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Abstract

The alternating direction method of multipliers (ADMM) is widely used in solving structured
convex optimization problems due to its superior practical performance. On the theoretical side
however, a counterexample was shown in [7] indicating that the multi-block ADMM for minimizing
the sum of N (N ≥ 3) convex functions with N block variables linked by linear constraints may
diverge. It is therefore of great interest to investigate further sufficient conditions on the input side
which can guarantee convergence for the multi-block ADMM. The existing results typically require
the strong convexity on parts of the objective. In this paper, we present convergence and convergence
rate results for the multi-block ADMM applied to solve certain N -block (N ≥ 3) convex minimization
problems without requiring strong convexity. Specifically, we prove the following two results: (1) the
multi-block ADMM returns an ǫ-optimal solution within O(1/ǫ2) iterations by solving an associated
perturbation to the original problem; (2) the multi-block ADMM returns an ǫ-optimal solution within
O(1/ǫ) iterations when it is applied to solve a certain sharing problem, under the condition that the
augmented Lagrangian function satisfies the Kurdyka- Lojasiewicz property, which essentially covers
most convex optimization models except for some pathological cases.

Keywords: Alternating Direction Method of Multipliers (ADMM), Convergence Rate, Regularization,
Kurdyka- Lojasiewicz property, Convex Optimization

1 Introduction

We consider the following multi-block convex minimization problem:

min f1(x1) + f2(x2) + · · · + fN(xN )
s.t. A1x1 + A2x2 + · · · + ANxN = b

xi ∈ Xi, i = 1, . . . , N,
(1.1)

where Ai ∈ Rp×ni , b ∈ Rp, Xi ⊂ Rni are closed convex sets, and fi : Rni → R are closed convex
functions. One effective way to solve (1.1), whenever applicable, is the so-called Alternating Direc-
tion Method of Multipliers (ADMM). The ADMM is closely related to the Douglas-Rachford [11] and
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Peaceman-Rachford [32] operator splitting methods that date back to 1950s. These operator splitting
methods were further studied later in [30, 15, 17, 12]. The ADMM has been revisited recently due to its
success in solving problems with special structures arising from compressed sensing, machine learning,
image processing, and so on; see the recent survey papers [5, 13] for more information.

The ADMM is constructed under an augmented Lagrangian framework, where the augmented La-
grangian function for (1.1) is defined as

Lγ(x1, . . . , xN ;λ) :=

N
∑

j=1

fj(xj) −
〈

λ,

N
∑

j=1

Ajxj − b

〉

+
γ

2

∥

∥

∥

∥

∥

∥

N
∑

j=1

Ajxj − b

∥

∥

∥

∥

∥

∥

2

,

where λ is the Lagrange multiplier and γ > 0 is a penalty parameter. In a typical iteration of the
ADMM for solving (1.1), the following updating procedure is implemented:































xk+1
1

:= argminx1∈X1
Lγ(x1, x

k
2 , . . . , x

k
N ;λk)

xk+1

2
:= argminx2∈X2

Lγ(xk+1

1
, x2, x

k
3 , . . . , x

k
N ;λk)

...

xk+1

N := argminxN∈XN
Lγ(xk+1

1
, xk+1

2
, . . . , xk+1

N−1
, xN ;λk)

λk+1 := λk − γ
(

∑N
j=1

Ajx
k+1

j − b
)

.

(1.2)

Note that the ADMM (1.2) minimizes in each iteration the augmented Lagrangian function with re-
spect to x1, . . . , xN alternatingly in a Gauss-Seidel manner. The ADMM (1.2) for solving two-block
convex minimization problems (i.e., N = 2) has been studied extensively in the literature. The global
convergence of ADMM (1.2) when N = 2 has been shown in [16, 14]. There are also some recent works
that study the convergence rate properties of ADMM when N = 2 (see, e.g., [23, 31, 10, 2, 22]).

However, the convergence of multi-block ADMM (1.2) (we call (1.2) multi-block ADMM when N ≥ 3)
has remained unclear for a long time. Recently, Chen et al. [7] constructed a counterexample to show
the failure of ADMM (1.2) when N ≥ 3. Notwithstanding its theoretical convergence assurance, the
multi-block ADMM (1.2) has been applied very successfully to solve problems with N (N ≥ 3) block
variables; for example, see [35, 33]. It is thus of great interest to further study sufficient conditions that
can guarantee the convergence of multi-block ADMM. Some recent works on studying the sufficient
conditions guaranteeing the convergence of multi-block ADMM are described briefly as follows. Han
and Yuan [18] showed that the multi-ADMM (1.2) converges if all the functions f1, . . . , fN are strongly
convex and γ is restricted to certain region. This condition is relaxed in [8, 28] to allow only N − 1
functions to be strongly convex and γ is restricted to certain region. Especially, Lin, Ma and Zhang
[28] proved the sublinear convergence rate under such conditions. Closely related to [8, 28], Cai, Han
and Yuan [6] and Li, Sun and Toh [27] proved that for N = 3, convergence of multi-block ADMM
can be guaranteed under the assumption that only one function among f1, f2 and f3 is required to be
strongly convex, and γ is restricted in certain region. In addition to strong convexity of f2, . . . , fN ,
by assuming further conditions on the smoothness of the functions and some rank conditions on the
matrices in the linear constraints, Lin, Ma and Zhang [29] proved the globally linear convergence of
multi-block ADMM. Note that the above mentioned works all require that (parts of) the objective
function is strongly convex. Without assuming strong convexity, Hong and Luo [25] studied a variant
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of ADMM (1.2) with small stepsize in updating the Lagrangian multiplier. Specifically, [25] proposes
to replace the last equation in (1.2) to

λk+1 := λk − αγ





N
∑

j=1

Ajx
k+1

j − b



 ,

where α > 0 is a small step size. Linear convergence of this variant is proven under the assumption that
the objective function satisfies certain error bound conditions. However, it is noted that the selection
of α is in fact bounded by some parameters associated with the error bound conditions to guarantee
the convergence. Therefore, it might be difficult to choose α in practice. There are also studies on the
convergence and convergence rate of some other variants of ADMM (1.2), and we refer the interested
readers to [20, 21, 19, 9, 34, 24, 36] for the details of these variants. However, it is observed by many
researchers that modified versions of ADMM though with convergence guarantee, often perform slower
than the multi-block ADMM with no convergent guarantee (see [34]). Therefore, in this paper, we focus
on studying the sufficient conditions that guarantee the convergence of the direct extension of ADMM,
i.e., the multi-block ADMM (1.2) and studying its convergence rate.

Our contribution. The main contribution in this paper lies in the following. First, we show that the
ADMM (1.2) when N ≥ 3 returns an ǫ-optimal solution within O(1/ǫ2) iterations, with the condition
that γ depends on ǫ. Here we do not assume strong convexity of any objective function fi. It should
be pointed out that our result does not contradict the counterexample proposed in [7] since we apply
the ADMM (1.2) to an associated perturbed problem of (1.1) rather than (1.1) itself. Secondly, we
show that the ADMM (1.2) when N ≥ 3 returns an ǫ-optimal solution within O(1/ǫ) iterations under
the condition that the augmented Lagrangian Lγ is a Kurdyka- Lojasiewicz (KL) function [3, 4], ∇fN is
Lipschitz continuous, AN = I, and γ is sufficiently large. To the best of our knowledge, the convergence
rate results given in this paper are the first sublinear convergence rate results for the unmodified multi-
block ADMM without assuming any strong convexity of the objective function (note that although
without assuming strong convexity, [25] studies a variant of the multi-block ADMM). In this sense, the
results presented in this paper complement with the existing results in the literature.

Organization. The rest of this paper is organized as follows. In Section 2 we provide some preliminaries
for our convergence rate analysis. In Section 3, we prove the O(1/ǫ2) iteration complexity of ADMM (1.2)
by introducing an associated problem of (1.1). In Section 4, we prove the O(1/ǫ) iteration complexity
of ADMM (1.2) with Kurdyka- Lojasiewicz (KL) property.

2 Preliminaries

We denote Ω = X1 × . . . × XN ×Rp and the optimal set of (1.1) as Ω∗, and the following assumption
is made throughout this paper.

Assumption 2.1 The optimal set Ω∗ for problem (1.1) is non-empty.

According to the first-order optimality conditions for (1.1), solving (1.1) is equivalent to finding

(x∗1, x
∗
2, . . . , x

∗
N , λ∗) ∈ Ω∗
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such that the following holds:

{

(xi − x∗i )
⊤(gi(x

∗
i ) −A⊤

i λ
∗) ≥ 0, ∀xi ∈ Xi,

A1x
∗
1 + · · · + ANx∗N − b = 0,

(2.1)

for i = 1, 2, . . . , N .

