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Abstract

In this paper, we derive a priori error estimates for a class of interior penalty discontinuous Galerkin
(DG) methods using immersed finite element (IFE) functions for a classic second-order elliptic interface
problem. The error estimation shows that these methods can converge optimally in a mesh-dependent
energy norm. The combination of IFEs and DG formulation in these methods allows local mesh re-
finement in the Cartesian mesh structure for interface problems. Numerical results are provided to
demonstrate the convergence and local mesh refinement features of these DG-IFE methods.

1 Introduction

Let Ω be a rectangular domain in R2, and let Γ ⊂ Ω be a smooth curve separating Ω into two sub-
domains Ω− and Ω+ with Ω−∩Ω+ = ∅ (see the first plot in Figure 1). We consider the following typical
elliptic interface problem

−∇ · (β∇u) = f, in Ω+ ∪ Ω−, (1.1)

u = 0, on ∂Ω, (1.2)

where the diffusion coefficient β is a positive piecewise constant function:

β(X) =

{
β−, X ∈ Ω−,
β+, X ∈ Ω+.

(1.3)

According to the conservation laws, the following jump conditions are required on the interface:

[[u]]Γ = 0, (1.4)[[
β
∂u

∂n

]]
Γ

= 0. (1.5)

Interface problems arise in many applications where mathematical simulations are carried out in a
domain containing multiple materials. The elliptic interface problem (1.1) - (1.5) considered in this article
appears frequently because the involved differential equation captures many basic physical phenomenons.
A wide variety of numerical methods have been developed for interface problems, among which the finite
element methods are advantageous for their capability to handle simulation domains with complicated
geometry. It is well-known that conventional finite element methods generally require the mesh to fit the
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interface geometry (see the second plot in Figure 1); otherwise, the convergence cannot be guaranteed
[3, 6, 10]. However, for a problem with a complicated material interface, constructing a satisfactory body-
fitting mesh is often costly, and this burden becomes more severe if the simulation involves a moving
interface [21, 31, 35] because the mesh has to be generated repeatedly according to each interface location
to be considered. In addition, some simulations, such as the particle-in-cell (PIC) method [5, 24, 40], can
be carried out more efficiently on structured/Cartesian meshes. Due to these reasons, a wide variety of
numerical methods based on Cartesian meshes have been developed. For an overview of these methods,
we refer to [14, 15, 23, 27, 33, 34] and the references therein.

Immersed finite element (IFE) methods were recently introduced for solving interface problems. The
main feature of IFE methods is that they can use meshes independent of the interface location, i.e.,
they allow interface to cut through the interior of elements in a mesh (see the last two plots in Figure
1). Hence, Cartesian (triangular or rectangular) meshes can be preferably employed in IFE methods
to solve interface problems. We refer the readers to [11, 25, 26, 28, 29] for more features about IFE
methods based on triangular meshes, and [17, 19, 30, 39] for IFE methods based on rectangular meshes.
We note that IFE methods in these literatures are applied in the continuous Galerkin formulation.

Γ

Ω−

Ω+

∂Ω

−→

−→

Figure 1: from left: a simulation domain, a body-fitting triangular mesh, a non-body-fitting Cartesian mesh, and a
non-body-fitting triangular mesh.

The discontinuous Galerkin (DG) methods for elliptic boundary value problems can be traced back
to 1970s (see [4, 36]) and they become increasingly popular recently as indicated by these survey articles
and books [2, 12, 22, 37]. Because there is no continuity imposed on the approximating function across
the element boundary, DG methods can locally perform h-, p-, and hp- refinement flexibly and efficiently.
For elliptic and parabolic equations, the interior penalty DG (IPDG) methods [1, 13, 38, 41] are well
understood and widely used. The main feature of IPDG methods is that penalty terms are added on
interior edges to stabilize the bilinear form of the scheme, so that the linear system is positive definite.
In [16, 18], the IFE and IPDG ideas were combined together for solving interface problems on Cartesian
meshes with local refinement capability. To alleviate the issue of higher degrees of freedom in usual
DG formulation, authors in [20] considered the so-called selective DG-IFE methods that employ DG
formulation in selected elements while using the usual Galerkin formulation in the rest of the solution
domain. Numerical examples have demonstrated that these DG-IFE methods can converge optimally,
and our goal in this article is to theoretically establish the optimal a priori error estimates for DG-IFE
methods that were discussed in [16, 18, 20].

The rest of the paper is organized as follows. In Section 2, we recall the DG-IFE methods originally
proposed in [16, 18]. In Section 3, we present a priori error estimates for these DG-IFE methods. An error
estimate in a mesh-dependant energy norm is derived, and this error estimate is optimal according to the
polynomials used in the IFE spaces. In Section 4, numerical experiments are provided to demonstrate
features of DG-IFE methods. Brief conclusions are given in Section 5.
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2 Discontinuous Galerkin Immersed Finite Element Methods

In this paper, we adopt notations and norms of usual Sobolev spaces. For r > 1 and any subset G ⊆ Ω
that is cut through by Γ, we use the following function spaces:

H̃r(G) = {v ∈ H1(G) : v|G∩Ωs ∈ Hr(G ∩ Ωs), s = + or −}, H̃r
0 (G) = H̃r(G) ∩H1

0 (G),

equipped with the norm

‖v‖2
H̃r(G)

= ‖v‖2Hr(G∩Ω−) + ‖v‖2Hr(G∩Ω+), ∀v ∈ H̃r(G).

From now on, we use C with or without subscripts to denote generic positive constants, possibly different
at different occurrences, but they are independent of the mesh size and interface.

Let {Th} with 0 < h < 1 be a family of triangular or rectangular Cartesian meshes of Ω. An element
cut through by the interface is called an interface element; otherwise, it is called a non-interface element.
For each mesh Th, we let T ih be the set of interface elements of Th and T nh be the set of non-interface

elements. We denote by Eh the set of edges of Th. Also, let E̊h and Ebh be the set of interior edges and
boundary edges of Th, respectively. Similarly, if an edge is cut through by the interface, it is called an
interface edge; otherwise, it is called a non-interface edge. Let E ih and Enh be the set of interface edges

and non-interface edges, respectively. Moreover, we use E̊ ih and E̊nh to denote the set of interior interface
edges and interior non-interface edges, respectively. Without loss of generality, we assume that elements
in Th satisfy the following conditions:

(H1) If one edge of an element meets Γ at more than one point, then this edge is part of Γ.

