Skip to main content
Log in

A Multiple-Relaxation-Time Lattice Boltzmann Model for General Nonlinear Anisotropic Convection–Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, based on the previous work (Shi and Guo in Phys Rev E 79:016701, 2009), we develop a multiple-relaxation-time (MRT) lattice Boltzmann model for general nonlinear anisotropic convection–diffusion equation (NACDE), and show that the NACDE can be recovered correctly from the present model through the Chapman–Enskog analysis. We then test the MRT model through some classic CDEs, and find that the numerical results are in good agreement with analytical solutions or some available results. Besides, the numerical results also show that similar to the single-relaxation-time lattice Boltzmann model or so-called BGK model, the present MRT model also has a second-order convergence rate in space. Finally, we also perform a comparative study on the accuracy and stability of the MRT model and BGK model by using two examples. In terms of the accuracy, both the analysis and numerical results show that a numerical slip on the boundary would be caused in the BGK model, and cannot be eliminated unless the relaxation parameter is fixed to be a special value, while the numerical slip in the MRT model can be overcome once the relaxation parameters satisfy some constrains. The results in terms of stability also demonstrate that the MRT model could be more stable than the BGK model through tuning the free relaxation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Chen, S., Doolen, G.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  2. Guo, Z., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  3. Succi, S.: Lattice Boltzmann 2038. EPL 109, 50001 (2015)

    Article  Google Scholar 

  4. Wolf-Gladrow, D.: A lattice Boltzmann equation for diffusion. J. Stat. Phys. 79, 1023–1032 (1995)

    Article  MATH  Google Scholar 

  5. Huber, C., Chopard, B., Manga, M.: A lattice Boltzmann model for coupled diffusion. J. Comput. Phys. 229, 7956–7976 (2010)

    Article  MATH  Google Scholar 

  6. Yan, G.: A lattice Boltzmann equation for waves. J. Comput. Phys. 161, 61–69 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu, X.M., Shi, B.C.: A lattice Bhatnagar–Gross–Krook model for a class of the generalized Burgers equations. Chin. Phys. 15, 1441–1449 (2006)

    Article  Google Scholar 

  8. Succi, S.: A note on the lattice Boltzmann versus finite-difference methods for the numerical solution of the Fisher’s equation. Int. J. Mod. Phys. C 25, 1340015 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chai, Z., Shi, B.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32, 2050–2058 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dawson, S.P., Chen, S., Doolen, G.D.: Lattice Boltzmann computations for reaction–diffusion equations. J. Chem. Phys. 98, 1514–1523 (1993)

    Article  Google Scholar 

  11. Guo, Z.L., Shi, B.C., Wang, N.C.: Fully lagrangian and lattice Boltzmann methods for the advection–diffusion equation. J. Sci. Comput. 14, 291–300 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. van der Sman, R.G.M., Ernst, M.H.: Convection–diffusion lattice Boltzmann scheme for irregular lattices. J. Comput. Phys. 160, 766–782 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, X., Li, N., Goldstein, B.: Lattice Boltzmann simulation of diffusion–convection systems with surface chemical reaction. Mol. Simul. 25, 145–156 (2000)

    Article  MATH  Google Scholar 

  14. Deng, B., Shi, B.C., Wang, G.C.: A new lattice Bhatnagar–Gross–Krook Model for the convection–diffusion equation with a source term. Chin. Phys. Lett. 22, 267–270 (2005)

    Article  Google Scholar 

  15. Zheng, H.W., Shu, C., Chew, Y.T.: A lattice Boltzmann model for multiphase flows with large density ratio. J. Comput. Phys. 218, 353–371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shi, B.C., Deng, B., Du, R., Chen, X.W.: A new scheme for source term in LBGK model for convection–diffusion equation. Comput. Math. Appl. 55, 1568–1575 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chopard, B., Falcone, J.L., Latt, J.: The lattice Boltzmann advection–diffusion model revisited. Eur. Phys. J. Spec. Top. 171, 245–249 (2009)