In this paper, we analyze the iteration complexity of ADMM (1.2) under two scenarios. The conditions
of the two scenarios are listed in Table 1. The following assumption is only used in Scenario 2.

Assumption 2.2 We assume that XN = RnN . We also assume that fi has a finite lower bound, i.e.,
infxi∈Xi

fi(xi) ≥ f∗
i > −∞ for i = 1, 2, . . . , N . Moreover, it is assumed that fi + 1Xi

is a coercive
function for i = 1, 2, . . . , N − 1, where 1Xi

denotes the indicator function of Xi, i.e.,

1Xi
(xi) =

{

0, if xi ∈ Xi

+∞, otherwise.

Furthermore, we assume that Lγ is a KL function (will be defined later).

Scenario Lipschitz Continuous Matrices Additional Assumption Iteration Complexity

1 — — ǫ
2
≤ γ ≤ ǫ O(1/ǫ2)

2 ∇fN AN = I γ >
√

2L and Assumption 2.2 O(1/ǫ)

Table 1: Two Scenarios Leading to Sublinear Convergence

Remark 2.3 Some remarks are in order here regarding the conditions in Scenario 2. Note that it
is not very restrictive to require fi + 1Xi

to be a coercive function. In fact, many functions used as
regularization terms including ℓ1-norm, ℓ2-norm, ℓ∞-norm for vectors and nuclear norm for matrices
are all coercive functions; assuming the compactness of Xi also leads to the coerciveness of fi + 1Xi

.
Moreover, the assumptions AN = I and ∇fN is Lipschitz continuous actually cover many interesting
applications in practice. For example, many problems arising from machine learning, statistics, image
processing and so on always have the following structure:

min f1(x1) + · · · + fN−1(xN−1) + fN (b−A1x1 − · · · −AN−1xN−1), (2.2)

where fN denotes a loss function on data fitting, which is usually a smooth function, and f1, . . . , fN−1

are regularization terms to promote certain structures of the solution. This problem is usually referred
as sharing problem (see, e.g., [5, 26]). (2.2) can be reformulated as

min f1(x1) + · · · + fN−1(xN−1) + fN (xN )
s.t. A1x1 + · · · + AN−1xN−1 + xN = b,

(2.3)

which is in the form of (1.1) and can be solved by ADMM (see [5, 26]). Note that AN = I in (2.3) and
it is very natural to assume that ∇fN is Lipschitz continuous. Thus the conditions in Scenario 2 are
satisfied.

4



Notations. For simplicity, we use the following notation to denote the stacked vectors or tuples:

u =







x1
...

xN






, uk =







xk1
...

xkN






, u∗ =







x∗1
...

x∗N






, w =

(

u
λ

)

, wk =

(

uk

λk

)

, w∗ =

(

u∗

λ∗

)

.

We denote by f(u) ≡ f1(x1) + · · ·+ fN (xN ) the objective function of problem (1.1); 1X is the indicator
function of X ; ∇f is the gradient of f ; ‖x‖ denotes the Euclidean norm of x.

In our analysis, the following two well-known identities are used frequently,

(w1 − w2)
⊤(w3 − w4) =

1

2

(

‖w1 − w4‖2 − ‖w1 − w3‖2
)

+
1

2

(

‖w3 − w2‖2 − ‖w4 −w2‖2
)

, (2.4)

(w1 − w2)
⊤(w3 − w1) =

1

2

(

‖w2 − w3‖2 − ‖w1 − w2‖2 − ‖w1 − w3‖2
)

. (2.5)

3 Iteration Complexity of ADMM: Associated Perturbation

In this section, we prove the O(1/ǫ2) iteration complexity of ADMM (1.2) under the conditions in
Scenario 1 of Table 1. Indeed, given ǫ > 0 sufficiently small and initial point u0, we introduce an
associated perturbed problem of (1.1), i.e.,

min f1(x1) + f̃2(x2) + · · · + f̃N(xN )
s.t. A1x1 + A2x2 + · · · + ANxN = b

xi ∈ Xi, i = 1, . . . , N,

(3.1)

where f̃i(xi) = fi(xi) + µ
2

∥

∥Aixi −Aix
0
i

∥

∥

2
for i = 2, . . . , N , and µ = ǫ(N − 2)(N + 1). Note f̃i are

not necessarily strongly convex. We prove that the ADMM (1.2) for associated perturbed problem
(3.1) returns an ǫ-optimal solution of the original problem (1.1), in terms of both objective value and
constraint violation, within O(1/ǫ2) iterations.

The ADMM for solving (3.1) can be summarized as (note that some constant terms in the subproblems
are discarded):

xk+1
1

:= argmin
x1∈X1

f1(x1) +
γ

2

∥

∥

∥

∥

∥

∥

A1x1 +

N
∑

j=2

Ajx
k
j − b− 1

γ
λk

∥

∥

∥

∥

∥

∥

2

, (3.2)

xk+1

i := argmin
xi∈Xi

f̃i(xi) +
γ

2

∥

∥

∥

∥

∥

∥

i−1
∑

j=1

Ajx
k+1

j + Aixi +

N
∑

j=i+1

Ajx
k
j − b− 1

γ
λk

∥

∥

∥

∥

∥

∥

2

, i = 2, . . . , N, (3.3)

λk+1 := λk − γ
(

A1x
k+1
1

+ A2x
k+1
2

+ · · · + ANxk+1

N − b
)

. (3.4)
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The first-order optimality conditions for (3.2)-(3.3) are given respectively by xk+1

i ∈ Xi and

(x1 − xk+1
1

)⊤



g1(xk+1
1

) −A⊤
1 λ

k + γA⊤
1



A1x
k+1
1

+
N
∑

j=2

Ajx
k
j − b







 ≥ 0, (3.5)

(xi − xk+1

i )⊤



gi(x
k+1

i ) + µA⊤
i Ai

(

xk+1

i − x0i

)

−A⊤
i λ

k + γA⊤
i





i
∑

j=1

Ajx
k+1

j +

N
∑

j=i+1

Ajx
k
j − b







 ≥ 0,

(3.6)

hold for any xi ∈ Xi and gi ∈ ∂fi, a subgradient of fi, for i = 1, 2, . . . , N . Moreover, by combining with
(3.4), (3.5)-(3.6) can be rewritten as

(x1 − xk+1
1

)⊤



g1(xk+1
1

) −A⊤
1 λ

k+1 + γA⊤
1





N
∑

j=2

Aj(x
k
j − xk+1

j )







 ≥ 0, (3.7)

(xi − xk+1

i )⊤



gi(x
k+1

i ) + µA⊤
i Ai

(

xk+1

i − x0i

)

−A⊤
i λ

k+1 + γA⊤
i





N
∑

j=i+1

Aj(x
k
j − xk+1

j )







 ≥ 0. (3.8)

Lemma 3.1 Let (xk+1
1

, xk+1
2

, . . . , xk+1

N , λk+1) ∈ Ω be generated by the ADMM (1.2) from given (xk2 , . . . , x
k
N , λk).

For any u∗ = (x∗1, x
∗
2, . . . , x

∗
N ) ∈ Ω∗ and λ ∈ Rp, it holds true under conditions in Scenario 1 that

f(u∗) − f(uk+1) +















x∗1 − xk+1
1

x∗2 − xk+1
2

...

x∗N − xk+1

N

λ− λk+1















⊤













−A⊤
1 λ

k+1

−A⊤
2 λ

k+1

...
−A⊤

Nλk+1

∑N
i=1

Aix
k+1

i − b















+
1

2γ

(

∥

∥

∥
λ− λk

∥

∥

∥

2

−
∥

∥

∥
λ− λk+1

∥

∥

∥

2
)

+
ǫ(N − 2)(N + 1)

2

N
∑

i=2

∥

∥Aix
∗
i −Aix

0
i

∥

∥

2

+
γ

2

N−1
∑

i=1





∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajx
∗
j +

N
∑

j=i+1

Ajx
k
j − b

∥

∥

∥

∥

∥

∥

2

−

∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajx
∗
j +

N
∑

j=i+1

Ajx
k+1

j − b

∥

∥

∥

∥

∥

∥

2



≥ 0. (3.9)

Proof. Note that combining (3.7)-(3.8) yields











x1 − xk+1
1

x2 − xk+1
2

...

xN − xk+1

N











⊤ 



















g1(xk+1
1

) −A⊤
1 λ

k+1

g2(xk+1
2

) −A⊤
2 λ

k+1

...

gN (xk+1

N ) −A⊤
Nλk+1











+











0

µA⊤
2 (A2x

k+1
2

−A2x
0
2)

...