(H2) If Γ meets the boundary of an element at two points, then these two points must be on different
edges of this element.

For every interface element K ∈ T ih , we assume its boundary intersects with the interface Γ at
points D and E. Then, the line segment DE divides K into two sub-elements K+ and K− with
K = K+ ∪K− ∪DE. With a given mesh Th on Ω, we define the following broken Sobolev spaces:

H̃2(Th) = {v ∈ L2(Ω) : ∀K ∈ T nh , v|K ∈ H2(K);

∀K ∈ T ih , v|K ∈ H1(K), v|Ks ∈ H2(Ks), s = +,−}.

and
H̃2

0 (Th) = {v ∈ H̃2(Th) : v|∂Ω = 0}.
We now recall some standard notations for describing IPDG methods [9, 22, 37]. For each edge B,

we associate a unit normal vector nB . If B ∈ E̊h, we let KB,1 and KB,2 be two elements that share B
as the common edge and let nB be the outward normal with respect to KB,1. If B ∈ Ebh, nB is taken
to be the unit outward vector normal to ∂Ω. For a function u defined on KB,1 ∪KB,2, we denote its

average and jump over B ∈ E̊h by

{{u}}B =
1

2
((u|KB,1

)|B + (u|KB,2
)|B), [[u]]B = (u|KB,1

)|B − (u|KB,2
)|B .

If B is a boundary edge, we set
{{u}}B = [[u]]B = u|B .

For simplicity, we usually drop the subscript B from these notations if there is no danger to cause any
confusion.

To obtain a variational form for the interface problem (1.1) - (1.5), we multiply (1.1) by a test
function v ∈ H̃2

0 (Th), integrate both sides on each element K ∈ Th, and apply the Green’s formula to
have ∫

K

β∇u · ∇vdX −
∫
∂K

β∇u · nKvds =

∫
K

fvdX. (2.1)
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Note that (2.1) holds regardless whether K is a non-interface element or an interface element. For
K ∈ T nh , the derivation follows from the standard procedure. When K is an interface element, (2.1)
follows from applying the Green’s formula piecewisely over sub-elements of K determined according to
the smoothness of u and v, then summing up over K and applying the flux continuity (1.5). Summarizing
(2.1) over all elements we obtain∑

K∈Th

∫
K

β∇u · ∇vdX −
∑
B∈E̊h

∫
B

{{β∇u · nB}} [[v]] ds =

∫
Ω

fvdX. (2.2)

Since the solution u is continuous almost everywhere in Ω, we can assume

ε
∑
B∈E̊h

∫
B

{{β∇v · nB}} [[u]] ds = 0,
∑
B∈E̊h

σ0
B

|B|α
∫
B

[[u]] [[v]] ds = 0, (2.3)

for any constants ε, α > 0, and σ0
B ≥ 0. Here |B| denotes the length of B. Adding the two terms in

(2.3) to (2.2), we obtain the weak form of interface problem (1.1) - (1.5): Find u ∈ H̃2
0 (Ω) such that

aε(u, v) = (f, v), ∀v ∈ H̃2
0 (Th), (2.4)

where the bilinear form aε(·, ·): Hh(Ω)×Hh(Ω)→ R is

aε(w, v) =
∑
K∈Th

∫
K

β∇w · ∇vdX −
∑
B∈E̊h

∫
B

{{β∇w · nB}} [[v]] ds

+ε
∑
B∈E̊h

∫
B

{{β∇v · nB}} [[w]] ds+
∑
B∈E̊h

σ0
B

|B|α
∫
B

[[w]] [[v]] ds, (2.5)

and Hh(Ω) = H̃2
0 (Ω) + H̃2

0 (Th). The weak form derived here for the interface problem (1.1)-(1.5) is in
the same format as the standard weak form used in DG finite element methods for the usual elliptic
boundary value problems [9, 22, 37]. As suggested by DG finite element methods, the parameter ε
is usually chosen as −1, 0, or 1. Note that the bilinear form aε(·, ·) is symmetric if ε = −1 and is
nonsymmetric otherwise.

We now introduce the IFE approximation of the broken space H̃2
0 (Th). For every element K ∈ Th,

denote by Ai, i = 1, · · · , dK , the vertices of K. Here dK = 3 or dK = 4 depending on whether K is a
triangular or rectangular element. On each non-interface element K ∈ T nh , we let ψi, i = 1, · · · , dK be
the standard linear or bilinear finite element nodal basis associated with the vertex Ai of K. The local
FE space on K ∈ T nh is the defined as

Sh(K) = span{ψi : 1 ≤ i ≤ dK}.

On an interface element K ∈ T ih , we let φi, i = 1, · · · , dK be the linear [28, 29] or bilinear [17, 30] IFE
nodal basis associated with vertex Ai. We let local IFE space on K ∈ T ih be

Sh(K) = span{φi : 1 ≤ i ≤ dK}.

Then, we define the discontinuous IFE space over the mesh Th as follows:

Sh(Th) = {v ∈ L2(Ω) : v|K ∈ Sh(K)}, S̊h(Th) = {v ∈ Sh(Th) : v|∂Ω = 0}.

One can easily see that S̊h(Th) is a subspace of Hh(Ω).
Finally, we state the DG-IFE methods for the interface problem (1.1) - (1.5) as: Find uh ∈ S̊h(Th)

such that
aε(uh, vh) = (f, vh), ∀vh ∈ S̊h(Th). (2.6)
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3 A Priori Error Estimation

In this section, we derive a priori error estimates for the DG-IFE methods (2.6) in an energy norm
‖ · ‖h : Hh(Ω)→ R defined as follows

‖v‖h =

 ∑
K∈Th

∫
K

β∇v · ∇vdX +
∑
B∈E̊h

σ0
B

|B|α
∫
B

[[v]] [[v]] ds

1/2

. (3.1)

We first present a few lemmas required in the error analysis. By the standard scaling argument, one can
show the following trace inequalities [37]:

Lemma 3.1. (Standard trace inequalities) Let K be a triangle or rectangle with diameter hK , and B
be an edge of K. There exists a constant C such that

‖v‖L2(B) ≤ C|B|1/2|K|−1/2(‖v‖L2(K) + hK‖∇v‖L2(K)), ∀v ∈ H1(K), (3.2)

‖∇v‖L2(B) ≤ C|B|1/2|K|−1/2(‖∇v‖L2(K) + hK‖∇2v‖L2(K)), ∀v ∈ H2(K), (3.3)

where ∇2v is the Hessian of v.

