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ROBUST ERROR ANALYSIS OF COUPLED MIXED METHODS

FOR BIOT’S CONSOLIDATION MODEL

JEONGHUN J. LEE

Abstract. We study the a priori error analysis of finite element methods for
Biot’s consolidation model. We consider a formulation which has the stress
tensor, the fluid flux, the solid displacement, and the pore pressure as un-
knowns. Two mixed finite elements, one for linear elasticity and the other for
mixed Poisson problems are coupled for spatial discretization, and we show
that any pair of stable mixed finite elements is available. The novelty of our
analysis is that the error estimates of all the unknowns are robust for mate-
rial parameters. Specifically, the analysis does not need a uniformly positive
storage coefficient, and the error estimates are robust for nearly incompress-
ible materials. Numerical experiments illustrating our theoretical analysis are
included.

1. Introduction

Biot’s consolidation model describes the deformation of an elastic porous medium
and the viscous fluid flow inside it when the medium is saturated by the fluid [7].
This model has many applications in various engineering fields including geome-
chanics, petrolieum engineering, and biomedical engineering.

There are numerous studies of numerical schemes for Biot’s consolidation model
with finite element methods. In a series of papers [28, 29, 30], Murad et al. studied
a formulation with the solid displacement and the pore pressure as unknowns using
mixed finite elements for the Stokes equation. A discontinuous Galerkin method
for the same formulation was also studied in [13]. A Galerkin least square method
was proposed for a formulation with four unknowns, i.e., the solid displacement,
a pseudo-stress tensor, the fluid flux, and the pore pressure [24]. A formulation
with the solid displacement, the fluid flux, and the pore pressure as unknowns was
studied with various couplings of continuous and discontinuous Galerkin methods,
and mixed finite element methods [33, 34, 35]. A coupling of nonconforming and
mixed finite element methods for the formulation was recently studied in [40]. For
more information on previous studies we refer to [13, 26, 40] and the references
therein.

In this paper we consider a formulation with four unknowns, i.e., the stress ten-
sor, the solid displacement, the fluid flux, the pore pressure. This was considered
recently in [41] using a combination of two mixed finite elements for the discretiza-
tion of the problem, one for linear elasticity with symmetric stress tensors and the
other for mixed Poisson problems. A numerical experiment in the paper shows
that this approach can be advantageous to avoid non-physical pressure oscillations
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when the constrained storage coefficient of the problem vanishes. In this paper we
also use a combination of two mixed finite elements for the discretization but we
use mixed finite elements for linear elasticity with weakly symmetric stress because
the elements with weakly symmetric stress can be advantageous with respect to
efficient implementation and low computational costs. The main contribution of
this paper is a new error analysis providing the a priori error estimates that are
robust for material parameters. More specifically, we give error estimates of all the
unknowns with the L∞ norm in time and L2 norm in space, and the estimates do
not need strict positivity of the constrained storage coefficient s0. Moreover, as
in the Hellinger–Reissner formulation of linear elasticity [4], the error bounds are
uniform for the parameter indicating incompressibility of the poroelastic medium,
i.e., the error estimates are robust for nearly incompressible materials. To the best
of our knowledge, an analytic proof of this robustness for incompressibility has not
been addressed in literature.

The paper is organized as follows. In section 2 we define notation and derive a
variational formulation of the problem. In section 3 we present finite element meth-
ods for the semidiscrete problem and show the a priori error analysis of semidiscrete
solutions. We also prove robustness of the error estimate for nearly incompressible
materials and show well-posedness of fully discrete solutions with the backward Eu-
ler discretization in time. In section 4 numerical results illustrating our theoretical
analysis are presented.

2. Biot model and variational formulations

2.1. Notation. Let Ω be a bounded Lipschitz domain in Rn with n = 2 or 3.
Let L2(Ω) be the set of square-integrable real-valued functions on Ω. The inner
product of L2(Ω) and the induced norm are denoted by (·, ·) and ‖ ·‖0. For a finite-
dimensional inner product space X, let L2(Ω;X) be the set of X-valued functions
such that each component of the functions is in L2(Ω). The inner product of
L2(Ω;X) is naturally defined by the inner product of X and L2(Ω), so we use the
same notation (·, ·) and ‖ · ‖0 to denote the inner product and norm on L2(Ω;X).
The inner product space X is the space of Rn vectors with standard inner product
or a subspace of n × n matrices with the Frobenius inner product. For future
reference we use M, S, K to denote the spaces of all, symmetric, skew-symmetric
n× n matrices, respectively, and V to denote the space of column Rn vectors.

For a nonnegative integer m, Hm(Ω) denotes the standard Sobolev spaces of
real-valued functions based on the L2 norm, and Hm(Ω;X) is defined similarly
based on L2(Ω;X). For m ≥ 1, we use Hm

0 (Ω) to denote the subspace of Hm(Ω)
with vanishing trace on ∂Ω [17], and Hm

0 (Ω;X) is defined similarly. For simplicity
we also use ‖ · ‖m to denote the Hm-norm for both of Hm(Ω) and Hm(Ω;X). We
define H(div,Ω) as

H(div,Ω) := {v ∈ L2(Ω;Rn) : div v ∈ L2(Ω)},

and the norm (‖v‖20 + ‖ div v‖20)1/2 is denoted by ‖v‖div. We also define the space
H(div,Ω;M) and H(div,Ω; S) as

H(div,Ω;M) := {τ ∈ L2(Ω;M) : div τ ∈ L2(Ω;V)},
H(div,Ω; S) := H(div,Ω;M) ∩ L2(Ω; S),
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in which the divergence of τ is understood as the row-wise divergence of τ , and
‖τ‖div is defined similarly as the norm of H(div).