    Article  Google Scholar 

  18. Huang, H.-B., Lu, X.-Y., Sukop, M.C.: Numerical study of lattice Boltzmann methods for a convection–diffusion equation coupled with Navier–Stokes equations. J. Phys. A 44, 055001 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chai, Z., Zhao, T.S.: Lattice Boltzmann model for the convection–diffusion equation. Phys. Rev. E 87, 063309 (2013)

    Article  Google Scholar 

  20. Perko, J., Patel, R.A.: Single-relaxation-time lattice Boltzmann scheme for advection–diffusion problems with large diffusion-coefficient heterogentities and high-advection transport. Phys. Rev. E 89, 053309 (2014)

    Article  Google Scholar 

  21. Yoshida, H., Nagaoka, M.: Lattice Boltzmann method for the convection–diffusion equation in curvilinear coordinate systems. J. Comput. Phys. 257, 884–900 (2014)

    Article  MathSciNet  Google Scholar 

  22. Chai, Z., Zhao, T.S.: Nonequilibrium scheme for computing the flux of the convection–diffusion equation in the framework of the lattice Boltzmann method. Phys. Rev. E 90, 013305 (2014)

    Article  Google Scholar 

  23. Liang, H., Shi, B.C., Guo, Z.L., Chai, Z.H.: Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows. Phys. Rev. E 89, 053320 (2014)

    Article  Google Scholar 

  24. Huang, R., Wu, H.: Lattice Boltzmann model for the correct convection–diffusion equation with divergence-free velocity field. Phys. Rev. E 91, 033302 (2015)

    Article  MathSciNet  Google Scholar 

  25. Li, Q., Chai, Z., Shi, B.: Lattice Boltzmann model for a class of convection–diffusion equations with variable coefficients. Comput. Math. Appl. 70, 548–561 (2015)

    Article  MathSciNet  Google Scholar 

  26. Huang, J., Yong, W.-A.: Boundary conditions of the lattice Boltzmann method for convection–diffusion equations. J. Comput. Phys. 300, 70–91 (2015)

    Article  MathSciNet  Google Scholar 

  27. Zhang, X., Bengough, A.G., Crawford, J.W., Young, I.M.: A lattice BGK model for advection and anisotropic dispersion equation. Adv. Water Resour. 25, 1–8 (2002)

    Article  Google Scholar 

  28. Suga, S.: Stability and accuracy of lattice Boltzmann schemes for anisotropic advection–diffusion equations. Int. J. Mod. Phys. C 20, 633–650 (2009)

    Article  MATH  Google Scholar 

  29. Servan-Camas, B., Tsai, F.T.-C.: Lattice Boltzmann method with two relaxation times for advection–diffusion equation: third order analysis and stability analysis. Adv. Water Resour. 31, 1113–1126 (2008)

    Article  Google Scholar 

  30. Rasin, I., Succi, S., Miller, W.: A multi-relaxation lattice kinetic method for passive scalar diffusion. J. Comput. Phys. 206, 453–462 (2005)

    Article  MATH  Google Scholar 

  31. Yoshida, H., Nagaoka, M.: Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. J. Comput. Phys. 229, 7774–7795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, L., Mei, R., Klausner, J.F.: Multiple-relaxation-time lattice Boltzmann model for the axisymmetric convection diffusion equation. Int. J. Heat Mass Transf. 67, 338–351 (2013)

    Article  Google Scholar 

  33. Li, L., Chen, C., Mei, R., Klausner, J.F.: Conjugate heat and mass transfer in the lattice Boltzmann equation method. Phys. Rev. E 89, 043308 (2014)

    Article  Google Scholar 

  34. Huang, R., Wu, H.: A modified multiple-relaxation-time lattice Boltzmann model for convection–diffusion equation. J. Comput. Phys. 274, 50–63 (2014)

    Article  MathSciNet  Google Scholar 

  35. Shi, B., Guo, Z.: Lattice Boltzmann model for nonlinear convection–diffusion equations. Phys. Rev. E 79, 016701 (2009)