On an interface element K ∈ T ih , we recall from [29, 30] that the local IFE space Sh(K) ⊂ H1(K).
This implies that the trace inequality (3.2) is valid for v ∈ Sh(K). However, since Sh(K) 6⊂ H2(K) for
K ∈ T ih in general, the second inequality (3.3) cannot be applied to functions in Sh(K). Nevertheless, in
[32, 42], this trace inequality has been extended to IFE functions. We recall this result in the following
lemma.

Lemma 3.2. (Trace inequalities for IFE functions) Let Th be a Cartesian triangular or rectangular
mesh and let K ∈ Th be an interface triangle or rectangle with diameter hK and let B be an edge of K.
There exists a constant C, independent of interface location but depending on the jump of the coefficient
β, such that for every linear or bilinear IFE function v defined on K, the following inequality hold

‖β∇v · nB‖L2(B) ≤ Ch−1/2
K ‖

√
β∇v‖L2(K). (3.4)

We now describe the interpolation with IFE functions. For K ∈ T nh , the local interpolation operator
is defined as Inh,K : C(K)→ Sh(K):

Inh,Ku(X) =

dK∑
i=1

u(Ai)ψi(X), K ∈ T nh .

For K ∈ T ih , the local interpolation operator is defined as Iih,K : C(K)→ Sh(K):

Iih,Ku(X) =

dK∑
i=1

u(Ai)φi(X), K ∈ T ih .

On each non-interface element, we have the standard approximation theory for the finite element inter-
polation:

‖u− Inh,Ku‖L2(K) + hK |u− Inh,Ku|H1(K) ≤ Ch2
K |u|H2(K), ∀K ∈ T nh . (3.5)

On each interface element, the approximation property of the IFE interpolation proved in [17, 29]
provides similar error bounds as follows:

‖u− Iih,Ku‖L2(K) + hK |u− Iih,Ku|H1(K) ≤ Ch2
K‖u‖H̃2(K), ∀K ∈ T ih , (3.6)

where the constant C is independent of interface location. For u ∈ H̃2(Ω), let Ih : H̃2(Ω)→ Sh(Th) be
the interpolation defined by

(Ihu)|K =

{
Inh,Ku, K ∈ T nh ,
Iih,Ku, K ∈ T ih .

(3.7)
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Multiplying h−1
K on both sides of (3.5) and (3.6), then summing up for all non-interface and interface

elements, we can obtain an interpolation error bound on the domain Ω as stated in the next lemma.

Lemma 3.3. For u ∈ H̃2(Ω), satisfying the interface jump conditions (1.4) and (1.5), there exists a
constant C such that( ∑

K∈Th
h−2
K ‖u− Ihu‖2L2(K)

)1/2

+
( ∑
K∈Th

|u− Ihu|2H1(K)

)1/2

≤ Ch‖u‖H̃2(Ω), (3.8)

where h = max
K∈Th

hK .

The following lemma provides the approximation property of Ihu in the energy norm ‖ · ‖h.

Lemma 3.4. Assume α ≤ 1 in the energy norm (3.1). For every u ∈ H̃2(Ω), satisfying the interface
jump conditions (1.4) and (1.5), there exists a constant C such that

‖u− Ihu‖h ≤ Ch‖u‖H̃2(Ω). (3.9)

Proof. By the definition of ‖ · ‖h, we have

‖u− Ihu‖2h =
∑
K∈Th

∫
K

β|∇(u− Ihu)|2dX +
∑
B∈E̊h

σ0
B

|B|α ‖ [[u− Ihu]] ‖2L2(B). (3.10)

For the first term on the right hand side, we use the estimate (3.8) to have∑
K∈Th

∫
K

β|∇(u− Ihu)|2dX ≤ βmax
∑
K∈Th

‖∇(u− Ihu)‖2L2(K) ≤ βmaxh2‖u‖2
H̃2(Ω)

(3.11)

where βmax = max{β−, β+}. Now we bound the second term in (3.10). Using the standard trace
equality (3.2) and the approximation properties (3.5) or (3.6), we have

σ0
B

|B|α ‖ [[u− Ihu]] ‖2L2(B) ≤ σ0
B

|B|α (‖(u− Ihu)|KB,1
‖2L2(B) + ‖(u− Ihu)|KB,2

‖2L2(B))

≤ Ch−1−α
KB,1

(
‖u− Ihu‖2L2(KB,1) + h2

KB,1
‖∇(u− Ihu)‖2L2(KB,1)

)
+Ch−1−α

KB,2

(
‖u− Ihu‖2L2(KB,2) + h2

KB,2
‖∇(u− Ihu)‖2L2(KB,2)

)
≤ Ch3−α

KB,1
‖u‖2V (KB,1) + Ch3−α

KB,2
‖u‖2V (KB,2)

≤ Ch3−α
(
‖u‖2V (KB,1) + ‖u‖2V (KB,2)

)
,

where V (K) = H2(K) for K ∈ T nh and V (K) = H̃2(K) for K ∈ T ih , and h = max
K∈Th

hK . Also, the

second inequality is due to the shape-regular property of Cartesian triangular or rectangular meshes
hKB ,i ≤ C|B|, i = 1, 2. Thus, for α ≤ 1, we get∑

B∈E̊h

σ0
B

|B|α ‖ [[u− Ihu]] ‖2L2(B) ≤ Ch2‖u‖2
H̃2(Ω)

. (3.12)

Finally, combining (3.11) and (3.12), we get (3.9).