Let J = [0, T ], T > 0 be an interval. For a reflexive Banach space X , let C0(J ;X )
denote the set of functions f : J → X which are continuous in t ∈ J . For an integer
m ≥ 1, we define

Cm(J ;X ) = {f | ∂if/∂ti ∈ C0(J ;X ), 0 ≤ i ≤ m},
where ∂if/∂ti is the i-th time derivative in the sense of the Fréchet derivative in
X (see e.g., [42]). For a function f : J → X , we define the space-time norm

‖f‖Lr(J;X ) =

{

(∫

J
‖f‖rXds

)1/r
, 1 ≤ r < ∞,

esssupt∈J ‖f‖X , r = ∞.

If the time interval is fixed, then we use LrX instead of Lr(J ;X ) for simplicity. We
define the space-time Sobolev spacesW k,r(J ;X ) for a nonnegative integer k and 1 ≤
r ≤ ∞ as the closure of Ck(J ;X ) with the norm ‖f‖Wk,rX =

∑k
i=0 ‖∂if/∂ti‖LrX .

We adopt a convention that ‖f, g‖X = ‖f‖X +‖g‖X for the norm of a Banach space

X . For simplicity of notation, ḟ will be used to denote ∂f/∂t.
Finally, throughout this paper we use X . Y to denote the inequality X ≤ cY

with a generic constant c > 0 which is independent of mesh sizes. If needed, we
will write c explicitly in inequalities but it can be different in each formula.

2.2. Biot’s consolidation model. In this subsection we derive a formulation of
Biot’s consolidation model with four unknowns and establish a variational formu-
lation of the problem.

Let Ω, a bounded Lipschitz domain in Rn with n = 2 or 3, be occupied by a fluid-
saturated poroelastic body. Let u : Ω → V be the displacement of the poroelastic
medium, p : Ω → R the pore pressure, f : Ω → V the body force, and g : Ω → R

the source/sink density function of the fluid. The governing equations of Biot’s
consolidation model are

− div Cǫ(u) + α∇p = f in Ω,(1)

s0ṗ+ α div u̇− div(κ∇p) = g in Ω,(2)

where C is the elastic stiffness tensor, ǫ(u) is the linearized strain tensor, s0 ≥ 0 is
the constrained specific storage coefficient, κ is the hydraulic conductivity tensor,
and α > 0 is the Biot–Willis constant which is close to 1. In order to understand
the system (1)–(2) precisely, we need to explain the operators. First, by gradu we
mean the M-valued function such that each row is the gradient of each component
of u : Ω → V, and ǫ(u) is the symmetric matrix part of gradu. There is no confusion
of the divergence operator div for vector-valued functions but, when it is used for
M-valued functions, div will be (n-tuples of) the row-wise divergence of the M-
valued function which results in a V-valued function. If q is a scalar function, then
∇q stands for the gradient of q as a column vector. With these conventions the
equations in the system (1)–(2) are well-defined.

In general the elastic stiffness tensor C is a rank 4 tensor giving a symmetric
positive definite linear map from L2(Ω; S) into itself [21]. The coefficient s0 ≥ 0 is
determined by material parameters such as the permeability (of the porous medium)
and the bulk moduli of the solid and the fluid. The hydraulic conductivity tensor κ
is defined by the permeability tensor of the solid divided by the fluid viscosity and
it is positive definite. All the parameters C, s0, κ, and α are functions of x ∈ Ω.
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For the derivation of these equations from physical modeling, we refer to standard
porous media references, for example, [1, 15].

To derive a formulation with four unknowns we introduce the fluid flux z = κ∇p
and the stress tensor σ = Cǫ(u)−αpI as new unknowns, where I is the n×n identity
matrix. By the definitions of σ and z, we have

As(σ + αpI)− ǫ(u) = 0,(3)

κ−1z −∇p = 0,(4)

where As = C−1, and we can rewrite (1) as

− div σ = f.(5)

In addition, observing that div u = tr ǫ(u) = trAs(σ+αpI) where tr is the trace of
matrices, we can rewrite (2) as

s0ṗ+ α trAs(σ̇ + αṗI) + div z = g.(6)

As a consequence, we obtain a system with four unknowns σ, u, z, p, and four
equations (3)–(6). In order to be a well-posed problem, the equations (3)–(6)
need appropriate boundary and initial conditions. We assume that there are two
partitions of ∂Ω,

∂Ω = Γp ∪ Γf , ∂Ω = Γd ∪ Γt,

with |Γp|, |Γd| > 0, i.e., the Lebesgue measures of Γp and Γd are positive. Let n

be the outward unit normal vector field on ∂Ω. Boundary conditions are given in
general by

p(t) = p0(t) on Γp, z(t) · n = zn(t) on Γf ,(7)

u(t) = u0(t) on Γd, σ(t)n = σn(t) on Γt,(8)

for all t ∈ J with given

p0 : J × Γp → R, zn : J × Γf → R, u0 : J × Γd → V, σn : J × Γt → V.

