Skip to main content
Log in

Application of a Multi-dimensional Limiting Process to Central-Upwind Schemes for Solving Hyperbolic Systems of Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study semi-discrete central-upwind difference schemes with a modified multi-dimensional limiting process (MLP) to solve two-dimensional hyperbolic systems of conservation laws. In general, high-order central difference schemes for conservation laws involve no Riemann solvers or characteristic decompositions but have a tendency to smear linear discontinuities. To overcome this drawback of central-upwind schemes, we use a MLP that uses multi-dimensional information for slope limitation to control the oscillations across discontinuities for multi-dimensional applications. Some numerical results are provided to demonstrate the performance of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bianco, F., Puppo, G., Russo, G.: High order central schemes for hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 21, 294–322 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Colella, P.: Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87, 171–200 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math. 7, 345–392 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gerlinger, P.: Multi-dimensional limiting for high-order schemes including turbulence and combustion. J. Comput. Phys. 231, 2199–2228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Glimm, J., Grove, J., Li, X., Oh, W., Tan, D.C.: The dynamics of bubble growth for Rayleigh–Taylor unstable interfaces. Phys. Fluids 31, 447–465 (1988)

    Article  Google Scholar 

  6. Godunov, S.K.: A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271–290 (1959). in Russian

    MathSciNet  MATH  Google Scholar 

  7. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiang, G., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, G.S., Tadmor, E.: Non-oscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19, 1892–1917 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kang, H.M., Kim, K.H., Lee, D.H.: A new approach of a limiting process for mult-dimesnional flows. J. Comput. Phys. 229, 7102–7128 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, K.H., Kim, C.: Accurate, efficient and monotonic numerical methods for multi-dimenional compressible flows. Part II: Multi-dimensional limiting process. J. Comput. Phys. 208, 570–615 (2005)

    Article  MATH  Google Scholar 

  12. Kim, S., Lee, S., Kim, K.H.: Wavenumber-extended high-order oscillation control finite volume schemes for multi-dimensional aeroacoustic simulations. J. Comput. Phys. 227, 4089–4122 (2008)

    Article  MATH  Google Scholar 

  13. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leer, B.V.: Towards the ultimate conservative difference scheme V: a second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  17. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. Math. Model. Numer. Anal. 33, 547–571 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22, 656–672 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levy, D., Puppo, G., Russo, G.: A third order central WENO scheme for 2D conservation laws. Appl. Numer. Math. 33, 415–421 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Levy, D., Puppo, G., Russo, G.: A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 24, 480–506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, X.D., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Numer. Anal. 33, 760–779 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 15, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, X.-D., Tadmor, E.: Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math. 79, 397–425 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Qiu, J., Shu, C.W.: On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183, 187–209 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14(6), 1394–1414 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sidikover, D.: Multidimensional upwinding and multigrid. AIAA Pap. 95, 1759 (1995)

    Google Scholar 

  29. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. van Ransbeeck, P., Hirsch, C.: New upwind dissipation models with a multidimensional approach. AIAA Pap. 92, 0436 (1992)

    Google Scholar 

  31. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

  32. Yoon, S.H., Kim, C., Kim, K.H.: Multi-dimensional limiting process for three-dimensional flow physics analyses. J. Comput. Phys. 227, 6001–6043 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Young, Y.-N., Tufo, H., Dubey, A., Rosner, R.: On the miscible Rayleigh–Taylor instability: two and three dimensions. J. Fluid Mech. 447, 377–408 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Youngsoo Ha and Chang Ho Kim were supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2014M1A7A1A03029872), also Youngsoo Ha was supported by the National Research Foundation of Korea (NRF) (NRF-2013R1A1A2013793). Myungjoo Kang was supported by NRF (2014R1A2A1A10050531, 2015R1A5A1009350) and MOTIE (10048720).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsoo Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, S., Ha, Y., Kang, M. et al. Application of a Multi-dimensional Limiting Process to Central-Upwind Schemes for Solving Hyperbolic Systems of Conservation Laws. J Sci Comput 69, 274–291 (2016). https://doi.org/10.1007/s10915-016-0193-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0193-x

Keywords

Mathematics Subject Classification

Navigation