µA⊤
N (ANxk+1

N −ANx0N )











+ H







xk2 − xk+1
2

...

xkN − xk+1

N

















≥ 0, (3.10)
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where H ∈ R(
∑N

i=1
ni)×(

∑N
i=2

ni) is defined as follow:

H :=















γA⊤
1 A2 γA⊤

1 A3 · · · γA⊤
1 AN

0 γA⊤
2 A3 · · · γA⊤

2 AN

...
. . .

. . .
...

0 0 · · · γA⊤
N−1

AN

0 0 · · · 0















.

The key step in our proof is to bound the following terms

(xi − xk+1

i )⊤A⊤
i





N
∑

j=i+1

Aj(x
k
j − xk+1

j )



 , i = 1, 2, . . . , N − 1.

For i = 1, 2, . . . , N − 1, we have,

(xi − xk+1

i )⊤A⊤
i





N
∑

j=i+1

Aj(x
k
j − xk+1

j )





=









i
∑

j=1

Ajxj − b



−





i−1
∑

j=1

Ajxj + Aix
k+1

i − b









⊤ 





−
N
∑

j=i+1

Ajx
k+1

j



−



−
N
∑

j=i+1

Ajx
k
j









=
1

2





∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajxj +

N
∑

j=i+1

Ajx
k
j − b

∥

∥

∥

∥

∥

∥

2

−

∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajxj +

N
∑

j=i+1

Ajx
k+1

j − b

∥

∥

∥

∥

∥

∥

2



+
1

2





∥

∥

∥

∥

∥

∥

i−1
∑

j=1

Ajxj +

N
∑

j=i

Ajx
k+1

j − b

∥

∥

∥

∥

∥

∥

2

−

∥

∥

∥

∥

∥

∥

i−1
∑

j=1

Ajxj + Aix
k+1

i +

N
∑

j=i+1

Ajx
k
j − b

∥

∥

∥

∥

∥

∥

2



≤ 1

2





∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajxj +

N
∑

j=i+1

Ajx
k
j − b

∥

∥

∥

∥

∥

∥

2

−

∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajxj +

N
∑

j=i+1

Ajx
k+1

j − b

∥

∥

∥

∥

∥

∥

2



+
1

2

∥

∥

∥

∥

∥

∥

i−1
∑

j=1

Ajxj +

N
∑

j=i

Ajx
k+1

j − b

∥

∥

∥

∥

∥

∥

2

,

where in the second equality we applied the identity (2.4).
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Therefore, we have











x1 − xk+1
1

x2 − xk+1

2

...

xN − xk+1

N











⊤














γA⊤
1 A2 γA⊤

1 A3 · · · γA⊤
1 AN

0 γA⊤
2 A3 · · · γA⊤

2 AN

...
. . .

. . .
...

0 0 · · · γA⊤
N−1

AN

0 0 · · · 0





















xk2 − xk+1
2

...

xkN − xk+1

N







≤ γ

2

N−1
∑

i=1





∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajxj +

N
∑

j=i+1

Ajx
k
j − b

∥

∥

∥

∥

∥

∥

2

−

∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajxj +

N
∑

j=i+1

Ajx
k+1

j − b

∥

∥

∥

∥

∥

∥

2



+
1

2γ

∥

∥

∥
λk+1 − λk

∥

∥

∥

2

+
γ

2

N−1
∑

i=2

∥

∥

∥

∥

∥

∥

i−1
∑

j=1

Ajxj +

N
∑

j=i

Ajx
k+1

j − b

∥

∥

∥

∥

∥

∥

2

. (3.11)

Combining (3.4), (3.10) and (3.11), it holds for any λ ∈ Rp that















x1 − xk+1

1

x2 − xk+1
2

...

xN − xk+1

N

λ− λk+1















⊤













g1(xk+1

1
) −A⊤

1 λ
k+1

g2(xk+1
2

) −A⊤
2 λ

k+1

...

gN (xk+1

N ) −A⊤
Nλk+1

∑N
i=1

Aix
k+1

i − b















+
1

γ

(

λ− λk+1
)⊤ (

λk+1 − λk
)

+µ

N
∑

i=2

(

xi − xk+1

i

)⊤

A⊤
i Ai

(

xk+1

i − x0i

)

+
1

2γ

∥

∥

∥λk+1 − λk
∥

∥

∥

2

+
γ

2

N−1
∑

i=2

∥

∥

∥

∥

∥

∥

i−1
∑

j=1

Ajxj +

N
∑

j=i

Ajx
k+1

j − b

∥

∥

∥

∥

∥

∥

2

+
γ

2

N−1
∑

i=1





∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajxj +

N
∑

j=i+1

Ajx
k
j − b

∥

∥

∥

∥

∥

∥

2

−

∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajxj +

N
∑

j=i+1

Ajx
k+1

j − b

∥

∥

∥

∥

∥

∥

2



≥ 0. (3.12)

Using (2.5), we have

1

γ

(

λ− λk+1
)⊤ (

λk+1 − λk
)

+
1

2γ

∥

∥

∥λk+1 − λk
∥

∥

∥

2

=
1

2γ

(

∥

∥

∥λ− λk
∥

∥

∥

2

−
∥

∥

∥λ− λk+1

∥

∥

∥

2
)

,

and

µ
(

xi − xk+1

i

)⊤

A⊤
j Aj

(

xk+1

i − x0i

)

=
µ

2

(

∥

∥Aixi −Aix
0
i

∥

∥

2 −
∥

∥

∥Aix
k+1

i −Aix
0
i

∥

∥

∥

2

−
∥

∥

∥Aixi −Aix
k+1

i

∥

∥

∥

2
)

≤ µ

2

∥

∥Aixi −Aix
0
i

∥

∥

2 − µ

2

∥

∥

∥
Aixi −Aix

k+1

i

∥

∥

∥

2

.

Letting u = u∗ in (3.12), and invoking the convexity of fi that

fi(x
∗
i ) − fi(x

k+1

i ) ≥ (x∗i − xk+1

i )⊤gi(x
k+1

i ), i = 1, 2, . . . , N

8



and

γ

2

N−1
∑

i=2

∥

∥

∥

∥

∥

∥

i−1
∑

j=1

Ajx
∗
j +

N
∑

j=i

Ajx
k+1

j − b

∥

∥

∥

∥

∥

∥

2

=
γ

2

N−1
∑

i=2

∥

∥

∥

∥

∥

∥

N
∑

j=i

Aj(x
k+1

j − x∗j )

∥

∥

∥

∥

∥

∥

2

≤ γ(N + 1)(N − 2)

2

N
∑

i=2

∥

∥

∥
Aix

k+1

i −Aix
∗
i

∥

∥

∥

2

,

we obtain,

f(u∗) − f(uk+1) +















x∗1 − xk+1
1

x∗2 − xk+1

2

...

x∗N − xk+1

N

λ− λk+1















⊤













−A⊤
1 λ

k+1

−A⊤
2 λ

k+1

...
−A⊤

Nλk+1

∑N
i=1

Aix
k+1

i − b















+
1

2γ

(

∥

∥

∥λ− λk
∥

∥

∥

2

−
∥

∥

∥λ− λk+1

∥

∥

∥

2
)

+
µ

2

N
∑

i=2

(

∥

∥Aix
∗
i −Aix

0
i

∥

∥

2 −
∥

∥

∥Aix
∗
i −Aix

k+1

i

∥

∥

∥

2
)

+
γ

2

N−1
∑

i=1





∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajx
∗
j +

N
∑

j=i+1

Ajx
k
j − b

∥

∥

∥

∥

∥

∥

2

−

∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajx
∗
j +

N
∑

j=i+1

Ajx
k+1

j − b

∥

∥

∥

∥

∥

∥

2



+
γ(N + 1)(N − 2)

2

N
∑

i=2

∥

∥

∥
Aix

∗
i −Aix

k+1

i

∥

∥

∥

2

≥ 0.

This together with the facts that µ = ǫ(N − 2)(N + 1) and γ ≤ ǫ implies that

γ(N + 1)(N − 2)

2

N
∑

j=2

∥

∥

∥Ajx
∗
j −Ajx

k+1

j

∥

∥

∥

2

− µ

2

N
∑

j=2

∥

∥

∥Ajx
∗
j −Ajx

k+1

j

∥

∥

∥

2

≤ 0,

which further implies the desired inequality (3.9). �

Now we are ready to prove the O(1/ǫ2) iteration complexity of the ADMM for (1.1) in an ergodic case.

Theorem 3.2 Let (xk+1

1
, xk+1

2
, . . . , xk+1

N , λk+1) ∈ Ω be generated by ADMM (3.2)-(3.4) from given
(xk2 , . . . , x

k
N , λk). For any integer t > 0, let ūt = (x̄t1, x̄

t
2, . . . , x̄

t
N ) and λ̄t be defined as

x̄ti =
1

t + 1

t
∑

k=0

xk+1

i , i = 1, 2, . . . , N, λ̄t =
1

t + 1

t
∑

k=0

λk+1.