For well-posedness of (3)–(6) with the above boundary conditions, we can adopt the
argument in [37] used for well-posedness of the system (1)–(2) with same boundary
conditions. Namely, we find expressions of σ and z in terms of p using (3)–(5), and
apply these expressions to (6) to obtain a parabolic partial differential equation of
p. Since well-posedness of the system is not our main interest, we will not pursue
it further in this paper.

For spatial discretization we use two mixed finite element methods, one for lin-
ear elasticity of the Hellinger–Reissner formulation and the other for mixed Poisson
problems. For discretization of linear elasticity we will use mixed finite elements for
elasticity with weakly symmetric stress. Compared to mixed finite elements with
symmetric stress tensors, the elements with weakly symmetric stress can be prefer-
able because they usually require less computational costs and can be implemented
with the Fraejis de Veubeke hybridization, which results in a system with reduced
sizes [2, 16].

In order to use mixed finite elements for elasticity with weakly symmetric stress,
we introduce the skew-symmetric part of gradu, denoted by γ, as another unknown.
This new unknown plays a role of a Lagrange multiplier for the symmetry of the
stress tensor. To formulate it, we define A as an extension of As such that A = As

on L2(Ω; S) and A is a positive constant multiple of the identity map on L2(Ω;K),
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where K is the space of n × n skew-symmetric matrices. Then, recalling that γ is
the skew-symmetric part of gradu, (3) can be written as

A(σ + αpI)− gradu+ γ = 0,(9)

and we have the symmetry constraint of σ,

(σ, η) = 0 ∀η ∈ L2(Ω;K).(10)

Let us define the function spaces

Σ = H(div,Ω;M), V = L2(Ω;V), Γ = L2(Ω;K),(11)

W = H(div,Ω), Q = L2(Ω),

for unknowns (σ, u, γ, z, p). Then, by integration by parts with vanishing boundary
conditions, we can derive the following variational formulation: Find

(σ, p) ∈ C1(J ; Σ×Q) and (u, γ, z) ∈ C0(J ;V × Γ×W ),

such that

(A(σ + αpI), τ) + (u, div τ) + (γ, τ) = 0, ∀τ ∈ Σ,(12)

(div σ, v) + (σ, η) = −(f, v), ∀(v, η) ∈ V × Γ,(13)

(κ−1z, w) + (p, divw) = 0, ∀w ∈ W,(14)

(s0ṗ, q) + (A(σ̇ + αṗI), αqI) − (div z, q) = (g, q), ∀q ∈ Q.(15)

In (15) we used (trAsξ, q) = (trAξ, q) = (Aξ, qI) for a matrix ξ and a scalar q.
This variational formulation can be easily extended to problems with general

boundary conditions. Suppose that boundary conditions are given as

p(t) = p0(t) on Γp, z(t) · n = zn(t) on Γf ,(16)

u(t) = u0(t) on Γd, σ(t)n = σn(t) on Γt,(17)

with

p0 : J × Γp → R, zn : J × Γf → R, u0 : J × Γd, σn : J × Γt → R
n.

We define Σ∂ and W∂ as

Σ∂ = {τ ∈ Σ : τn = 0 on Γt}, W∂ = {w ∈ W : w · n = 0 on Γf}.(18)

The boundary conditions σn and zn are imposed as essential boundary conditions
and we can obtain a variational formulation with function spaces Σ∂ and W∂ [9].
As a consequence, we have a variational formulation

(A(σ + αpI), τ) + (u, div τ) + (γ, τ) = 〈u0, τn〉Γd
, ∀τ ∈ Σ∂ ,(19)

(div σ, v) + (σ, η) = −(f, v), ∀(v, η) ∈ V × Γ,(20)

(κ−1z, w) + (p, divw) = 〈p0, w · n〉Γp
, ∀w ∈ W∂ ,(21)

(s0ṗ, q) + (A(σ̇ + αṗI), αqI) − (div z, q) = (g, q), ∀q ∈ Q,(22)

where 〈·, ·〉Γd
and 〈·, ·〉Γp

are the integrals of L2 inner products on the indicated

parts of boundary with the (n− 1)-dimensional Lebesgue measure.
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3. A priori error analysis

In this section we consider semidiscretization of (12)–(15) and prove a priori
error estimates. The discrete counterpart of (12)–(15) is to seek

(σh, ph) ∈ C1(J ; Σh ×Qh) and (uh, γh, zh) ∈ C0(J ;Vh × Γh ×Wh),

such that

(A(σh + αphI), τ) + (uh, div τ) + (γh, τ) = 0 ∀τ ∈ Σh,(23)

(div σh, v) + (σh, η) = −(f, v) ∀(v, η) ∈ Vh × Γh,(24)

(κ−1zh, w) + (ph, divw) = 0 ∀w ∈ Wh,(25)

(s0ṗh, q) + (A(σ̇h + αṗhI), αqI) − (div zh, q) = (g, q) ∀q ∈ Qh,(26)

for appropriate finite element spaces Σh, Vh, Wh, Qh, Γh on a shape-regular mesh
of Ω. Note that this is a differential algebraic equation because the time derivative
is involved only in the last equation, so existence and uniqueness of its solutions
are not straightforward. However, we do not discuss existence and uniqueness of
solutions of this semidiscrete problem here because they can be established with
standard techniques in the theory of differential algebraic equations [23]. Instead,
we focus on illustrating details of the a priori error analysis of semidiscrete solutions.
At the end of this section we will discuss existence and uniqueness of fully discrete
solutions for the problem, which is sufficient for practical computation.