The coercivity of the bilinear form aε(·, ·) is analyzed in the following lemma.

Lemma 3.5. There exists a constant κ > 0 such that

aε(vh, vh) ≥ κ‖vh‖2h, ∀vh ∈ S̊h(Th) (3.13)

holds for ε = 1 unconditionally and holds for ε = 0 or −1 under the conditions that the penalty parameter
σ0
B is large enough and α ≥ 1.
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Proof. From the definition of aε(·, ·), we have

aε(vh, vh) =
∑
K∈Th

∫
K

β|∇vh|2dX + (ε− 1)
∑
B∈E̊h

∫
B

{{β∇vh · nB}} [[vh]] ds+
∑
B∈E̊h

σ0
B

|B|α
∫
B

[[vh]]
2
ds. (3.14)

We first note that, when ε = 1, the coercivity follows directly from (3.14) and the definition of ‖ · ‖h.
If ε = 0 or − 1, we need to bound the second term on the right hand side of (3.14). For each B ∈ E̊h,
recall that KB,i ∈ Th, i = 1, 2 are two elements sharing B as their common edge. If KB,i, i = 1 or 2 is
a non-interface element, by the trace inequality (3.3) and inverse inequalities, we have

‖(β∇vh · nB)|KB,i
‖L2(B) ≤ βmax‖(∇vh)|KB,i

‖L2(B)

≤ Cβmaxh
− 1

2

KB,i
‖∇vh‖L2(KB,i)

≤ C
βmax√
βmin

h
− 1

2

KB,i
‖
√
β∇vh‖L2(KB,i), (3.15)

where βmin = min{β−, β+}, and βmax = max{β−, β+}. Then, using the assumption that α ≥ 1 and
by either the estimate (3.15) or IFE trace inequality (3.4) depending on whether the element is a non-
interface element or an interface element, we have∫

B

{{β∇vh · nB}} [[vh]] ds ≤ ‖{{β∇vh · nB}} ‖L2(B)‖ [[vh]] ‖L2(B)

≤ 1

2

(
‖(β∇vh · nB)|KB,1

‖L2(B) + ‖(β∇vh · nB)|KB,2
‖L2(B)

)
‖ [[vh]] ‖L2(B)

≤ C

2

(
h
− 1

2

KB,1
‖
√
β∇vh‖L2(KB,1) + h

− 1
2

KB,2
‖
√
β∇vh‖L2(KB,2)

)
‖ [[vh]] ‖L2(B)

≤ C
(
‖
√
β∇vh‖2L2(KB,1) + ‖

√
β∇vh‖2L2(KB,2)

) 1
2 1

|B|α/2 ‖ [[vh]] ‖L2(B).

Summing over all interior edges and using the Young’s inequality, we have∑
B∈E̊h

∫
B

{{β∇vh · nB}} [[vh]] ds

≤ C
∑
B∈E̊h

(
‖
√
β∇vh‖2L2(KB,1) + ‖

√
β∇vh‖2L2(KB,2)

)1/2 1

|B|α/2 ‖ [[vh]] ‖L2(B)

≤ C

∑
B∈E̊h

1

|B|α ‖ [[vh]] ‖2L2(B)

1/2∑
B∈E̊h

(
‖
√
β∇vh‖2L2(KB,1) + ‖

√
β∇vh‖2L2(KB,2)

)1/2

≤ δ

2

∑
K∈Th

‖
√
β∇vh‖2L2(K) +

C

2δ

∑
B∈E̊h

1

|B|α ‖ [[vh]] ‖2L2(B). (3.16)

Then, for ε = 0, we can choose

δ = 1 and σ0
B >

C

2
,

and for ε = −1, we can choose

δ =
1

2
and σ0

B > 2C.

Substituting these parameters in (3.16) and then putting it in (3.14), we obtain (3.13).

We also need an error bound for the IFE interpolation Ihu on interface edges which has been proved
in [32]. We present the result in the following lemma.
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Lemma 3.6. For every u ∈ H̃3(Ω), satisfying the interface jump conditions (1.4) and (1.5), there exists
a constant C independent of interface location such that

‖β(∇(u− Ihu))|K · nB‖2L2(B) ≤ C
(
h2
K‖u‖2H̃3(Ω)

+ hK‖u‖2H̃2(K)

)
, (3.17)

where K is an interface element and B is one of its interface edge.

The assumptions of α in Lemma 3.4 and Lemma 3.5 suggest that we should choose α = 1 in our DG
formulation (2.6). Now we are ready to prove the a priori error estimate for DG-IFE method (2.6).

Theorem 3.1. Let u ∈ H̃3(Ω) be the exact solution to the interface problem (1.1) to (1.5) and uh ∈
Sh(Th) be the solution to (2.6) with α = 1, ε = −1, 0, or 1. Then there exists a constant C such that

‖u− uh‖h ≤ Ch‖u‖H̃3(Ω). (3.18)

Proof. Subtracting the weak form (2.4) from the DG-IFE scheme (2.6), we get

aε(u− uh, vh) = 0, ∀vh ∈ S̊h(Th). (3.19)

For every wh ∈ S̊h(Th), using (3.19) and the coercivity (3.13), we have

κ‖uh − wh‖2h ≤ aε(uh − wh, uh − wh) = aε(u− wh, uh − wh)

≤
∣∣∣∣∣ ∑
K∈Th

∫
K

β∇(u− wh) · ∇(uh − wh)dX

∣∣∣∣∣+

∣∣∣∣∣∣
∑
B∈E̊h

∫
B

{{β∇(u− wh) · nB}} [[uh − wh]] ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
B∈E̊h

∫
B

{{β∇(uh − wh) · nB}} [[u− wh]] ds

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
B∈E̊h

σ0
B

|B|α
∫
B

[[u− wh]] [[uh − wh]] ds

∣∣∣∣∣∣
, T1 + T2 + T3 + T4. (3.20)

We proceed to bound the terms Ti, i = 1, 2, 3, 4 in (3.20). By the Cauchy-Schwarz inequality and Young’s
inequality with parameter δ > 0, we can easily bound T1 and T2:

T1 ≤
( ∑
K∈Th

‖
√
β∇(u− wh)‖2L2(K)