    Article  Google Scholar 

  36. Shi, B., Guo, Z.: Lattice Boltzmann simulation of some nonlinear convection–diffusion equations. Comput. Math. Appl. 61, 3443–3452 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28, 1171–1195 (2005)

    Article  Google Scholar 

  38. Ginzburg, I.: Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations. Adv. Water Resour. 28, 1196–1216 (2005)

    Article  Google Scholar 

  39. Ginzburg, I.: Lattice Boltzmann modeling with discontinuous collision components: hydrodynmic and advection-diffusion equations. J. Stat. Phys. 126, 157–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ginzburg, I.: Truncation errors, exact and heuristic stability analysis of two-relaxation-times lattice Boltzmann schemes for anisotropic advection–diffusion equation. Commun. Comput. Phys. 11, 1439–1502 (2012)

    Article  Google Scholar 

  41. Ginzburg, I.: Multiple anisotropic collison for advection–diffusion lattice Boltzmann schemes. Adv. Water Res. 51, 381–404 (2013)

    Article  Google Scholar 

  42. Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546–6562 (2000)

    Article  MathSciNet  Google Scholar 

  43. Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992)

    Article  MATH  Google Scholar 

  44. Ansumali, S., Karlin, I.V., Öttinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63, 798–804 (2003)

    Article  Google Scholar 

  45. Ginzburg, I., Verhaeghe, F., d’Humières, D.: Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3, 427–478 (2008)

    MathSciNet  Google Scholar 

  46. d’Humières, D.: Generalized lattice-Boltzmann equations. In: Shizgal, B.D., Weave, D.P. (eds.) Rarefied Gas Dynamics: Theory and Simulations, vol. 159, pp. 450–458. AIAA, Washington, DC (1992)

    Google Scholar 

  47. Luo, L.-S., Liao, W., Chen, X., Peng, Y., Zhang, W.: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E 83, 056710 (2011)

    Article  Google Scholar 

  48. Chai, Z., Chai, T.S.: Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor. Phys. Rev. E 86, 016705 (2012)

    Article  Google Scholar 

  49. He, X., Chen, S., Doolen, G.D.: A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146, 282–300 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Guo, Z.-L., Zheng, C.-G., Shi, B.-C.: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11, 366–374 (2002)

    Article  Google Scholar 

  51. Zhang, T., Shi, B., Guo, Z., Chai, Z., Lu, J.: General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method. Phys. Rev. E 85, 016701 (2012)

    Article  Google Scholar 

  52. Wazwaz, A.-M.: The tanh method for generalized forms of nonliner heat conduction and Burgers–Fisher equations. Appl. Math. Comput. 169, 321–338 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Karlsen, K.H., Brusdal, K., Dahle, H.K., Evje, S., Lie, K.-A.: The corrected operator splitting approach applied to a nonlinear advection–diffusion problem. Comput. Methods Appl. Mech. Eng. 167, 239–260 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. He, X., Zou, Q., Luo, L.-S., Dembo, M.: Analytic solutions and analysis on non-slip boundary condition for the lattice Boltzmann BGK model. J. Stat. Phys. 87, 115–136 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ginzburg, I., Adler, P.M.: Boundary flow condition analysis for the three-dimesional lattice Boltzmann model. J. Phys. II France 4, 191–214 (1994)

    Article  Google Scholar 

  57. Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Phase-field simualtion of solidification. Annu. Rev. Mater. Res. 32, 163–194 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Natural Science Foundation of China (Grant Nos. 51576079, 11272132 and 51125024), and Natural Science Foundation of Hubei Province (Grant No. 2015CFB440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Z., Shi, B. & Guo, Z. A Multiple-Relaxation-Time Lattice Boltzmann Model for General Nonlinear Anisotropic Convection–Diffusion Equations. J Sci Comput 69, 355–390 (2016). https://doi.org/10.1007/s10915-016-0198-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0198-5

Keywords

Navigation