In the rest of this paper we assume that (Σh, Vh,Γh) is a stable mixed method
for linear elasticity with weakly symmetric stress, and (Wh, Qh) is a stable mixed
method for the mixed Poisson problem. Before we describe assumptions (S1)–
(S4) including the stability conditions of finite elements, we restrict our interest
on specific combinations of (Σh, Vh,Γh) and (Wh, Qh) in order to have balanced
convergence rates of unknowns. To state the conditions rigorously, let O(Ξh) be the
best order of approximation of Ξh in the L2-norm for a function space Ξ ⊂ L2(Ω;X)
and a finite element space Ξh ⊂ Ξ. For example, if Ξ = L2(Ω) and Ξh is the space
of piecewise discontinuous polynomials of degree ≤ r on a shape-regular mesh, then
O(Ξh) = r + 1. In this paper we always assume that (Σh, Vh,Γh,Wh, Qh) satisfies

min{O(Σh),O(Γh)} = O(Vh) = O(Wh) = O(Qh) = r, r ≥ 1,(27)

and

O(Vh) = r′, (r′ ≥ 1) r′ = r or r′ = r − 1.

Here are the assumptions on finite elements:

(S1) div Σh = Vh and divWh = Qh.
(S2) There exists bounded maps ΠΣ

h : H1(Ω;M) → Σh, Π
W
h : H1(Ω;V) → Qh

such that

div ΠΣ
h τ = PV

h div τ, div ΠW
h w = PQ

h divw,

‖τ −ΠΣ
h τ‖0 . hm‖τ‖m, ‖w −ΠW

h w‖0 . hm‖w‖m, m ≥ 1,

where PV
h and PQ

h are the L2 projections into Vh and Qh, respectively.
(S3) For any q ∈ Qh, there exists w ∈ Zh satisfying

divw = q, ‖w‖div . ‖q‖0.
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(S4) For any (v, η) ∈ Vh × Γh, there exists τ ∈ Σh satisfying

div τ = v, (τ, η′) = (η, η′) ∀η′ ∈ Γh, ‖τ‖div . ‖v‖0 + ‖η‖0.
There are a number of mixed finite elements satisfying these assumptions. For the
mixed Poisson problems, all of the families of Raviart–Thomas, Brezzi–Douglas–
Marini, Nédélec elements [11, 31, 32, 36] fulfill these assumptions. However, we will
only consider the Raviart–Thomas elements (2D) and the Nédélec 1st kind H(div)
(3D) elements for (Wh, Qh) due to (27). For the mixed form of linear elasticity,
there are many known elements satisfying these assumptions [3, 5, 14, 20, 38, 39].
We refer to [10] and [25] for surveys of the elements for mixed Poisson and mixed
elasticity problems, respectively.

For the a priori error analysis of the problem, we need interpolation operators

into finite element spaces. As previously defined PV
h and PQ

h , we define PΓ
h : Γ → Γh

as the L2 projection into Γh. For Wh let IWh be the canonical Raviart–Thomas–
Nédélec interpolation. Then it is well-known that

div IWh w = PQ
h divw,(28)

‖w − IWh w‖0 . hm‖w‖m, 1 ≤ m ≤ r for w ∈ Hm(Ω;V)(29)

hold. For IΣh we use the weakly symmetric elliptic projection introduced in [6].
To be self-contained, we describe its definition here. To define IΣh : Σ → Σh we
consider a problem seeking (σ̃h, ũh, γ̃h) ∈ Σh × Vh × Γh such that

(σ̃h, τ) + (ũh, div τ) + (γ̃h, τ) = (σ, τ), ∀τ ∈ Σh,(30)

(div σ̃h, v) = (div σ, v), ∀v ∈ Vh,(31)

(σ̃h, η) = (σ, η), ∀η ∈ Γh,(32)

for σ ∈ Σ. This is the discrete counterpart of a mixed form of linear elasticity
problem with weakly symmetric stress. Note that the continuous version of this
linear elasticity problem has (σ, 0, 0) as its solution. If we define IΣh σ by σ̃h, then
IΣh is a bounded linear map from Σ to Σh. By (31), the fact div Σh = Vh, and (32),
we obtain

div IΣh σ = PV
h div σ and (IΣh σ, η) = (σ, η) ∀η ∈ Γh.(33)

An improved error estimate of mixed elasticity problems yields [6]

‖IΣh τ − τ‖0 . hm‖τ‖m, 1 ≤ m ≤ r if τ ∈ Hm(Ω;M).(34)