)1/2( ∑
K∈Th

‖
√
β∇(uh − wh)‖2L2(K)

)1/2

≤ 1

4δ
βmax‖∇(u− wh)‖2L2(Ω) + δ

∑
K∈Th

‖
√
β∇(uh − wh)‖2L2(K)

≤ C(δ)‖∇(u− wh)‖2L2(Ω) + δ‖uh − wh‖2h, (3.21)

and

T2 ≤ C(δ)
∑
B∈E̊h

|B|α
σ0
B

‖ {{β∇(u− wh) · nB}} ‖2L2(B) + δ
∑
B∈E̊h

σ0
B

|B|α ‖ [[uh − wh]] ‖2L2(B)

≤ C(δ)
∑
B∈E̊h

|B|α
σ0
B

‖ {{β∇(u− wh) · nB}} ‖2L2(B) + δ‖uh − wh‖2h, (3.22)

where C(δ) emphasizes that this is a constant depending on δ. For T3, by the Cauchy-Schwarz inequality
we have

T3 ≤
∑
B∈E̊h

‖ {{β∇(uh − wh) · nB}} ‖L2(B)‖ [[u− wh]] ‖L2(B). (3.23)
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First, using the standard trace equality (3.2), we have

‖ [[u− wh]] ‖L2(B) ≤ ‖(u− wh)|KB,1
‖L2(B) + ‖(u− wh)|KB,2

‖L2(B)

≤ Ch
−1/2
KB,1

(
‖u− wh‖L2(KB,1) + hKB,1

‖∇(u− wh)‖L2(KB,1)

)
+Ch

−1/2
KB,2

(
‖u− wh‖L2(KB,2) + hKB,2

‖∇(u− wh)‖L2(KB,2)

)
.

Then, by the trace inequalities (3.3) or (3.4) , we have

‖ {{β∇(uh − wh) · nB}} ‖L2(B) ≤ C
(
h
−1/2
KB,1
‖
√
β∇(uh − wh)‖L2(KB,1) + h

−1/2
KB,2
‖
√
β∇(uh − wh)‖L2(KB,2)

)
.

Substituting the above two bounds into (3.23) and applying Young’s inequality, we obtain

T3 ≤ C(δ)

( ∑
K∈Th

h−2
K ‖u− wh‖2L2(K) +

∑
K∈Th

‖∇(u− wh)‖2L2(K)

)
+ δ‖uh − wh‖2h. (3.24)

For T4, we use the assumption α = 1, the Cauchy-Schwarz inequality, and Young’s inequality to have

T4 ≤
∑
B∈E̊h

(
1

4δ

σ0
B

|B|

∫
B

[[u− wh]] [[u− wh]] ds+ δ
σ0
B

|B|

∫
B

[[uh − wh]] [[uh − wh]] ds

)
. (3.25)

Again, by trace inequality (3.2), we have

σ0
B

|B|

∫
B

[[u− wh]]
2
ds ≤ C

σ0
B

|B|
(
‖(u− wh)|KB,1

‖2L2(B) + ‖(u− wh)|KB,2
‖2L2(B)

)
≤ Ch−2

KB,1

(
‖u− wh‖L2(KB,1) + hKB,1

‖∇(u− wh)‖L2(KB,1)

)2
+Ch−2

KB,2

(
‖u− wh‖L2(KB,2) + hKB,2

‖∇(u− wh)‖L2(KB,2)

)2
. (3.26)

Using (3.26) in (3.25), we have

T4 ≤ C(δ)

( ∑
K∈Th

h−2
K ‖u− wh‖2L2(K) +

∑
K∈Th

‖∇(u− wh)‖2L2(K)

)
+ δ‖uh − wh‖2h. (3.27)

Substituting (3.21), (3.22), (3.24) and (3.27) into (3.20) and choosing δ = κ/8, we obtain

‖uh − wh‖2h ≤ C
∑
K∈Th

‖∇(u− wh)‖2L2(K) + C
∑
B∈E̊h

|B|
σ0
B

‖ {{β∇(u− wh) · nB}} ‖2L2(B)

+C
∑
K∈Th

h−2
K ‖u− wh‖2L2(K) (3.28)

Now, we let wh be the IFE interpolation Ihu in (3.28) and use the optimal approximation capability of
linear or bilinear DG-IFE spaces (3.8) to have

‖uh − Ihu‖2h ≤ Ch2‖u‖2
H̃2(Ω)

+ Ch
∑
B∈E̊h

∑
i=1,2

‖(β∇(u− Ihu) · nB)|KB,i
‖2L2(B). (3.29)

We now bound the second term on the right hand side of (3.29). If KB,i, i = 1 or 2 is a non-interface
element, we use the trace inequality (3.3) to obtain

‖(β∇(u− Ihu) · nB)|KB,i
‖2L2(B) ≤ C(h−1

KB,i
‖∇(u− Ihu)‖2L2(KB,i)

+ hKB,i
‖∇2u‖2L2(KB,i)

)

≤ ChKB,i
‖u‖2H2(KB,i)

. (3.30)
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If KB,i is an interface element, we use (3.17) to get

‖(β∇(u− Ihu) · nB)|KB,i
‖2L2(B) ≤ C

(
h2
KB,i
‖u‖2

H̃3(Ω)
+ hKB,i

‖u‖2
H̃2(KB,i)

)
. (3.31)

Due to the shape regularity of mesh Th, we have the following bound on the union of interface elements∑
K∈T i

h

h2
K‖u‖2H̃3(Ω)

≤ h‖u‖2
H̃3(Ω)

∑
K∈T i

h

hK ≤ Ch‖u‖2H̃3(Ω)
. (3.32)

Summing up the estimates (3.30) and (3.31) over all interior edges, and using the bound in (3.32), we
obtain∑

B∈E̊h

∑
i=1,2

‖(β∇(u− Ihu) · nB)|KB,i
‖2L2(B) ≤ Ch‖u‖2H̃3(Ω)

+ Ch‖u‖2
H̃2(Ω)

≤ Ch‖u‖2
H̃3(Ω)

. (3.33)

Then, substituting (3.33) to (3.29) we obtain

‖uh − Ihu‖h ≤ Ch‖u‖H̃3(Ω). (3.34)

Finally, the error estimate (3.18) follows from triangle inequality, (3.34) and (3.9).