9



For any (u∗, λ∗) ∈ Ω∗, by defining ρ := ‖λ∗‖ + 1, it holds in Scenario 1 that,

0 ≤ f(ūt) − f(u∗) + ρ

∥

∥

∥

∥

∥

N
∑

i=1

Aix̄
t
i − b

∥

∥

∥

∥

∥

≤ ρ2 + ‖λ0‖2
γ(t + 1)

+
γ

2(t + 1)

N−1
∑

i=1

∥

∥

∥

∥

∥

∥

N
∑

j=i+1

Aj(x
0
j − x∗j)

∥

∥

∥

∥

∥

∥

2

+
ǫ(N − 2)(N + 1)

2

N
∑

i=2

∥

∥Aix
∗
i −Aix

0
i

∥

∥

2
.

This also implies that when t = O(1/ǫ2), ūt = (x̄t1, x̄
t
2, . . . , x̄

t
N ) is an ǫ-optimal solution to the original

problem (1.1), i.e., both the error of the objective function value and the residual of the equality constraint
satisfy that

|f(ūt) − f(u∗)| = O(ǫ), and

∥

∥

∥

∥

∥

N
∑

i=1

Aix̄
t
i − b

∥

∥

∥

∥

∥

= O(ǫ). (3.13)

Proof. Because (uk, λk) ∈ Ω, it holds that (ūt, λ̄t) ∈ Ω for all t ≥ 0. By Lemma 3.1 and invoking the
convexity of function f(·), we have

f(u∗) − f(ūt) + λ⊤

(

N
∑

i=1

Aix̄
t
i − b

)

= f(u∗) − f(ūt) +















x∗1 − x̄t1
x∗2 − x̄t2

...
x∗N − x̄tN
λ− λ̄t















⊤













−A⊤
1 λ̄

t

−A⊤
2 λ̄

t

...
−A⊤

N λ̄t

∑N
i=1

Aix̄
t
i − b















≥ 1

t + 1

t
∑

k=0

















f(u∗) − f(uk+1) +















x∗1 − xk+1
1

x∗2 − xk+1
2

...

x∗N − xk+1

N

λ− λk+1















⊤













−A⊤
1 λ

k+1

−A⊤
2 λ

k+1

...
−A⊤

Nλk+1

∑N
i=1

Aix
k+1

i − b































≥ 1

t + 1

t
∑

k=0

[

1

2γ

(

∥

∥

∥λ− λk+1

∥

∥

∥

2

−
∥

∥

∥λ− λk
∥

∥

∥

2
)

− ǫ(N − 2)(N + 1)

2

N
∑

i=2

∥

∥Aix
∗
i −Aix

0
i

∥

∥

2

+
γ

2

N−1
∑

i=1





∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajx
∗
j +

N
∑

j=i+1

Ajx
k+1

j − b

∥

∥

∥

∥

∥

∥

2

−

∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajx
∗
j +

N
∑

j=i+1

Ajx
k
j − b

∥

∥

∥

∥

∥

∥

2







≥ − 1

2γ(t + 1)

∥

∥λ− λ0
∥

∥

2 − γ

2(t + 1)

N−1
∑

i=1

∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajx
∗
j +

N
∑

j=i+1

Ajx
0
j − b

∥

∥

∥

∥

∥

∥

2

−ǫ(N − 2)(N + 1)

2

N
∑

i=2

∥

∥Aix
∗
i −Aix

0
i

∥

∥

2
. (3.14)
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Note that this inequality holds for all λ ∈ Rp. From the optimality condition (2.1) we obtain

0 ≥ f(u∗) − f(ūt) + (λ∗)⊤

(

N
∑

i=1

Aix̄
t
i − b

)

.

Moreover, since ρ := ‖λ∗‖ + 1, by applying Cauchy-Schwarz inequality, we obtain

0 ≤ f(ūt) − f(u∗) + ρ

∥

∥

∥

∥

∥

N
∑

i=1

Aix̄
t
i − b

∥

∥

∥

∥

∥

. (3.15)

By setting λ = −ρ
(

∑N
i=1

Aix̄
t
i − b

)

/
∥

∥

∥

∑N
i=1

Aix̄
t
i − b

∥

∥

∥ in (3.14), and noting that ‖λ‖ = ρ, we obtain

f(ūt) − f(u∗) + ρ

∥

∥

∥

∥

∥

N
∑

i=1

Aix̄
t
i − b

∥

∥

∥

∥

∥

(3.16)

≤ ρ2 + ‖λ0‖2
γ(t + 1)

+
γ

2(t + 1)

N−1
∑

i=1

∥

∥

∥

∥

∥

∥

N
∑

j=i+1

Aj(x
0
j − x∗j )

∥

∥

∥

∥

∥

∥

2

+
ǫ(N − 2)(N + 1)

2

N
∑

i=2

∥

∥Aix
∗
i −Aix

0
i

∥

∥

2
.

When t = O(1/ǫ2), and together with the condition that ǫ
2
≤ γ ≤ ǫ, we have

ρ2 + ‖λ0‖2
γ(t + 1)

+
γ

2(t + 1)

N−1
∑

i=1

∥

∥

∥

∥

∥

∥

N
∑

j=i+1

Aj(x
0
j − x∗j )

∥

∥

∥

∥

∥

∥

2

+
ǫ(N − 2)(N + 1)

2

N
∑

i=2

∥

∥Aix
∗
i −Aix

0
i

∥

∥

2
= O(ǫ).(3.17)

We now define the function

v(ξ) = min{f(u)|
N
∑

i=1

Aixi − b = ξ, xi ∈ Xi, i = 1, 2, . . . , N}.

It is easy to verify that v is convex, v(0) = f(u∗), and λ∗ ∈ ∂v(0). Therefore, from the convexity of v,
it holds that

v(ξ) ≥ v(0) + 〈λ∗, ξ〉 ≥ f(u∗) − ‖λ∗‖‖ξ‖. (3.18)

Let ξ̄ =
N
∑

i=1

Aix̄
t
i − b, we have f(ūt) ≥ v(ξ̄). Therefore, combining (3.15), (3.17) and (3.18), we get

−‖λ∗‖‖ξ̄‖ ≤ f(ūt) − f(u∗)

≤ ρ2 + ‖λ0‖2
γ(t + 1)

+
γ

2(t + 1)

N−1
∑

i=1

∥

∥

∥

∥

∥

∥

N
∑

j=i+1

Aj(x
0
j − x∗j)

∥

∥

∥

∥

∥

∥

2

+
ǫ(N − 2)(N + 1)

2

N
∑

i=2

∥

∥Aix
∗
i −Aix

0
i

∥

∥

2 − ρ‖ξ̄‖

≤ Cǫ− ρ‖ξ̄‖,

which, by using ρ = ‖λ∗‖ + 1, yields,

‖
N
∑

i=1

Aix̄
t
i − b‖ = ‖ξ̄‖ ≤ Cǫ. (3.19)
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Moreover, by combining (3.15) and (3.19), one obtains that

− ρCǫ ≤ −ρ‖ξ̄‖ ≤ f(ūt) − f(u∗) ≤ (1 − ρ)Cǫ. (3.20)

Finally, we note that (3.19), (3.20) imply (3.13). �

4 Iteration Complexity of ADMM: Kurdyka- Lojasiewicz Property

In this section, we prove an O(1/ǫ) iteration complexity of ADMM (1.2) under the conditions in Sce-
nario 2 of Table 1. Indeed, we prove that the ADMM for the original problem (1.1) returns an ǫ-optimal
solution within O(1/ǫ) iterations in Scenario 2.