3.1. Error analysis. Let (σ, u, γ, z, p) and (σh, uh, γh, zh, ph) be solutions of (12)–
(15) and (23)–(26), respectively. We define the difference of these two solutions as
error terms, i.e., eσ = σ− σh, and eu, eγ , ez, ep are defined similarly. For the error
analysis we decompose these error terms into two components using interpolation
operators. More precisely, we set

eσ = eIσ + ehσ := (σ − IΣh σ) + (IΣh σ − σh),

eu = eIu + ehu := (u − PV
h u) + (PV

h u− uh),

eγ = eIγ + ehγ := (γ − PΓ
h γ) + (PΓ

h γ − γh),

ez = eIz + ehz := (z − IWh z) + (IWh z − zh),

ep = eIp + ehp := (p− PQ
h p) + (PQ

h p− ph).
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By well-known approximation properties of the interpolation operators PV
h , PQ

h ,
PΓ
h , I

W
h and by (34), we have

‖eIσ‖L∞L2 . hm‖σ‖L∞Hm , 1 ≤ m ≤ r,(35)

‖eIu‖L∞L2 . hm‖u‖L∞Hm , 1 ≤ m ≤ r′,(36)

‖eIz‖L∞L2 . hm‖z‖L∞Hm , 1 ≤ m ≤ r,(37)

‖eIp‖L∞L2 . hm‖p‖L∞Hm , 1 ≤ m ≤ r,(38)

‖eIγ‖L∞L2 . hm‖γ‖L∞Hm , 1 ≤ m ≤ r.(39)

The following lemma will be useful in the error analysis.

Lemma 3.1. Let F,G,X : J → R be continuous, nonnegative functions. Suppose
that X(t) is continuously differentiable and satisfies

X(t)2 ≤ X(0)2 +

∫ t

0

(F (s)X(s) +G(s)) ds.(40)

for all t ∈ J . Then for t ∈ J ,

X(t) ≤ X(0) + max

{

2

∫ t

0

F (s) ds,

(

2

∫ t

0

G(s) ds

)

1

2

}

.(41)

Proof. To reduce the problem, let us define a statement:

(M) (41) holds when X(t) is the maximum on the interval [0, t]

We first claim that, if (M) is true, then (41) holds for any t ∈ J . To see this,
assume that (M) is true. For given t0 ∈ J , if X attains its maximum on [0, t0] at
t0, then there is nothing to prove, so suppose that X attains its maximum value
on the inverval [0, t0] at t̄ ∈ [0, t0], t̄ < t0. Due to (M) and the nonnegativity of F
and G, we have

X(t0) < X(t̄) ≤ X(0) + max







2

∫ t̄

0

F (s) ds,

(

2

∫ t̄

0

G(s) ds

)
1

2







≤ X(0) + max

{

2

∫ t0

0

F (s) ds,

(

2

∫ t0

0

G(s) ds

)

1

2

}

,

so (41) holds for t0 as well. Since t0 ∈ J is arbitrary, (41) for all t ∈ J .
The above argument implies that it is enough to prove (M). Thus, we now show

that (41) holds under the assumption that X(t) is the maximum on the interval
[0, t]. It is obvious that one of the following inequalities holds:

∫ t

0

G(s) ds ≤
∫ t

0

F (s)X(s) ds,

∫ t

0

F (s)X(s) ds <

∫ t

0

G(s) ds.(42)

Suppose that the first inequality in (42) holds. Then (40) gives

X(t)2 ≤ X(0)2 + 2

∫ t

0

F (s)X(s) ds.

If we divide both sides by X(t), then we get

X(t) ≤ X(0) + 2

∫ t

0

F (s) ds,
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because X(t) is the maximum on [0, t]. Thus one case of (41) is proved.
To complete the proof, assume that the second inequality in (42) is true. Then

(40) gives

X(t)2 ≤ X(0)2 + 2

∫ t

0

G(s) ds.

By taking square roots of both sides, and by the triangle inequality, we have

X(t) ≤ X(0) +

(

2

∫ t

0

G(s) ds

)

1

2

,

so the other case of (41) is proved. � �

We will use ‖τ‖A, ‖w‖κ−1 , ‖q‖s0 to denote the quantities

(Aτ, τ)1/2, (κ−1w,w)1/2, (s0q, q)
1/2,

respectively. We also use L2
A to denote the L2 space with the norm ‖ · ‖A.

Here is the main result of this section.

Theorem 3.2. Let (σ, u, γ, z, p) be an exact solution of (12)–(15) and assume that
numerical initial data σh(0), ph(0), zh(0) are given to satisfy

‖σ(0)− σh(0), p(0)− ph(0), z(0)− zh(0)‖0 . hm, 1 ≤ m ≤ r.(43)

If (σh, uh, γh, zh, ph) is the solution of (23)–(26) with the numerical initial data,
then, for 1 ≤ m ≤ r, the following estimates hold:

‖ehσ + αehpI‖L∞L2

A
. hmmax{‖σ, p, γ‖W 1,1Hm , ‖z‖L2Hm},(44)

‖ehσ‖L∞L2 . hm(‖σ, p, γ‖W 1,2Hm + ‖z‖W 1,1Hm),(45)

‖ehu, ehγ‖L∞L2 . hmmax{‖σ, p, γ‖W 1,1Hm , ‖z‖L2Hm},(46)

‖ehz‖L∞L2 . hm(‖σ, p, γ‖W 1,2Hm + ‖z‖W 1,1Hm),(47)

‖ehp‖L∞L2 . hm(‖σ, p, γ‖W 1,2Hm + ‖z‖W 1,1Hm).(48)

Note that, for sufficiently regular solutions, ‖ehu‖L∞L2 . hr holds even though r′ =
O(Vh) is less than r.

