Skip to main content
Log in

Notes on RKDG Methods for Shallow-Water Equations in Canal Networks

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

PDE models for network flows are used in a number of different applications, including modeling of water channel networks. While the theory and first-order numerics are well developed, high-order schemes are not well developed. We propose a Runge–Kutta discontinuous Galerkin method as an efficient, effective and compact numerical approach for numerical simulations of 1-D models for water flow in open canals. Our numerical tests show the advantages of RKDG over first-order schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bastin, G., Bayen, A.M., D’Apice, C., Litrico, X., Piccoli, B.: Open problems and research perspectives for irrigation channels. Netw. Heterog. Media. 4(2), i–v (2009)

  2. Bressan, A., Canic, S., Garavello, M., Herty, M., Piccoli, B.: Flows on networks: recent results and perspectives. EMS Surv. Math. Sci. 1(1), 47–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bretti, G., Natalini, R., Piccoli, B.: Numerical approximations of a traffic flow model on networks. Netw. Heterog. Media 1(1), 57–84 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canic, S., Piccoli, B., Qiu, J.-M., Ren, T.: Runge–Kutta discontinuous Galerkin method for traffic flow model on networks. J. Sci. Comput. 63(1), 233–255 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colombo, R.M., Herty, M., Sachers, V.: On \(2\times 2\) conservation laws at a junction. SIAM J. Math. Anal. 40(2), 605–622 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: TVB RK local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. v16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Halleuxa, J., Prieurb, C., Coronc, J.-M., dAndr.ea-Noveld, B., Bastin, G.: Boundary feedback control in networks of open channels. Automatica 39, 1365–1376 (2003)

    Article  MathSciNet  Google Scholar 

  9. Garavello, M., Piccoli, B.: Traffic flow on networks. In: AIMS Series on Applied Mathematics, vol. 1. American Institute of Mathematical Sciences, Springfield (2006)

  10. Goudiaby, M.S., Kreiss, G.: A Riemann problem at a junction of the open canals. J. Hyperbolic Differ. Equ. 10, 431–460 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghostine, R., Kesserwani, G., Mosé, R., Vazquez, J., Ghenaim, A., Grégoire, C.: A confrontation of 1D and 2D RKDG numerical simulation of transitional flow at open-channel junction. Int. J. Numer. Methods Fluids 61(7), 752–767 (2009)

    Article  MATH  Google Scholar 

  12. Gugat, M.: Nodal control of networked hyperbolic systems. AMO Adv. Model. Optim. 7, 1–23 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Herty, M., Sead, M.: Assessment of coupling conditions in water way intersections. Int. J. Numer. Methods Fluids 71(11), 1438–1460 (2013)

    Article  MathSciNet  Google Scholar 

  14. Leugering, G., Schmidt, J.P.G.: On the modelling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41, 164–180 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marigo, A.: Entropic solutions for irrigation networks. SIAM J. Appl. Math. 70(5), 1711–1735 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Neupane, P., Dawson, C.: A discontinuous Galerkin method for modeling flow in networks of channels. Adv. Water Resour. 79, 61–79 (2015)

    Article  Google Scholar 

  17. Pablo, M.: Jacovkis one-dimensional hydrodynamic flow in complex networks and some generalizations. SIAM J. Appl. Math. 51–4, 948–966 (1991)

    MATH  Google Scholar 

  18. Xing, Y., Shu, C.-W.: A survey of high order schemes for the shallow water equations. J. Math. Study v47, 221–249 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes. J. Sci. Comp. v57, 19–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xing, Y.: Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. J. Comput. Phys. v257, 536–553 (2014)

    Article  MathSciNet  Google Scholar 

  21. Xing, Y., Shu, C.-W.: High-order finite volume WENO schemes for the shallow water equations with dry states. Adv. Water Resour. v34, 1026–1038 (2011)

    Article  Google Scholar 

  22. Xing, Y., Shu, C.-W., Noelle, S.: On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations. J. Sci. Comput. v48, 339–349 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. v33, 1476–1493 (2010)

    Article  Google Scholar 

  24. Xing, Y., Shu, C.-W.: A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. v1, 100–134 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. v214, 567–598 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xing, Y., Shu, C.-W.: High order well-balanced finite difference WENO schemes for a class of hyperbolic systems with source terms. J. Sci. Comput. v27, 477–494 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Mei Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briani, M., Piccoli, B. & Qiu, JM. Notes on RKDG Methods for Shallow-Water Equations in Canal Networks. J Sci Comput 68, 1101–1123 (2016). https://doi.org/10.1007/s10915-016-0172-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0172-2

Keywords

Navigation