Under the conditions in Scenario 2, the multi-block ADMM (1.2) for solving (1.1) can be rewritten as:

xk+1
1

:= argmin
x1∈X1

f1(x1) +
γ

2

∥

∥

∥

∥

∥

∥

A1x1 +

N−1
∑

j=2

Ajx
k
j + xkN − b− 1

γ
λk

∥

∥

∥

∥

∥

∥

2

, (4.1)

xk+1

i := argmin
xi∈Xi

fi(xi) +
γ

2

∥

∥

∥

∥

∥

∥

i−1
∑

j=1

Ajx
k+1

j + Aixi +

N−1
∑

j=i+1

Ajx
k
j + xkN − b− 1

γ
λk

∥

∥

∥

∥

∥

∥

2

,

i = 2, . . . , N − 1, (4.2)

xk+1

N := argmin fN (xN ) +
γ

2

∥

∥

∥

∥

∥

∥

N−1
∑

j=1

Ajx
k+1

j + xN − b− 1

γ
λk

∥

∥

∥

∥

∥

∥

2

, (4.3)

λk+1 := λk − γ
(

A1x
k+1
1

+ A2x
k+1
2

+ · · · + AN−1x
k+1

N−1
+ xk+1

N − b
)

. (4.4)

The first-order optimality conditions for (4.1)-(4.3) are given respectively by xk+1

i ∈ Xi, i = 1, . . . , N−1,
and

g1(xk+1
1

) −A⊤
1 λ

k + γA⊤
1



A1x
k+1
1

+

N−1
∑

j=2

Ajx
k
j + xkN − b



 = 0, (4.5)

gi(x
k+1

i ) −A⊤
i λ

k + γA⊤
i





i
∑

j=1

Ajx
k+1

j +
N−1
∑

j=i+1

Ajx
k
j + xkN − b



 = 0, (4.6)

∇fN(xk+1

N ) − λk + γ





N−1
∑

j=1

Ajx
k+1

j + xk+1

N − b



 = 0, (4.7)

where gi ∈ ∂ (fi + 1Xi
) is a subgradient of fi +1Xi

for i = 1, 2, . . . , N − 1. Moreover, by combining with
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(4.4), (4.5)-(4.7) can be rewritten as

g1(xk+1
1

) −A⊤
1 λ

k+1 + γA⊤
1





N−1
∑

j=2

Aj(x
k
j − xk+1

j ) + (xkN − xk+1

N )



 = 0, (4.8)

gi(x
k+1

i ) −A⊤
i λ

k+1 + γA⊤
i





N−1
∑

j=i+1

Aj(x
k
j − xk+1

j ) + (xkN − xk+1

N )



 = 0, (4.9)

∇fN(xk+1

N ) − λk+1 = 0. (4.10)

Note that in Scenario 2 we require that Lγ is a Kurdyka- Lojasiewicz (KL) function. Let us first
introduce the notion of the KL function and the KL property, which can be found, e.g., in [3, 4]. We
denote dist(x, S) := inf{‖y − x‖ : y ∈ S} as the distance from x to S. Let η ∈ (0,+∞]. We further
denote Φη to be the class of all concave and continuous functions ϕ : [0, η) → R+ satisfying the following
conditions:

1. ϕ(0) = 0;
2. ϕ is C1 on (0, η) and continuous at 0;
3. for all s ∈ (0, η) : ϕ′(s) > 0.

Definition 4.1 Let f : Ω → (−∞,+∞] be proper and lower semicontinuous.

1. The function f has Kurdyka- Lojasiewicz (KL) property at w0 ∈ {w ∈ Ω : ∂f(w) 6= ∅} if there
exists η ∈ (0,+∞], a neighbourhood W0 of w0 and a function ϕ ∈ Φη such that for all

w̄0 ∈ W ∩ {w ∈ Ω : f(w) < f(w0) < f(w) + η} ,

the following inequality holds,

ϕ′(f(w̄0) − f(w0)) dist(0, ∂f(w̄0)) ≥ 1. (4.11)

2. The function f is a KL function if f satisfies the KL property at each point of Ω ∩ {∂f(w) 6= ∅}.

Remark 4.1 It is important to remark that most convex functions from practical applications satisfy the
KL property; see Section 5.1 of [4]. In fact, convex functions that do not satisfy the KL property exist (see
[3] for a counterexample) but they are rare and difficult to construct. Indeed, Lγ will be a KL function
if each fi satisfies growth condition, or uniform convexity, or they are general convex semialgebraic or
real analytic functions. We refer the interested readers to [1] and [4] for more information.

The following result, which is called uniformized KL property, is from Lemma 6 of [4].

Lemma 4.2 [Lemma 6 [4]] Let Ω be a compact set and f : Rn → (−∞,∞] be a proper and lower
semi-continuous function. Assume that f is constant on Ω and satisfies the KL property at each point
of Ω. Then, there exists ǫ > 0, η > 0 and ϕ ∈ Φη such that for all ū in Ω and all u in the intersection:

{u ∈ Rn : dist(u,Ω) < ǫ} ∩ {u ∈ Rn : f(ū) < f(u) < f(ū) + η} ,
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the following inequality holds,

ϕ′ (f(u) − f(ū)) dist (0, ∂f(u)) ≥ 1.

We now give a formal definition of the limit point set. Let the sequence wk =
(

xk1 , . . . , x
k
N , λk

)

be a
sequence generated by the multi-ADMM (1.2) from a starting point w0 =

(

x01, . . . , x
0
N , λ0

)

. The set of
all limit points is denoted by Ω(w0), i.e.,

Ω(w0) =
{

w̄ ∈ Rn1 × · · · ×RnN ×Rp : ∃ an infinite sequence {kl}l=1,... such that wkl → w̄ as l → ∞
}

.

In the following we present the main results in this section. Specifically, Theorem 4.3 gives the conver-
gence of the multi-ADMM (1.2), and we include its proof in the Appendix. Theorem 4.5 shows that
the whole sequence generated by the multi-ADMM (1.2) converges.

Theorem 4.3 Under the conditions in Scenario 2 of Table 1, then:

1. Ω(w0) is a non-empty set, and any point in Ω(w0) is a stationary point of Lγ(x1, . . . , xN , λ);

2. Ω(w0) is a compact and connected set;

3. The function Lγ(x1, . . . , xN , λ) is finite and constant on Ω(w0).

Remark 4.4 In Theorem 4.3, we do not require Lγ to be a KL function, which is only required in
Theorem 4.5 (see next).

Theorem 4.5 Suppose that Lγ(x1, . . . , xN , λ) is a KL function. Let the sequence wk =
(

xk1 , . . . , x
k
N , λk

)

be generated by the multi-block ADMM (1.2). Let w∗ = (x∗1, . . . , x
∗
N , λ∗) ∈ Ω(w0), the sequence wk =

(

xk1, . . . , x
k
N , λk

)

has a finite length, i.e.,

∞
∑

k=0

(

N−1
∑

i=1

‖Aix
k
i −Aix

k+1

i ‖ + ‖xkN − xk+1

N ‖ + ‖λk − λk+1‖
)

≤ G, (4.12)

where the constant G is given by

G := 2

(

N−1
∑

i=1

‖Aix
0
i −Aix

1
i ‖ + ‖x0N − x1N‖ + ‖λ0 − λ1‖

)

+
2Mγ(1 + L2)

γ2 − 2L2
ϕ
(

Lγ(w1) − Lγ(w∗)
)

,

and

M = max

(

γ

N−1
∑

i=1

∥

∥

∥A⊤
i

∥

∥

∥ ,
1

γ
+ 1 +

N−1
∑

i=1

∥

∥

∥A⊤
i

∥

∥

∥

)

> 0,

and the whole sequence
(

A1x
k
1 , A2x

k
2, . . . , AN−1x

k
N−1

, xkN , λk
)

converges to
(

A1x
∗
1, . . . , AN−1x

∗
N−1

, x∗N , λ∗
)

.
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Proof. The proof of this theorem is almost identical to the proof of Theorem 1 in [4], by utilizing the
uniformized KL property (Lemma 4.2), and the facts that Ω(w0) is compact, Lγ(w) is constant (proved
in Theorem 4.3), with function Ψ replaced by Lγ and some other minor changes. We thus omit the
proof for succinctness. �

Based on Theorem 4.5, we prove a key lemma for analyzing the iteration complexity for the ADMM.

Lemma 4.6 Let (xk+1
1

, xk+1
2

, . . . , xk+1

N , λk+1) ∈ Ω be generated by the multi-ADMM (4.1)-(4.4) (or
equivalently, (1.2)) from given (xk2 , . . . , x

k
N , λk). For any u∗ = (x∗1, x

∗
2, . . . , x

∗
N ) ∈ Ω∗ and λ ∈ Rp, it

holds in Scenario 2 that

f(u∗) − f(uk+1) +















x∗1 − xk+1

1

x∗2 − xk+1
2

...

x∗N − xk+1

N

λ− λk+1















⊤













−A⊤
1 λ

k+1

−A⊤
2 λ

k + 1
...

−λk+1

∑N−1

i=1
Aix

k+1

i + xk+1

N − b















+
γ

2





∥

∥

∥

∥

∥

A1x
∗
1 +

N−1
∑

i=2

Aix
k
i + xkN − b

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

A1x
∗
1 +

N−1
∑

i=2

Aix
k+1

i + xk+1

N − b

∥

∥

∥

∥

∥

2




+
1

2γ

(

∥

∥

∥
λ− λk

∥

∥

∥

2

−
∥

∥

∥
λ− λk+1

∥

∥

∥

2
)

+ γD(N − 2)

(

N−1
∑

i=1

∥

∥

∥
Aix

k
i −Aix

k+1

i

∥

∥

∥
+
∥

∥

∥
xkN − xk+1

N

∥

∥

∥

)

≥ 0, (4.13)

where D is a constant.