Remark 3.1. The DG-IFE methods proposed in this article and their related error estimation can be
extended to arbitrary shape-regular unstructured interface independent meshes.

Remark 3.2. The proof of Theorem 3.1 requires that the solution is piecewise H3, which is higher than
the usual piecewise H2 assumption imposed on methods using a finite element space based on linear
polynomials. Consequently, our error estimate here is optimal according to the rate of convergence
expected from linear polynomials but not with respect to the regularity of solution space.

4 Numerical Examples

In this section, we present numerical examples to demonstrate features of interior penalty DG-IFE
methods for elliptic interface problems. Let the solution domain Ω be the open rectangle (−1, 1)×(−1, 1)
and let the interface Γ be the ellipse centered at (x0, y0) = (−0.2, 0.1) with semi-axes a = π

6.28 , b = 3
2a.

The interface separates Ω into two sub-domains, denoted by Ω− and Ω+, i.e.,

Ω− = {(x, y) : r(x, y) < 1}, and Ω+ = {(x, y) : r(x, y) > 1},

where

r(x, y) =

√
(x− x0)2

a2
+

(y − y0)2

b2
.

The exact solution u to the interface problem is chosen as follows

u(x, y) =

{
a2b2 r

p

β− , if (x, y) ∈ Ω−,

a2b2
(
rp

β+ + 1
β− − 1

β+

)
, if (x, y) ∈ Ω+.

(4.1)

Here p is a parameter and we choose p = 5 in Examples 1 - 3 representing a solution with enough
regularity, and p = 0.5 in Example 4 representing a solution with low regularity. Note that this solution
does not satisfy the homogeneous boundary condition (1.2). We use this function for numerical verifi-
cation because both the algorithm and the analysis in Section 2 and Section 3 can be extended to the
nonhomogeneous boundary condition case via a standard treatment.

Example 1: In this example, we present a group of numerical results for demonstrating the con-
vergence of the DG-IFE methods on Cartesian triangular meshes. Additional numerical results on
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rectangular meshes are provided in [16, 18, 20]. Specifically, the Cartesian triangular meshes {Th, h > 0}
are formed by first partitioning Ω into N ×N congruent squares of size h = 2/N and then dividing each
rectangle into two congruent triangles with one of its diagonal lines.

First, we consider the case in which (β−, β+) = (1, 10) representing a moderate discontinuity in
the diffusion coefficient across the interface. The symmetric DG-IFE scheme is employed to solve the
interface problem with parameters α = 1 and σ0

B = 1000 for all interior edges. Errors of numerical
solutions in the L∞, L2, and semi-H1 norms are reported in Table 1. For comparison, we also solve the
same interface problem using the continuous Galerkin linear IFE method [28, 29] on the same meshes,
and the corresponding numerical results are listed in Table 2.

N ‖ · ‖L∞ rate ‖ · ‖L2 rate | · |H1 rate

10 2.8333E−2 3.7991E−2 6.7917E−1
20 8.4503E−3 1.7454 9.3605E−3 2.0210 3.4653E−1 0.9708
40 2.5075E−3 1.7527 2.3062E−3 2.0210 1.7456E−1 0.9893
80 7.2318E−4 1.7938 5.6970E−4 2.0173 8.7630E−2 0.9942
160 2.0134E−4 1.8447 1.4140E−4 2.0105 4.3903E−2 0.9971
320 5.4720E−5 1.8795 3.5178E−5 2.0070 2.1972E−2 0.9986
640 1.4450E−5 1.9210 8.7729E−6 2.0035 1.0991E−2 0.9994
1280 3.7496E−6 1.9463 2.1903E−6 2.0019 5.4965E−3 0.9997

Table 1: Errors of linear DG-IFE solutions with β− = 1, β+ = 10, σ0B = 1000.

N ‖ · ‖L∞ rate ‖ · ‖L2 rate | · |H1 rate

10 2.8619E−2 4.4051E−2 6.7876E−1
20 1.1416E−2 1.3259 1.1333E−2 1.9587 3.4808E−1 0.9635
40 5.3027E−3 1.1062 2.8882E−3 1.9722 1.7641E−1 0.9805
80 1.9396E−3 1.4510 7.3078E−4 1.9827 8.9155E−2 0.9845
160 1.0689E−3 0.8596 1.8726E−4 1.9644 4.5387E−2 0.9740
320 5.4774E−4 0.9646 5.1220E−5 1.8702 2.3305E−2 0.9617
640 2.7498E−4 0.9942 1.6771E−5 1.6107 1.2277E−2 0.9247
1280 1.4113E−4 0.9623 7.1759E−6 1.2248 6.7321E−3 0.8668

Table 2: Errors of the classic Galerkin IFE solutions with β− = 1, β+ = 10.

The data in Table 1 clearly demonstrate that the convergence rate of the DG-IFE method in the
semi-H1 norm is optimal which corroborates the a priori error estimates (3.18) for DG-IFE methods
since the semi-H1 norm is part of the energy norm. In addition, the data in this table indicate that
the convergence rate of the DG-IFE method in the L2 norm is also optimal. However, from Table 2,
we can see that the convergence rates of the Galerkin IFE solution in the L2 and H1 norms start to
deteriorate when the mesh size becomes smaller than h = 2/320. This comparison indicates that the
DG-IFE methods are more stable than the continuous Galerkin IFE method.

Next we consider the case involving a larger discontinuity in the diffusion coefficient, i.e., β− = 1,
and β+ = 1000. We use nonsymmetric DG-IFE scheme for this experiment and choose σ0

B = 1000 for
all interior edges. As demonstrated by the data in Table 3, the DG-IFE solutions converge optimally in
the L2 and semi-H1 norms.

