Skip to main content
Log in

A New Stabilization Method for the Elasticity Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the elasticity problem based on the Hellinger–Reissner variational principle. We use the \(C^0\) continuous arbitrary degree polynomial mixed finite element spaces to approximate the stress and displacement, and develop a new stabilization method for the finite element space pairs to overcome the lack of the inf-sup condition, then we give the corresponding error estimates of the stabilization approximation scheme. At last, we implement a numerical example to test the stability and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold, D.N., Douglas, Jr, J., Gupta, C.P.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45, 1–22 (1984)

  2. Morley, M.: A family of mixed finite elements for linear elasticity. Numer. Math. 55, 633–666 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Stenberg, R.: On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer. Math. 48, 447–462 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnold, D.N., Winther, R.: Mixed finite element for elasticity. Numer. Math. 92, 401–419 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arnold, D.N., Awanou, G.: Rectangular mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 15(9), 1417–1429 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Adams, S., Cockburn, B.: A mixed finite elementmethod for elasticity in three dimensions. J. Sci. Comput. 25(3), 515–521 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Awanou, G.: Two remarks on rectangular mixed finite elements for elasticity. J. Sci. Comput. 50(1), 91–102 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, S.C., Wang, Y.N.: Conforming rectangular mixed finite elements for elasticity. J. Sci. Comput. 47(1), 93–108 (2011)

    Article  MathSciNet  Google Scholar 

  10. Shi, D.Y., Li, M.H.: Superconvergence analysis of the stable conforming rectangular mixed finite elements for the linear elasticity problem. J. Comput. Math. 32(2), 205–214 (2014)

  11. Arnold, D.N., Winther, R.: Nonconforming mixed elements for elasticity. Math. Models Methods Appl. Sci. 13(3), 295–307 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gopalakrishnan, J., Guzmán, J.: Symmetric nonconforming mixed finite elements for linear elasticity. SIAM J. Numer. Anal. 49(4), 1504–1520 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hu, J., Shi, Z.C.: Lower order rectangular nonconforming mixed elements for plane elasticity. SIAM J. Numer. Anal. 46(1), 88–102 (2007)

    Article  MathSciNet  Google Scholar 

  14. Man, H.Y., Hu, J., Shi, Z.C.: Lower order rectangular nonconforming mixed finite element for the threedimensional elasticity problem. Math. Models Methods Appl. Sci. 19(1), 51–65 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yi, S.Y.: Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions. Calcolo 42, 115–133 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yi, S.Y.: A new nonconforming mixed finite element method for linear elasticity. Math. Models Methods Appl. Sci. 16(7), 979–999 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Carstensen, C., Eigel, M., Gedicke, J.: Computational competition of symmetric mixed FEM in linear elasticity. Comput. Methods Appl. Mech. Eng. 200, 2903–2915 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Carstensen, C., Günther, D., Reininghaus, J., Thiele, J.: The Arnold–Winther mixed FEM in linear elasticity. Part I: implementation and numerical verification. Comput. Methods Appl. Mech. Eng. 197, 3014–3023 (2008)

    Article  MATH  Google Scholar 

  19. Hu, J., Man, H. Y., Zhang, S. Y.: The simplest mixed finite element method for linear elasticity in the symmetric formulation on n-rectangular grids. arXiv:1304.5428[math.NA] (2013)

  20. Hu, J., Man, H.Y., Zhang, S.Y.: A simple conforming mixed finite element for linear elasticity on rectangular grids in any space dimension. J. Sci. Comput. 58(2), 367–379 (2014). doi:10.1007/s10915-013-9736-6

    Article  MATH  MathSciNet  Google Scholar 

  21. Franca, L., Farhat, C.: Bubble functions prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 123, 299–308 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Brezzi, F., Douglas, J.: Stabilized mixed methods for the Stokes problem. Numer. Math. 53, 225–235 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Douglas, J., Wang, J.: An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52(186), 495–508 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 173–199 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilizations applied to the Oseen problem. M2AN Math. Model. Numer. Anal. 41(4), 713–742 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bochev, P., Dohrmann, C.R., Gunzburger, M.: Stabilization of low-order finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82–101 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Leborgne, G.: An optimally consistent stabilization of the inf-sup condition. Numer. Math. 91, 35–56 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Brezzi, F., Fortin, M.: A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89, 457–491 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Codina, R., Blasco, J.: A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput. Methods Appl. Mech. Eng. 143, 373–391 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Codina, R., Blasco, J.: Implementation of a stabilized finite element formulation for the incompressible Navier–Stokes equations based on a pressure gradient projection. Int. J. Numer. Meth. Fluids 37, 419–444 (2001)

    Article  MATH  Google Scholar 

  31. Luo, Z.D.: Foundations and Applications of Mixed Finite Element Method. Science Press, Beijing (2006). (in Chinese)

    Google Scholar 

  32. Pehlivanov, A.I., Carey, G.F., Lazarov, R.D.: Least-squares mixed finite elements for second-order elliptic problems. SIAM J. Numer. Anal. 31(5), 1368–1377 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Franca, L.P., Stenberg, R.: Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28(6), 1680–1697 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC 10971203 and NSFC 11271340.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-hao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Dy., Li, Mh. & Xu, C. A New Stabilization Method for the Elasticity Problem. J Sci Comput 65, 1025–1038 (2015). https://doi.org/10.1007/s10915-015-9996-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-9996-4

Keywords

Navigation