Proof. Note that combining (4.9)-(4.10) yields











x1 − xk+1
1

x2 − xk+1
2

...

xN − xk+1

N











⊤
























g1(xk+1
1

) −A⊤
1 λ

k+1

g2(xk+1
2

) −A⊤
2 λ

k+1

...

∇fN (xk+1

N ) − λk+1











+















γA⊤
1 A2 γA⊤

1 A3 · · · γA⊤
1

0 γA⊤
2 A3 · · · γA⊤

2

...
. . .

. . .
...

0 0 · · · γA⊤
N−1

0 0 · · · 0





















xk2 − xk+1
2

...

xkN − xk+1

N





















≥ 0, (4.14)

where xi ∈ Xi and gi ∈ ∂(fi + 1Xi
) is a subgradient of fi + 1Xi

for i = 1, 2, . . . , N − 1.

The key step in our proof is to bound the following terms

(

xi − xk+1

i

)⊤

A⊤
i





N−1
∑

j=i+1

Aj(x
k
j − xk+1

j ) + (xkN − xk+1

N )



 , i = 1, 2, . . . , N − 1.
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For the first term, we have (similar to Lemma 3.1)

(x1 − xk+1
1

)⊤A⊤
1





N−1
∑

j=2

Aj(x
k
j − xk+1

j ) + (xkN − xk+1

N )





≤ 1

2





∥

∥

∥

∥

∥

∥

A1x1 +

N−1
∑

j=2

Ajx
k
j + xkN − b

∥

∥

∥

∥

∥

∥

2

−

∥

∥

∥

∥

∥

∥

A1x1 +

N−1
∑

j=2

Ajx
k+1

j + xk+1

N − b

∥

∥

∥

∥

∥

∥

2

+
1

2γ2
‖λk+1 − λk‖2.

For i = 2, 3, . . . , N − 1, we have,

(xi − xk+1

i )⊤A⊤
i





N−1
∑

j=i+1

Aj(x
k
j − xk+1

j ) + (xkN − xk+1

N )





≤
∥

∥

∥Aixi −Aix
k+1

i

∥

∥

∥





N−1
∑

j=i+1

∥

∥

∥Ajx
k
j −Ajx

k+1

j

∥

∥

∥+
∥

∥

∥xkN − xk+1

N

∥

∥

∥





≤
∥

∥

∥
Aixi −Aix

k+1

i

∥

∥

∥





N−1
∑

j=1

∥

∥

∥
Ajx

k
j −Ajx

k+1

j

∥

∥

∥
+
∥

∥

∥
xkN − xk+1

N

∥

∥

∥



 .

Therefore,











x1 − xk+1
1

x2 − xk+1

2

...

xN − xk+1

N











⊤














γA⊤
1 A2 γA⊤

1 A3 · · · γA⊤
1

0 γA⊤
2 A3 · · · γA⊤

2

...
. . .

. . .
...

0 0 · · · γA⊤
N−1

0 0 · · · 0





















xk2 − xk+1
2

...

xkN − xk+1

N







≤ γ

2





∥

∥

∥

∥

∥

A1x1 +
N−1
∑

i=2

Aix
k
i + xkN − b

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

A1x1 +
N−1
∑

i=2

Aix
k+1

i + xk+1

N − b

∥

∥

∥

∥

∥

2


+
1

2γ

∥

∥

∥
λk+1 − λk

∥

∥

∥

2

+γ

(

N−1
∑

i=2

∥

∥

∥Aixi −Aix
k+1

i

∥

∥

∥

)[

N−1
∑

i=1

∥

∥

∥Aix
k
i −Aix

k+1

i

∥

∥

∥+
∥

∥

∥xkN − xk+1

N

∥

∥

∥

]

. (4.15)
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Combining (4.4), (4.14) and (4.15), it holds for any λ ∈ Rp that















x1 − xk+1
1

x2 − xk+1
2

...

xN − xk+1

N

λ− λk+1















⊤













g1(xk+1
1

) −A⊤
1 λ

k+1

g2(xk+1
2

) −A⊤
2 λ

k+1

...

∇fN (xk+1

N ) − λk+1

∑N−1

i=1
Aix

k+1

i + xk+1

N − b















+
1

γ

(

λ− λk+1
)⊤ (

λk+1 − λk
)

+
γ

2





∥

∥

∥

∥

∥

A1x1 +

N−1
∑

i=2

Aix
k
i + xkN − b

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

A1x1 +

N−1
∑

i=2

Aix
k+1

i + xk+1

N − b

∥

∥

∥

∥

∥

2


+
1

2γ

∥

∥

∥λk+1 − λk
∥

∥

∥

2

+γ

(

N−1
∑

i=2

∥

∥

∥Aixi −Aix
k+1

i

∥

∥

∥

)[

N−1
∑

i=1

∥

∥

∥Aix
k
i −Aix

k+1

i

∥

∥

∥+
∥

∥

∥xkN − xk+1

N

∥

∥

∥

]

≥ 0. (4.16)

Using (2.5), we have

1

γ

(

λ− λk+1
)⊤ (

λk+1 − λk
)

+
1

2γ

∥

∥

∥λk+1 − λk
∥

∥

∥

2

=
1

2γ

(

∥

∥

∥λ− λk
∥

∥

∥

2

−
∥

∥

∥λ− λk+1

∥

∥

∥

2
)

.

Letting u = u∗ in (4.16), and invoking the convexity of fi, we obtain

f(u∗) − f(uk+1) +















x∗1 − xk+1
1

x∗2 − xk+1

2

...

x∗N − xk+1

N

λ− λk+1















⊤













−A⊤
1 λ

k+1

−A⊤
2 λ

k+1

...
−λk+1

∑N−1

i=1
Aix

k+1

i + xk+1

N − b















+
1

2γ

(

∥

∥

∥
λ− λk

∥

∥

∥

2

−
∥

∥

∥
λ− λk+1

∥

∥

∥

2
)

+
γ

2





∥

∥

∥

∥

∥

A1x
∗
1 +

N−1
∑

i=2

Aix
k
i + xkN − b

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

A1x
∗
1 +

N−1
∑

i=2

Aix
k+1

i + xk+1

N − b

∥

∥

∥

∥

∥

2




+γ

(

N−1
∑

i=2

∥

∥

∥
Aix

∗
i −Aix

k+1

i

∥

∥

∥

)[

N−1
∑

i=1

∥

∥

∥
Aix

k
i −Aix

k+1

i

∥

∥

∥
+
∥

∥

∥
xkN − xk+1

N

∥

∥

∥

]

≥ 0.

From Theorem 4.5 we know that the whole sequence
(

A1x
k
1 , A2x

k
2, . . . , AN−1x

k
N−1

, xkN , λk
)

converges to
(

A1x
∗
1, . . . , AN−1x

∗
N−1

, x∗N , λ∗
)

. Therefore, there exists a constant D > 0 such that

∥

∥

∥
Aix

k
i −Aix

k+1

i

∥

∥

∥
≤ D, (4.17)

for any k ≥ 0 and any i = 2, 3, . . . , N − 1. This implies (4.13). �

Now, we are ready to prove the O(1/ǫ) iteration complexity of the multi-block ADMM for (1.1).

17



Theorem 4.7 Let (xk+1
1

, xk+1
2

, . . . , xk+1

N , λk+1) ∈ Ω be generated by ADMM (4.1)-(4.4) from given
(xk2 , . . . , x

k
N , λk). For any integer t > 0, let ūt = (x̄t1, x̄

t
2, . . . , x̄

t
N ) and λ̄t be defined as

x̄ti =
1

t + 1

t
∑

k=0

xk+1

i , i = 1, 2, . . . , N, λ̄t =
1

t + 1

t
∑

k=0

λk+1.

For any (u∗, λ∗) ∈ Ω∗, by defining ρ := ‖λ∗‖ + 1, it holds in Scenario 2 that,

0 ≤ f(ūt) − f(u∗) + ρ

∥

∥

∥

∥

∥

N
∑

i=1

Aix̄
t
i − b

∥

∥

∥

∥

∥

≤ ρ2 + ‖λ0‖2
γ(t + 1)

+
γ

2(t + 1)

∥

∥

∥

∥

∥

N−1
∑

i=2

Ai(x
0
i − x∗j) + (x0N − x∗N )

∥

∥

∥

∥

∥

2

+
γDG

t + 1
.

