Skip to main content
Log in

Two Alternating Direction Implicit Difference Schemes for Solving the Two-Dimensional Time Distributed-Order Wave Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Two alternating direction implicit difference schemes are established for solving a class of two-dimensional time distributed-order wave equations. The schemes are proved to be unconditionally stable and convergent in the maximum norm with the convergence orders \(O(\tau ^2+h_1^2+h_2^2+\Delta \gamma ^2)\) and \(O(\tau ^2+h_1^4+h_2^4+\Delta \gamma ^4),\) respectively, where \(\tau , h_i\; (i=1,2)\) and \(\Delta \gamma \) are the step sizes in time, space and distributed order. Also, several numerical experiments are carried out to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Eab, C.H., Lim, S.C.: Fractional Langevin equations of distributed order. Phys. Rev. E 83, 031136 (2011)

    Article  MathSciNet  Google Scholar 

  3. Meerschaert, M., Scheffler, H.: Stochastic model for ultraslow diffusion. Stoch. Process. Appl. 116, 1215–1235 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mainardi, F., Pagnini, G., Mura, A., Gorenflo, R.: Time-fractional diffusion of distributed order. J. Vib. Control 14, 1267–1290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations. Proc. R. Soc. A 465, 1893–1917 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gorenflo, R., Luchko, Y., Stojanoveć, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, 297–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, Z., Luchko, Y., Yamamoto, M.: Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract. Calc. Appl. Anal. 17, 1114–1136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ford, N.J., Morgado, M.L., Rebelo, M.: An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. Electron. Trans. Numer. Anal. 44, 289–305 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Hu, X., Liu, F., Anh, V., Turner, I.: A numerical investigation of the time distributed-order diffusion model. ANZIAM J. 55, C464–C478 (2014)

    Article  MathSciNet  Google Scholar 

  10. Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 825–838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction-diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Alikhanov, A.A.: Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation. Appl. Math. Comput. 268, 12–22 (2015)

    Article  MathSciNet  Google Scholar 

  13. Gao, G.H., Sun, Z.Z.: Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations. Numer. Methods Partial Differ. Equ. 32, 591–615 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, G.H., Sun, H.W., Sun, Z.Z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)

    Article  MathSciNet  Google Scholar 

  15. Ye, H., Liu, F., Anh, V.: Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 298, 652–660 (2015)

    Article  MathSciNet  Google Scholar 

  16. Gao, G.H., Sun, Z.Z.: Two difference schemes for solving the one-dimensional time distributed-order fractional wave equations (under review)

  17. Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69, 926–948 (2015)

    Article  MathSciNet  Google Scholar 

  18. Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66, 1281–1312 (2016)

    Article  MathSciNet  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  20. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tadjeran, C., Meerschaert, M.M., Scheffler, H.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  24. Samarskiĭ, A.A.: The Theory of Difference Schemes. Marcel Dekker Inc., New York (2001)

    Book  MATH  Google Scholar 

  25. Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Differ. Equ. 26, 37–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, Z.Z.: The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations. Science Press, Beijing (2009)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions to greatly improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-hua Gao.

Additional information

The research is supported by the research Grant 11401319, 11271068, 11501301 from National Natural Science Foundation of China and BK20130860 from Natural Science Youth Foundation of Jiangsu Province of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Gh., Sun, Zz. Two Alternating Direction Implicit Difference Schemes for Solving the Two-Dimensional Time Distributed-Order Wave Equations. J Sci Comput 69, 506–531 (2016). https://doi.org/10.1007/s10915-016-0208-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0208-7

Keywords

Navigation