widehat{\mathbf{u}}_h\) is very close to the exact solution \(\mathbf{u}_h\) when the parameter h is small enough. Next, we shall estimate the convergence of the discretization scheme.

Note that \(\mathcal {L}_h \mathbf{u}_h^{m-1}\) is also a positive vector when h is small enough, then the matrix \(\mathcal {L}_h \mathbf{u}_h^{m-2}\) is a nonsingular M-matrix as discussed in Sect. 4. Hence we have the first order approximation

$$\begin{aligned} \mathbf{u}_h-\widehat{\mathbf{u}}_h \approx (\mathcal {L}_h \mathbf{u}_h^{m-2})^{-1} (\mathcal {L}_h \mathbf{u}_h^{m-1} - \mathcal {L}_h \widehat{\mathbf{u}}_h^{m-1}) \end{aligned}$$

when h is small enough, and thus

$$\begin{aligned} \Vert \mathbf{u}_h-\widehat{\mathbf{u}}_h\Vert _\infty \lesssim \big \Vert (\mathcal {L}_h \mathbf{u}_h^{m-2})^{-1}\big \Vert _\infty \cdot \big \Vert \mathcal {L}_h \mathbf{u}_h^{m-1} - \mathcal {L}_h \widehat{\mathbf{u}}_h^{m-1}\big \Vert _\infty . \end{aligned}$$

We thus need to bound the \(\infty \)-norm of the inverse of the M-matrix \(\mathcal {L}_h \mathbf{u}_h^{m-2}\). First denote \(\mathcal {L}_h = s_h \mathcal {I} - \mathcal {A}_h\), where \(s_h = 2/h^2\) and \(\mathcal {A}_h\) is nonnegative. Then we can write

$$\begin{aligned} \begin{aligned} (\mathcal {L}_h \mathbf{u}_h^{m-2})^{-1}&= \big ( (s_h \mathcal {I} - \mathcal {A}_h) \mathbf{u}_h^{m-2}\big )^{-1} \\&= \big (s_h U_h^{m-2} - \mathcal {A}_h \mathbf{u}_h^{m-2}\big )^{-1} \\&= s_h^{-1} U_h \left[ I - s_h^{-1} U_h^{-(m-1)} (\mathcal {A}_h \mathbf{u}_h^{m-2}) U_h\right] ^{-1} U_h^{-(m-1)}, \end{aligned} \end{aligned}$$

where \(U_h = \mathrm{diag}\big ((\mathbf{u}_h)_1,(\mathbf{u}_h)_2,\dots ,(\mathbf{u}_h)_n\big )\).

Denote \(W_h = U_h^{-(m-1)} (\mathcal {A}_h \mathbf{u}_h^{m-2}) U_h\), which is a nonnegative matrix. Note that \((\mathcal {A}_h \mathbf{u}_h^{m-2}) U_h \mathbf{1} = \mathcal {A}_h \mathbf{u}_h^{m-1}\), thus the summations of all the rows of \(W_h\) are

$$\begin{aligned} \begin{aligned} W_h \mathbf{1}&= U_h^{-(m-1)} \mathcal {A}_h \mathbf{u}_h^{m-1} \le \mathbf{1} \cdot \max _{i=1:n} \frac{(\mathcal {A}_h \mathbf{u}_h^{m-1})_i }{(\mathbf{u}_h)_i^{m-1}} \\&= \mathbf{1} \cdot \max _{i=1:n} \frac{s_h (\mathbf{u}_h)_i^{m-1} - (\mathcal {L}_h \mathbf{u}_h^{m-1})_i }{(\mathbf{u}_h)_i^{m-1}} \\&= \mathbf{1} \cdot \bigg [s_h - \min _{i=1:n} \frac{(\mathcal {L}_h \mathbf{u}_h^{m-1})_i}{(\mathbf{u}_h)_i^{m-1}}\bigg ]\\&=: \mathbf{1} \cdot (s_h - \gamma _h). \end{aligned} \end{aligned}$$