Note this also implies that when t = O(1/ǫ), ūt = (x̄t1, x̄
t
2, . . . , x̄

t
N ) is an ǫ-optimal solution to the

original problem (1.1), i.e., both the error of the objective function value and the residual of the equality
constraint satisfy that

|f(ūt) − f(u∗)| = O(ǫ), and

∥

∥

∥

∥

∥

N
∑

i=1

Aix̄
t
i − b

∥

∥

∥

∥

∥

= O(ǫ). (4.18)

Proof. Because (uk, λk) ∈ Ω, it holds that (ūt, λ̄t) ∈ Ω for all t ≥ 0. By Lemma 4.6 and invoking the
convexity of function f(·), we have

f(u∗) − f(ūt) + λ⊤

(

N−1
∑

i=1

Aix̄
t
i + x̄tN − b

)

=f(u∗) − f(ūt) +















x∗1 − x̄t1
x∗2 − x̄t2

...
x∗N − x̄tN
λ− λ̄t















⊤













−A⊤
1 λ̄

t

−A⊤
2 λ̄

t

...
−λ̄t

∑N−1

i=1
Aix̄

t
i + x̄tN − b















≥ 1

t + 1

t
∑

k=0

















f(u∗) − f(uk+1) +















x∗1 − xk+1
1

x∗2 − xk+1

2

...

x∗N − xk+1

N

λ− λk+1















⊤













−A⊤
1 λ

k+1

−A⊤
2 λ

k+1

...
−λk+1

∑N−1

i=1
Aix

k+1

i + xk+1

N − b































≥ 1

t + 1

t
∑

k=0

[

1

2γ

(

∥

∥

∥
λ− λk+1

∥

∥

∥

2

−
∥

∥

∥
λ− λk

∥

∥

∥

2
)

− γD(N − 2)

(

N−1
∑

i=1

∥

∥

∥
Aix

k
i −Aix

k+1

i

∥

∥

∥
+
∥

∥

∥
xkN − xk+1

N

∥

∥

∥

)

+
γ

2





∥

∥

∥

∥

∥

A1x
∗
1 +

N−1
∑

i=2

Aix
k+1

i + xk+1

N − b

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

A1x
∗
1 +

N−1
∑

i=2

Aix
k
i + xkN − b

∥

∥

∥

∥

∥

2








18



≥− 1

2γ(t + 1)

∥

∥λ− λ0
∥

∥

2 − γ

2(t + 1)

∥

∥

∥

∥

∥

A1x
∗
1 +

N−1
∑

i=2

Aix
0
i + x0N − b

∥

∥

∥

∥

∥

2

− γD(N − 2)

t + 1

t
∑

k=0

(

N−1
∑

i=1

∥

∥

∥
Aix

k
i −Aix

k+1

i

∥

∥

∥
+
∥

∥

∥
xkN − xk+1

N

∥

∥

∥

)

≥− 1

2γ(t + 1)

∥

∥λ− λ0
∥

∥

2 − γ

2(t + 1)

∥

∥

∥

∥

∥

A1x
∗
1 +

N−1
∑

i=2

Aix
0
i + x0N − b

∥

∥

∥

∥

∥

2

− γDG(N − 2)

t + 1
,

where the last inequality holds due to Theorem 4.5. Note that this inequality holds for all λ ∈ Rp.
From the optimal condition (2.1) we obtain

0 ≥ f(u∗) − f(ūt) + (λ∗)⊤

(

N−1
∑

i=1

Aix̄
t
i + x̄tN − b

)

.

Moreover, since ρ := ‖λ∗‖+ 1, ‖λ− λ0‖2 ≤ 2(ρ2 + ‖λ0‖2) for all ‖λ‖ ≤ ρ, and
∑N−1

i=1
Aix

∗
i + x∗N = b, we

obtain

0 ≤ f(ūt) − f(u∗) + ρ

∥

∥

∥

∥

∥

N−1
∑

i=1

Aix̄
t
i + x̄tN − b

∥

∥

∥

∥

∥

≤ ρ2 + ‖λ0‖2
γ(t + 1)

+
γ

2(t + 1)

∥

∥

∥

∥

∥

N−1
∑

i=2

Ai(x
0
i − x∗i ) + (x0N − x∗N )

∥

∥

∥

∥

∥

2

+
γDG(N − 2)

t + 1
. (4.19)

When t = O(1/ǫ), we have

ρ2 + ‖λ0‖2
γ(t + 1)

+
γ

2(t + 1)

∥

∥

∥

∥

∥

N−1
∑

i=2

Ai(x
0
i − x∗i ) + (x0N − x∗N )

∥

∥

∥

∥

∥

2

+
γDG(N − 2)

t + 1
= O(ǫ). (4.20)

By the same argument as in the proof for Theorem 3.2, (4.18) follows from (4.20).
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A Proof of Theorem 4.3

We first prove a key lemma in the proof of Theorem 4.3.

Lemma A.1 The following holds in Scenario 2,

1. The iterative gap of dual variable can be bounded by that of primal variable, i.e.,

∇fN(xk+1

N ) = λk+1, (A.1)

and
∥

∥

∥
λk+1 − λk

∥

∥

∥

2

≤ L2

∥

∥

∥
xk+1

N − xkN

∥

∥

∥
, (A.2)

where L satisfies that
‖∇fN(x) −∇fN (y)‖ ≤ L ‖x− y‖ .

2. The augmented Lagrangian Lγ has a sufficient decrease in each iteration, i.e.,

Lγ(xk1 , . . . , x
k
N+1, λ

k) − Lγ(xk+1
1

, . . . , xk+1

N+1
, λk+1)

≥ γ2 − 2L2

2γ(1 + L2)

(

N−1
∑

i=1

∥

∥

∥Aix
k
i −Aix

k+1

i

∥

∥

∥

2

+
∥

∥

∥xkN − xk+1

N

∥

∥

∥

2

+
∥

∥

∥λk − λk+1

∥

∥

∥

2

)

. (A.3)

3. The augmented Lagrangian Lγ(wk) is uniformly lower bounded, and it holds true that

∞
∑

k=0

(

N−1
∑

i=1

∥

∥

∥Aix
k+1

i −Aix
k
i

∥

∥

∥

2

+
∥

∥

∥xk+1

N − xkN

∥

∥

∥

2

+
∥

∥

∥λk+1 − λk
∥

∥

∥

2

)

≤ 2γ(1 + L2)

γ2 − 2L2

(

Lγ(w0) − L∗
)

(A.4)
where L∗ is the uniformly lower bound of Lγ(wk), and hence

lim
k→∞

(

N−1
∑

i=1

∥

∥

∥
Aix

k
i −Aix

k+1

i

∥

∥

∥

2

+
∥

∥

∥
xkN − xk+1

N

∥

∥

∥

2

+
∥

∥

∥
λk − λk+1

∥

∥

∥

2

)

= 0. (A.5)

Moreover,
{(

xk1, x
k
2 , . . . , x

k
N , λk

)

: k = 0, 1, . . .
}

is a bounded sequence.
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4. There exists a upper bound for a subgradient of augmented Lagrangian Lγ in each iteration. Indeed,
we define

Rk+1

i = γA⊤
i

(

N−1
∑

i=1

Aix
k+1

i + xk+1

N − b

)

− γA⊤
i





N−1
∑

j=i+1

Aj(x
k
j − xk+1

j ) + (xkN − xk+1

N )





and

Rk+1

N = γ

(

N−1
∑

i=1

Aix
k+1

i + xk+1

N − b

)

, Rk+1

λ = b−
N−1
∑

i=1

Aix
k+1

i − xk+1

N

for each positive integer k, and i = 1, 2, . . . , N . Then
(

Rk+1
1

, . . . , Rk+1

N , Rk+1

λ

)

∈ ∂Lγ(wk+1).

Moreover, it holds that

∥

∥

∥

(

Rk+1
1

, . . . , Rk+1

N , Rk+1

λ

)∥

∥

∥

≤
N
∑

i=1

∥

∥

∥Rk+1

i

∥

∥

∥+
∥

∥

∥Rk+1

λ
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∥

∥

≤ M

(

N−1
∑

i=1

∥

∥

∥
Aix

k
i −Aix

k+1

i

∥

∥

∥
+
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∥

∥
xki − xk+1

i

∥

∥

∥
+
∥

∥

∥
λk − λk+1

∥

∥

∥

)

, ∀k ≥ 0, (A.6)

where M is a constant defined as

M = max

(

γ

N−1
∑

i=1

∥

∥

∥A⊤
i

∥

∥

∥ ,
1

γ
+ 1 +

N−1
∑

i=1

∥

∥

∥A⊤
i

∥

∥

∥

)

> 0. (A.7)

Proof of Lemma A.1.

1. (A.1) follows from (4.10) directly. Then we consider the inequality (A.2). It follows from (A.1)
and the fact that ∇fN is Lipschitz continuous with L that

∥

∥

∥λk+1 − λk
∥

∥

∥

2

=
∥

∥

∥∇f(xk+1

N ) −∇f(xkN)
∥

∥

∥

2

≤ L2

∥

∥

∥xk+1

N − xkN

∥

∥

∥

2

.