Proof. We begin the error analysis by taking differences of the variational form and
the semidiscrete equations, which results in

(A(eσ + αepI), τ) + (eu, div τ) + (eγ , τ) = 0, ∀τ ∈ Σh,(49)

(div eσ, v) + (eσ, η) = 0, ∀(v, η) ∈ Vh × Γh,(50)

(κ−1ez, w) + (ep, divw) = 0, ∀w ∈ Wh,(51)

(s0ėp, q) + (A(ėσ + αėpI), αqI) − (div ez, q) = 0, ∀q ∈ Qh.(52)

Note that (S1) and the definitions of PQ
h , PV

h yield

(eIp, divw) = 0 ∀w ∈ Wh and (eIu, div τ) = 0 ∀τ ∈ Σh.

In addition, the commuting diagram property of IWh in (S2) and the properties of
IΣh in (33) yield

(div eIz, q) = 0 ∀q ∈ Qh and (div eIσ, v) = (eIσ, η) = 0 ∀(v, η) ∈ Vh × Γh.
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Considering these cancellations and using the error decompositions with eI- and
eh-terms, the system (49)–(52) can be rewritten as

(A(ehσ + αehpI), τ) + (ehu, div τ) + (ehγ , τ) = −(A(eIσ + αeIpI), τ) − (eIγ , τ),(53)

(div ehσ, v) + (ehσ, η) = 0,(54)

(κ−1ehz , w) + (ehp , divw) = −(κ−1eIz, w),(55)

(s0ė
h
p , q) + (A(ėhσ + αėhpI), αqI) − (div ehz , q) = −(s0ė

I
p, q)(56)

− (A(ėIσ + αėIpI), αqI),

for any (τ, v, η, w, q) ∈ (Σh, Vh,Γh,Wh, Qh).
We remark that (43) implies that ‖ehσ(0)‖0 . hm because

‖ehσ(0)‖0 = ‖IΣh σ(0)− σh(0)‖0
≤ ‖IΣh σ(0)− σ(0)‖0 + ‖σ(0)− σh(0)‖0
. hm‖σ(0)‖m.

We obtain ‖ehp(0), ehz (0)‖0 . hm with similar arguments.

Estimate of ‖ehσ + αehpI‖A : We first show

(57) ‖ehσ + αehpI‖L∞L2

A
. hm(‖σ(0), p(0)‖m + max{‖σ, p, γ‖L2Hm , ‖z‖L2Hm}.

For its proof, taking the time derivative of (54), choosing τ = ehσ, v = ėhu, w = ehz ,
q = ehp , η = −ėhγ , and adding all the equations (53)–(56), we have

1

2

d

dt
(‖ehσ + αehpI‖2A + ‖ehp‖2s0) + ‖ehz‖2κ−1

= −(κ−1eIz, e
h
z )− (A(ėIσ + αėIpI), e

h
σ + αehpI)− (s0ė

I
p, e

h
p)− (ėIγ , e

h
σ).

The Cauchy–Schwarz and arithmetic-geometric mean inequalities give

1

2

d

dt
(‖ehσ + αehpI‖2A + ‖ehp‖2s0) +

1

2
‖ehz‖2κ−1

≤ 1

2
‖eIz‖2κ−1 + ‖ėIσ + αėIpI+ ėIγ‖A‖ehσ + αehpI‖A + ‖ėIp‖s0‖ehp‖s0 .

In this inequality we assumed that (Aτ, ėIγ) = (τ, ėIγ) holds for simplicity but this
equality holds with a positive constant in general, which is used in the extension of
As to A for skew-symmetric tensors. Ignoring the nonnegative term ‖ehz‖2κ−1/2 in
the above and applying Lemma 3.1 with

X =
(

‖ehσ + αehpI‖A
)2

+ ‖ehp‖2s0)
1/2,

F =
(

‖ėIσ + αėIpI+ ėIγ‖2A + ‖ėIp‖2s0
)

1

2 ,

G =
1

2
‖eIz‖2κ−1 ,

we can obtain

‖ehσ + αehpI‖L∞L2

A
. ‖ehσ(0) + ehp(0)I‖0 +max{‖ėIσ, ėIp, ėIγ‖L1L2 , ‖eIz‖L2L2}
. hm(‖σ(0), p(0)‖m +max{‖σ, p, γ‖W 1,1Hm , ‖z‖L2Hm})
. hmmax{‖σ, p, γ‖W 1,1Hm , ‖z‖L2Hm},

where the last inequality is due to the Sobolev embedding W 1,1Hm ⊂ L∞Hm.
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Estimates of ‖ehu, ehγ‖L∞L2 : By the inf-sup condition (S4) there exists τ ∈ Σh

such that div τ = ehu, (τ, η) = (ehγ , η) for all η ∈ Γh, and ‖τ‖2div . ‖ehu‖20 + ‖ehγ‖20.
Taking this τ in (53) and applying the triangle and Cauchy–Schwarz inequalities,
we get

‖ehu‖20 + ‖ehγ‖20 = −(A(eσ + αepI+ eIγ), τ)