Similarly, we have \(W_h^k \mathbf{1} \le W_h^{k-1} \mathbf{1} \cdot (s_h - \gamma _h) \le \dots \le \mathbf{1} \cdot (s_h - \gamma _h)^k\). Also, because \(W_h \mathbf{1} \le \mathbf{1} \cdot (s_h - \gamma _h) < \mathbf{1} \cdot s_h\) and \(W_h\) is an irreducible nonnegative matrix, we have \(\rho (s_h^{-1} W_h) < 1\). Employ the Taylor expansion of the matrix \((I-X)^{-1}=I+X+X^2+\dots \) for \(\rho (X) < 1\), and we can obtain that

$$\begin{aligned} \big (I - s_h^{-1} W_h\big )^{-1} \mathbf{1} = \sum _{k=0}^\infty \big (s_h^{-1} W_h\big )^k \mathbf{1} \le \sum _{k=0}^\infty \mathbf{1} \cdot (1 - \gamma _h/s_h)^k = \mathbf{1} \cdot (s_h/\gamma _h). \end{aligned}$$

Finally, we get a upper bound of the \(\infty \)-norm of the nonnegative matrix \((\mathcal {L}_h \mathbf{u}_h^{m-2})^{-1}\) that

$$\begin{aligned} \begin{aligned} \Vert (\mathcal {L}_h \mathbf{u}_h^{m-2})^{-1}\Vert _\infty&= \max _{i=1:n} \big ((\mathcal {L}_h \mathbf{u}_h^{m-2})^{-1} \mathbf{1}\big )_i \\&= \max _{i=1:n} \big (s_h^{-1} U_h \big (I - s_h^{-1} W_h\big )^{-1} U_h^{-(m-1)} \mathbf{1}\big )_i \\&\le \Big (\min _{i=1:n} \mathbf{u}_h\Big )^{-(m-1)} \cdot \max _{i=1:n} \frac{(\mathbf{u}_h)_i^{m-1}}{(\mathcal {L}_h \mathbf{u}_h^{m-1})_i} \cdot \max _{i=1:n} \mathbf{u}_h \\&\approx \Big (\min _{i=1:n} \mathbf{u}_h\Big )^{-(m-1)} \cdot \max _{i=1:n} \frac{(\mathbf{u}_h)_i^{m-1}}{(\mathbf{f}_h)_i} \cdot \max _{i=1:n} \mathbf{u}_h \\&\le \frac{\max _x u(x)^m}{\min _x u(x)^{m-1} \cdot \min _x f(x)}. \end{aligned} \end{aligned}$$

Note that u(x) can also be regarded as the solution of the elliptic problem

$$\begin{aligned} \left\{ \begin{array}{l} u''(x) = f_1(x) := -f(x)/u(x)^{m-2},\ x \in (0,1), \\ u(0) = g_0,\ u(1) = g_1. \end{array}\right. \end{aligned}$$

So we know that \(u(x) \ge \min \{g_0,g_1\}\) since \(f(x) > 0\) and \(g_0,g_1 > 0\). Then

$$\begin{aligned} \Vert \mathbf{u}_h-\widehat{\mathbf{u}}_h\Vert _\infty \lesssim \textstyle \frac{\Vert u\Vert _{L^\infty }^m}{\min \{g_0,g_1\}^{m-1} \cdot \min _x f(x)} \cdot \textstyle \frac{h^2}{12} \cdot \Vert u\Vert _{L^\infty }^{m-2} \cdot \Vert u^{(4)}\Vert _{L^\infty } =: K h^2, \end{aligned}$$

where the constant K is independent with the parameter h.

Therefore, the sequence \(\{\widehat{\mathbf{u}}_h\}\) converges to the exact solution when \(h \rightarrow 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Wei, Y. Solving Multi-linear Systems with \(\mathcal {M}\)-Tensors. J Sci Comput 68, 689–715 (2016). https://doi.org/10.1007/s10915-015-0156-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0156-7

Keywords

Mathematics Subject Classification

Navigation