2. Multiply both sides of (4.5) by xk1 − xk+1
1

, and invoking the convexity of f1, we have

0 =
(

xk1 − xk+1
1

)⊤



g1(xk+1
1

) −A⊤
1 λ

k + γA⊤
1



A1x
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+
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∑
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k
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≤f(xk1) − f(xk+1

1
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k
1 −A1x

k+1

1

)⊤

λk

+ γ
(

A1x
k
1 −A1x

k+1
1

)⊤



A1x
k+1
1
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N−1
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j=2

Ajx
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j + xkN − b
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=



f(xk1) −A1x
k
1 +

γ

2

∥

∥

∥

∥

∥

∥
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(A.8)

where the second equality holds due to (2.5).

For i = 2, 3, . . . , N , we can derive from (4.6) and (4.7) that

Lγ

(
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1
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. (A.9)

Summing (A.8) and (A.9) over i = 2, . . . , N , we have
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On the other hand, it follows from (A.1) that
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Combining (A.10) and (A.11) yields

Lγ

(

xk1, . . . , x
k
N , λk

)

− Lγ

(

xk+1
1

, . . . , xk+1

N , λk+1
)

≥ γ

2

N−1
∑

i=1

∥

∥

∥Aix
k
i −Aix

k+1

i

∥

∥

∥

2

+
γ2 − 2L2

2γ

∥

∥

∥xkN − xk+1

N

∥

∥

∥

2

=
γ

2

N−1
∑

i=1

∥

∥

∥
Aix

k
i −Aix

k+1

i

∥

∥

∥

2

+
γ2 − 2L2

2γ(1 + L2)

∥

∥

∥
xkN − xk+1

N

∥

∥

∥

2

+
L2(γ2 − 2L2)

2γ(1 + L2)

∥

∥

∥
xkN − xk+1

N

∥

∥

∥

2

≥ γ

2

N−1
∑

i=1

∥

∥

∥Aix
k
i −Aix

k+1

i

∥

∥

∥

2

+
γ2 − 2L2

2γ(1 + L2)

(

∥

∥

∥xkN − xk+1

N

∥

∥

∥

2

+
∥

∥

∥λk − λk+1

∥

∥

∥

2
)

≥ γ2 − 2L2

2γ(1 + L2)

(

N−1
∑

i=1

∥

∥

∥
Aix

k
i −Aix

k+1

i

∥

∥

∥

2

+
∥

∥

∥
xkN − xk+1

N

∥

∥

∥

2

+
∥

∥

∥
λk − λk+1

∥

∥

∥

2

)

(A.12)

where the last inequality holds due to the fact that

γ

2
≥ γ2 − 2L2

2γ(1 + L2)
.
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3. Note that
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It follows from (A.1) and the fact that ∇fN is Lipschitz continuous with constant L that,
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This implies that there exists L∗ > −∞, such that
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where the last inequality holds since γ > L and infXi
fi > f∗

i for i = 1, 2, . . . , N .

Therefore, it directly follows from (A.3) and γ >
√

2L that,
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which implies (A.4) and (A.5).

It also follows from (A.13), (A.3) and γ >
√

2L that Lγ(w0) − f∗
N ≥ ∑N−1
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fi(x
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i ). This
implies that

{(
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2 , . . . , x
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: k = 0, 1, . . .
}

is a bounded sequence by using the coerciveness

of fi +1Xi
, i = 1, 2, . . . , N −1. The boundedness of

(

xkN , λk
)

can be obtained by using (4.4), (A.2)
and (A.5).
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4. From the definition of Lγ , it is clear that for i = 1, . . . , N − 1,
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∇fN(xk+1

N ) − λk+1 = 0, (A.16)

we have
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and

∥
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Therefore, we arrive at (A.6) where M is defined in (A.7).

�

Proof of Theorem 4.3.

1. It has been proven in Lemma A.1 that
{(

xk1 , x
k
2 , . . . , x

k
N , λk

)

: k = 0, 1, . . .
}

is a bounded sequence.
Therefore, we conclude that Ω(w0) is non-empty by the Bolzano-Weierstrass Theorem. Let w∗ =
(x∗1, . . . , x

∗
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Since fi, i = 1, . . . , N − 1, are lower semi-continuous, we obtain that
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kq
i ) ≥ fi(x

∗
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From the iterative step (4.1)-(4.4), we have for any integer k and any i = 1, . . . , N − 1,

xk+1

i := argmin
xi∈Xi

Lγ(xk+1
1

, . . . , xk+1

i−1
, xi, x

k
i+1, . . . , x

k
N ;λk).

Letting xi = x∗i in the above, we get

Lγ(xk+1
1

, . . . , xk+1

i , xki+1, . . . , x
k
N ;λk) ≤ Lγ(xk+1

1
, . . . , xk+1

i−1
, x∗i , x

k
i+1, . . . , x

k
N ;λk),

i.e.,

fi(x
k+1

i ) −
〈

λk, Aix
k+1

i

〉

+
γ

2

∥

∥

∥

∥

∥

∥

i
∑

j=1

Ajx
k+1

j +
N−1
∑

j=i+1

Ajx
k
j + xkN − b

∥

∥

∥

∥

∥

∥

2

≤ fi(x
∗
i ) −

〈

λk, Aix
∗
i

〉

+
γ

2

∥

∥

∥

∥

∥

∥

i−1
∑

j=1

Ajx
k+1

j + Aix
∗
i +

N−1
∑

j=i+1

Ajx
k
j + xkN − b

∥

∥

∥

∥

∥

∥

2

.

Choosing k = kq − 1 in the above inequality and letting q go to +∞, we obtain

lim sup
q→+∞

fi(x
kq
i ) ≤ lim sup

q→+∞

(

γ

2

∥

∥

∥Aix
kq
i −Aix

∗
i

∥

∥

∥

2

−
〈

λk, Aix
kq
i −Aix

∗
i

〉

)

+ fi(x
∗
i ), (A.18)

for i = 1, 2, . . . , N − 1. Here we have used the facts that both the sequence {wk : k = 0, 1, . . .}
is bounded, and γ is finite, and that the distance between two successive iterates tends to zero
(A.5), and the fact that

i
∑

j=1

Ajx
k+1

j +

N−1
∑

j=i+1

Ajx
k
j + xkN − b =

N−1
∑

j=i+1

(

Ajx
k
j −Ajx

k+1

j

)

+
(

xkN − xk+1

N

)

+
1

γ
(λk − λk+1).
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From (A.5) we also have x
kq−1

i → x∗i as q → ∞, hence (A.18) reduces to

lim sup
q→∞

fi(x
kq
i ) ≤ fi(x

∗
i ).

Therefore, combining with (A.17), fi(x
kq
i ) tends to fi(x

∗
i ) as q → ∞. Therefore, we can conclude

that

lim
q→∞

Lγ(wkq ) = lim
q→∞





N
∑

i=1

fi(x
kq
i ) −

〈

λkq ,

N−1
∑

i=1

Aix
kq
i + x

kq
N − b

〉

+
γ

2

∥

∥

∥

∥

∥

N−1
∑

i=1

Aix
kq
i + x

kq
N − b

∥

∥

∥

∥

∥

2




=

N
∑

i=1

fi(x
∗
i ) −

〈

λ∗,

N−1
∑

i=1

Aix
∗
i + x∗N − b

〉

+
γ

2

∥

∥

∥

∥

∥

N−1
∑

i=1

Aix
∗
i + x∗N − b

∥

∥

∥

∥

∥

2

= Lγ(w∗).

On the other hand, it follows from (A.5) and (A.6) that

(

Rk+1

1
, . . . , Rk+1

N , Rk+1

λ

)

∈ ∂Lγ(wk+1) (A.19)
(

Rk+1
1

, . . . , Rk+1

N , Rk+1

λ

)

→ (0, . . . , 0), k → ∞. (A.20)

It implies that (0, . . . , 0) ∈ ∂Lγ(x∗1, . . . , x
∗
N , λ∗) due to the closeness of ∂Lγ . Therefore, w∗ =

(x∗1, . . . , x
∗
N , λ∗) is a critical point of Lγ(x1, . . . , xN , λ).

2. The proof for this assertion directly follows from Lemma 5 and Remark 5 of [4]. We omit the
proof here for succinctness.

3. We define that L∗ is the finite limit of Lγ(xk1 , . . . , x
k
N , λk) as k goes to infinity, i.e.,

L∗ = lim
k→∞

Lγ(xk1 , . . . , x
k
N , λk).

Take w∗ ∈ Ω(w0). There exists a subsequence wkq converging to w∗ as q goes to infinity. Since
we have proven that

lim
q→∞

Lγ(wkq ) = Lγ(w∗),

and Lγ(wk) is a non-increasing sequence, we conclude that Lγ(w∗) = L∗, hence the restriction of
Lγ(x1, . . . , xN , λ) to Ω(w0) equals L∗.
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