Example 2: From Tables 1 and 2, it is interesting to note that errors in the DG-IFE solutions gauged
in L∞ norm are much smaller than those in the classic Galerkin IFE solutions when the mesh size is
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N ‖ · ‖L∞ rate ‖ · ‖L2 rate | · |H1 rate

10 1.9381E−2 1.5338E−2 2.1012E−1
20 1.2420E−2 0.6420 6.0704E−3 1.3373 1.3141E−1 0.6772
40 4.0332E−3 1.6227 1.4957E−3 2.0210 6.9522E−2 0.9185
80 9.9934E−4 2.0129 3.6124E−4 2.0498 3.5490E−2 0.9701
160 2.7965E−4 1.8374 8.9863E−5 2.0072 1.7949E−2 0.9835
320 8.0700E−5 1.7930 2.1864E−5 2.0392 9.0223E−3 0.9924
640 2.2017E−5 1.8740 5.3914E−6 2.0198 4.5229E−3 0.9963
1280 5.9615E−6 1.8848 1.3343E−6 2.0146 2.2641E−3 0.9983

Table 3: Errors of linear DG-IFE solutions with β− = 1, β+ = 1000, σ0B = 1000.

small enough. It has been observed that the classic IFE solution has a so called “crown” shortcoming as
demonstrated by the plot on the left side of Figure 2, meaning its point-wise accuracy is much worse in
the vicinity of the interface than the rest of the solution domain. We think this severity of inaccuracy is
caused by the discontinuity in the IFE functions across the interface edges. Nevertheless, the DG-IFE
methods contain penalty terms that can alleviate the adverse impacts from the discontinuity across ele-
ment edges, especially those from interface edges. Therefore, DG-IFE methods can usually outperform
the classic Galerkin IFE method around the interface as demonstrated by the plot on the right side of
Figure 2. IFE solutions in these plots are generated on a mesh formed by partitioning Ω into 160× 160
congruent rectangles first, then generating triangular elements by the diagonal line of these rectangles.

Figure 2: Point-wise error of Galerkin IFE solution and DG-IFE solution.

Example 3: One desirable feature of the DG formulation is the local adaptivity in mesh or polynomi-
als because this formulation does not require the inter-element continuity of finite element functions. The
combination of IFE spaces and the DG formulation leads to a new class of finite element methods that
allow local mesh refinement while maintaining the possibility of using the desirable structured Cartesian
meshes for solving problems with nontrivial interface geometry. This example is for demonstrating this
feature of the DG-IFE methods.

The discontinuity in the coefficient of the interface problem limits the smoothness of the exact
solution around interface. The low regularity of the solution around interface usually has an adverse
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impact on the accuracy of the numerical solution around the interface. To overcome this challenge, one
can employ more finite element functions around the interface and a way to achieve this is to refine
interface elements. To demonstrate this idea, we consider the same example described above for a larger

coefficient jump (β− = 1, β+ = 1000). We start with a uniform Cartesian mesh T (0)
h consisting of

10 × 10 rectangles. For k ≥ 1, the mesh T (k)
h is generated by refining the previous mesh T (k−1)

h via
cutting each of its interface elements into four congruent rectangles by connecting midpoints on opposite
edges. We then solve the interface problem (1.1) - (1.5) on a sequence of 6 such meshes generated by
the refinement procedure described above using the nonsymmetric DG-IFE method with σ0

B = 1000 on
all internal edges. Errors in the L∞, L2, and semi-H1 norms generated on each mesh are presented in

Table 4. In the second column, |T (k)
h | denotes the number of elements in the mesh T (k)

h . The numbers

of degrees of freedom are listed in the third column. The initial mesh T (0)
h and the refined meshes T (2)

h

and T (4)
h are illustrated in Figure 3.

Number of Element =  100 Number of Element =  334 Number of Element =  1258

Figure 3: Solution meshes T (0)
h , T (2)

h , and T (4)
h .

Mesh |T (i)
h | DoF ‖ · ‖L∞ ‖ · ‖L2 | · |H1

T (0)
h 100 400 1.5064E-2 1.5667E-2 1.9393E-1

T (1)
h 178 712 1.9242E-2 8.7358E-3 1.5041E-1

T (2)
h 334 1336 1.2799E-2 5.9608E-3 1.2761E-1

T (3)
h 646 2584 1.2789E-2 5.7452E-3 1.2321E-1

T (4)
h 1258 5032 1.2484E-2 5.6245E-3 1.2233E-1

T (5)
h 2470 9880 1.2431E-2 5.5988E-3 1.2213E-1

T (6)
h 4882 19528 1.2424E-2 5.5940E-3 1.2209E-1

Table 4: Errors of NIPDG-IFE solutions on meshes with local refinement

The data in Table 4 show that the global error in the L2 and semi-H1 norms are significantly reduced
in the first two steps of local mesh refinements. But further refinements performed on interface elements
do not reduce the global error as much as the first two steps. We believe this is because, after the first
two refinements, errors of the DG-IFE solutions over non-interface elements become more significant. To
further increase the accuracy of DG-IFE solutions, refinement on non-interface elements is also necessary.
To demonstrate this idea, we simulate an adaptive local mesh refinement over the whole solution domain.
Since a posteriori error estimators for IFE methods are not available yet, we use the actual error as the
“ideal” error indicator to guide the local refinement just for a proof of concept.

We start from a uniform Cartesian mesh T (0)
h consisting of 10×10 rectangles. For k ≥ 0, we produce
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a DG-IFE solution uh for the interface problem on the mesh T (k)
h and compute the local semi-H1 norm

error |u− uh|H1(T ) on each element of T (k)
h . We sort these local errors from the largest to the smallest

and use this order to form the smallest collection T̃ (k)
h of the first few elements such that∑

T∈T̃ (k)
h

|u− uh|2H1(T ) ≥ θ|u− uh|2H1(Ω). (4.2)

Then, we generate a new mesh T (k+1)
h by refining T (k)

h via cutting each of the elements in T̃ (k)
h into four

congruent rectangles by connecting midpoints on its opposite edges. The computation repeats over the

new mesh T (k+1)
h .

We choose θ = 0.2 and conduct adaptive DG-IFE scheme on each locally refined mesh. In Figure

4, we show the initial mesh T (0)
h , the refined meshes T (7)

h ,T (12)
h , and T (17)

h , and errors of the DG-IFE
solutions generated on those meshes. From these plots, we can easily see that the global error in the
DG-IFE solution is reduced as the local mesh refinement automatically deploys smaller elements at
locations needed according to the “ideal” error indicator while maintaining the Cartesian structure of
the meshes.