≤ (‖eIσ + αeIpI+ eIγ‖A + ‖ehσ + αehpI‖A)‖τ‖A
. (hm‖σ, p, γ‖L∞Hm + ‖ehσ + αehpI‖A)(‖ehu‖20 + ‖ehγ‖20)

1

2 ,

where we used ‖τ‖A . ‖τ‖div .
(

‖ehu‖20 + ‖ehγ‖20
)1/2

in the last inequality. Since
‖σ, p, γ‖L∞Hm . ‖σ, p, γ‖W 1,1Hm by the Sobolev embedding, the above inequality
and the estimate of ‖ehσ + αehp I‖A yield

‖ehu, ehγ‖L∞L2 . hm max{‖σ, p, γ‖W 1,1Hm , ‖z‖L2Hm}.

Estimate of ‖ehz‖L∞L2 : Taking time derivatives of (53)–(55), choosing τ = ėhσ,
v = −ėhu, w = ehz , q = ėhp , η = −ėhγ , and adding all the equations, we have

1

2

d

dt
(κ−1ehz , e

h
z ) + ‖ėhσ + αėhpI‖2A + ‖ėhp‖2s0

= −(κ−1ėIz, e
h
z )− (A(ėIσ + αėIpI+ ėIγ), ė

h
σ + αėhp)− (s0ė

I
p, ė

h
p).

By the Cauchy–Schwarz and Young’s inequalities we have

1

2

d

dt
‖ehz‖2κ−1 ≤ ‖ėIz‖κ−1‖ehz‖κ−1 + ‖ėIσ + αėIpI+ ėIγ‖2A + ‖ėIp‖2s0 .

If we apply Lemma 3.1 to this inequality with

X = ‖ehz‖κ−1 , F = ‖ėIz‖κ−1 , G = ‖ėIσ + αėIpI+ ėIγ‖2A + ‖ėIp‖2s0 ,

then the coercivity of κ−1, boundedness of A, and the Sobolev embedding will lead
to

‖ehz‖L∞L2 . ‖ehz (0)‖0 + ‖ėIz‖L1L2 + ‖ėIσ, ėIp, ėIγ‖L2L2

. hm(‖σ, p, γ‖W 1,2Hm + ‖z‖W 1,1Hm).

Estimate of ‖ehp‖L∞L2 : By the inf-sup condition in (S3) for (Wh, Qh), there

exists w ∈ Wh such that divw = ehp and ‖w‖div . ‖ehp‖0. Choosing this w in (55),
we get

‖ehp‖20 = (eIz + ehz , w)κ−1 . (‖eIz‖0 + ‖ehz‖0)‖ehp‖0,

so the estimate of ehz and (37) give

‖ehp‖L∞L2 . hm(‖σ, p, γ‖W 1,2Hm + ‖z‖W 1,1Hm).

Estimate of ‖ehσ‖L∞L2 : Combining the estimates of ‖ehσ+αehpI‖A and ‖ehp‖L∞L2 ,
the triangle inequality, and coercivity of A, we have

‖ehσ‖L∞L2 . hm(‖σ, p, γ‖W 1,2Hm + ‖z‖W 1,1Hm).

The proof is completed. � �
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Remark 3.3. The quantity (σ + αpI) has a physical meaning as the elastic stress
tensor in the saturated poroelastic medium. The estimate of ‖ehσ+αehpI‖L∞L2

A
plays

a key role that any combinations of two mixed methods (Σh, Vh,Γh) and (Wh, Qh)
are available because this estimate holds without any requirements on finite ele-
ments. In this estimate, an estimate of ‖ehp‖L∞L2 can be obtained when s0 is uni-

formly positive, and an estimate of ‖ehz‖L2L2 can be also obtained.

Remark 3.4. The argument in the estimate of ‖ehz‖L∞L2 can be also used for
other formulations that the fluid flux and the pore pressure are present as unknowns
[34, 40].

If we combine (35)–(39) and the result of Theorem 3.2, then we have the following
results.

Corollary 3.5. Suppose that (σ, u, γ, z, p) and (σh, uh, γh, zh, ph) are as in Theo-
rem 3.2 with same assumptions. Then we have

‖eσ + αepI‖L∞L2

A
. hmmax{‖σ, p, γ‖W 1,1Hm , ‖z‖L2Hm}, 1 ≤ m ≤ r,

‖eσ‖L∞L2 . hm(‖σ, p, γ‖W 1,2Hm + ‖z‖W 1,1Hm), 1 ≤ m ≤ r,

‖eu‖L∞L2 . hmmax{‖σ, p, γ‖W 1,1Hm , ‖z‖L2Hm}, 1 ≤ m ≤ r′,

‖eγ‖L∞L2 . hmmax{‖σ, p, γ‖W 1,1Hm , ‖z‖L2Hm}, 1 ≤ m ≤ r,

‖ez‖L∞L2 . hm(‖σ, p, γ‖W 1,2Hm + ‖z‖W 1,1Hm), 1 ≤ m ≤ r,

‖ep‖L∞L2 . hm(‖σ, p, γ‖W 1,2Hm + ‖z‖W 1,1Hm), 1 ≤ m ≤ r.