To see the effectiveness of the adaptive DG-IFE methods, we compare the errors in DG-IFE solutions
generated via adaptive mesh refinement to errors of DG-IFE solutions generated on uniform meshes with
comparable degrees of freedom in Figure 5. The semi-H1 norm errors presented in the right plot in Figure
5 shows that the magnitude of errors in adaptive DG-IFE method are smaller than in the method with
a uniform mesh when their degrees of freedom are comparable. However, the order of convergence for
both schemes are optimal by comparing their errors with the reference line of slope −1/2 (the same
criteria is used in [7]). We note that the exact solution u defined in (4.1) with p = 5 is piecewisely
smooth, i.e. u ∈ H̃3(Ω) (see the left plot in Figure 5), although the global regularity is impacted by
the discontinuity of the coefficients. The optimal convergence of the numerical solution in uniform mesh
refinement confirms our theoretical error estimate (3.18) in Section 3.
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Figure 4: Point-wise error of DG-IFE solutions on meshes: T (0)
h , T (7)

h ,T (12)
h , and T (17)

h

Example 4: In many applications, because of the insufficient regularity in the data, solutions to
the involved boundary value problems may not be piecewisely smooth enough for a certain convergence
theorem to hold. In such cases, finite element or DG methods based on uniform mesh refinement usually
fail to converge optimally, but adaptive FE or DG methods with suitably designed mesh refinement
strategies can still generate optimally convergent numerical solutions [7, 8]. For interface problems with
discontinuous coefficients, the phenomenon is similar. In this example, we demonstrate behaviors of
DG-IFE method in adaptive and uniform mesh refinements for solving interface problems whose exact
solution has singularity. In particular, this example indicates that the DG-IFE method with adaptive
refinement on interface independent meshes can satisfactorily handle interface problems whose exact
solutions are less smooth.

We choose the exact solution u in the form of (4.1) with p = 0.5 such that it does not satisfy the
regularity condition required by Theorem 3.1 on the convergence of the DG-IFE method. This lack of
regularity is caused by the singularity of the exact solution at the center of the ellipse as depicted in the
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Figure 5: Left: the exact solution u in Example 3. Right: a log-log scale plot of errors of in numerical
solutions generated by the adaptive and uniform mesh refinement. The red line with a −0.5 slope is for
the reference of optimal convergence.

left plot of Figure 6. The coefficients are set to be β− = 1, β+ = 10. First, we present the data generated
by the DG-IFE method with uniform mesh refinement in Table 5. Specifically, these data are produced
by the nonsymmetric DG-IFE method with the penalty σ0

B = 100 on every edge. Errors in L∞, L2,
and semi-H1 norms are reported, and the convergence rates of the DG-IFE method are obviously not
optimal in all three corresponding norms.

N ‖ · ‖L∞ rate ‖ · ‖L2 rate | · |H1 rate

10 4.2599E−2 1.8474E−2 1.0415E−1
20 5.7301E−2 -.4278 8.0329E−3 1.2015 5.6787E−2 0.8751
40 4.5270E−2 0.3400 5.5008E−3 0.5463 4.2830E−2 0.4069
80 3.5386E−2 0.3554 3.8353E−3 0.5203 3.2011E−2 0.4201
160 2.7412E−2 0.3684 2.6964E−3 0.5083 2.3774E−2 0.4292
320 2.1075E−2 0.3793 1.9024E−3 0.5032 1.7573E−2 0.4361
640 1.6098E−2 0.3886 1.3441E−3 0.5012 1.2940E−2 0.4415
1280 1.2237E−2 0.3967 9.5014E−4 0.5005 9.5021E−3 0.4461

Table 5: Errors of bilinear nonsymmetric DG-IFE solutions with p = 0.5

Next, we report the performance of the adaptive DG-IFE method for solving the same interface
problem with this less smooth exact solution. As in Example 3, we use the exact error as an “ideal”

error indicator for mesh refinement just for a proof of concept. Starting with a uniform mesh T (0)
h

consisting of 10 × 10 rectangles, we perform the local mesh refinement based on the same rule as the
one in (4.2) with the threshold θ = 0.2. Errors in semi-H1 norm are depicted in Figure 6, in which, as a
comparison, errors from uniform mesh refinement are also plotted. It is obvious that the adaptive DG-
IFE method is far more accurate than the DG-IFE method based uniform meshes when their numbers
of degrees of freedom are comparable. Moreover, comparing the errors with the reference line of slope
−1/2, it is obvious that the rate of convergence of the adaptive DG-IFE method is close to optimal
from the point view of the degrees of freedom while the rate of convergence of DG-IFE method based
on uniform mesh is not optimal. Some meshes in the process of the local refinement are presented in
Figure 7 from which one can observe that the refinement is around the center of the ellipse where the
exact solution is singular.
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Figure 6: Left: the exact solution u in Example 4. Right: a log-log scale plot of errors of in numerical
solutions generated by the adaptive and uniform mesh refinement. The red line with a −0.5 slope is for
the reference of optimal convergence.

mesh of level 10  with 250 elements mesh of level 15  with 718 elements mesh of level 20  with 2335 elements mesh of level 25  with 8497 elements

Figure 7: Solution meshes: T (10)
h , T (15)

h ,T (20)
h , and T (25)

h

5 Conclusion

In this article, we establish a priori error estimates for interior penalty discontinuous Galerkin methods
with immersed finite element functions for elliptic interface problem. The method can be used on
Cartesian meshes that are independent of the interface. The analysis here shows that the order of
convergence of these DG-IFE methods is optimal in the energy norm from the point of the polynomial
degree in the finite element spaces. With the enhanced stability, these DG-IFE methods outperform the
the classic Galerkin IFE methods, especially in vicinity of the interface across which the exact solution is
usually less smooth. The proposed DG-IFE schemes allow efficient local mesh refinement while preserving
the Cartesian structure of meshes provided that a posteriori error estimators are available.
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