3.2. Robustness of error estimates for nearly incompressible materials.
For isotropic elastic porous media, the elasticity tensor C has the form

Cτ = 2µτ + λ(tr τ)I, τ ∈ L2(Ω; S),

where the constants µ, λ > 0 are Lamé coefficients, and

C−1 = Asτ =
1

2µ

(

τ − λ

2µ+ nλ
(tr τ)I

)

.(58)

Throughout this subsection, we assume thatAs has this form andA is the extension
of As to L2(Ω;M) as before. One can see that the coercivity of A on L2(Ω;M) is
not uniform in λ. In other words,

cλ‖τ‖20 ≤ ‖τ‖2A, ∀τ ∈ L2(Ω;M)

holds with a constant cλ > 0 but cλ → 0 as λ → +∞. It means that error estimates
obtained using coercivity of A may have error bounds growing unboundedly as
λ → +∞. The purpose of this subsection is to show that the error bounds in the
previous subsection are uniform for arbitrarily large λ.

In the proof of Theorem 3.2 we can see that many error estimates rely on the
estimate of ‖ehσ+αehpI‖A and boundedness of the bilinear formA. It is an important
observation that estimates utilizing the A-weighted norm and boundedness of A in
(58) are uniform as λ → +∞. Thus, the only error estimate requiring coercivity of
A is the error estimate of ‖ehσ‖L∞L2 .

Before we prove the main result, we need preliminary results. For a tensor τ we
use τD to denote the deviatoric part of τ , i.e.,

τD := τ − 1

n
(tr τ)I.
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We define H1
Γ(Ω) as

H1
Γ(Ω) = {φ ∈ H1(Ω;V) : φ|Γd

= 0},(59)

where φ|Γd
is the trace of φ on Γd ⊂ ∂Ω. Recall the definitions of Σ in (11) and Σ∂

in (18) depending on boundary conditions Γd = ∂Ω and Γd 6= ∂Ω.

Lemma 3.6. Suppose that

τ ∈ Σ,

∫

Ω

tr τ dx = 0, or τ ∈ Σ∂ .(60)

Then

‖τ‖0 . ‖τD‖0 + sup
φ∈H1

Γ
(Ω)

(div τ, φ)

‖φ‖1
.(61)

Proof. Since (τD, (tr τ)I) = 0, ‖τ‖0 . ‖τD‖0+ ‖ tr τ‖0 holds and it suffices to show
that ‖ tr τ‖0 is bounded by the right-hand side of (61). Due to the assumption
(60), there exists φ ∈ H1

Γ(Ω) such that div∗ φ = tr τ and ‖φ‖1 . ‖ tr τ‖0, where
div∗ means the vertical divergence (cf. [19]). Then an algebraic identity and the
integration by parts give

‖ tr τ‖20 = (tr τ, div∗ φ) = n(τ, gradφ) − n(τD, gradφ)

= −n(div τ, φ) − n(τD, gradφ).

We get the desired result from the Cauchy–Schwarz inequality, ‖φ‖1 . ‖ tr τ‖0, and
dividing both sides by ‖φ‖1. � �

The proof of Lemma 3.6 is completely analogous to the proof of Lemma 3.1 in
[4], with a simple modification for general boundary conditions. A similar result
was proved in [12] with a Helmholtz decomposition.

Theorem 3.7. Suppose that (σ, u, γ, z, p) and (σh, uh, γh, zh, ph) are exact and dis-
crete solutions of (12)–(15) and (23)–(26) with the assumptions as in Theorem 3.2.
We also assume that A is the extension of (58), and α is piecewise constant on
each mesh element. Then

‖σ − σh‖0 ≤ chm, 1 ≤ m ≤ r,

holds with a constant c, which is uniformly bounded for arbitrarily large λ. More-
over, the same result holds for a solution of (19)–(22) (with Γd 6= ∂Ω) and its
discrete counterpart.

Proof. Since IΣh is independent of λ, ‖eIσ‖0 . hm holds with a constant independent
of λ. By the triangle inequality, it is enough to have an estimate ‖ehσ‖0 with an
upper bound uniformly bounded for arbitrarily large λ.

We first consider the case with Γd = ∂Ω. Since Σh does not have any essential
boundary condition on a part of ∂Ω, we can take τ = I ∈ Σh as a test function in
error analysis. By taking τ = I in (30), we also have

∫

Ω

tr(σ − IΣh σ) dx =

∫

Ω

tr eIσ dx = 0.(62)

Taking τ = I in (49), we have

(A(eσ + αepI), I) =
1

2µ+ nλ

∫

Ω

(tr eσ + αnep)dx = 0.(63)
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Let |Ω| be the n-dimensional Lebesgue measure of Ω and define

β :=
1

n|Ω|

∫

Ω

tr eσ dx.

Taking τ = I in (49), we have

n|Ω|β =

∫

Ω

tr eσ dx =

∫

Ω

tr ehσ dx = −n

∫

Ω

αep dx = −n

∫

Ω

αehp dx,(64)

where the second, third, and fourth equalities are due to (62), (63), and the facts
that α is piecewise constant and eIp is mean-value zero on each mesh element.

Letting ẽhσ = ehσ − βI we have
∫

Ω

tr ẽhσ dx = 0.(65)

The triangle inequality gives

‖ehσ‖0 ≤ ‖ẽhσ‖0 + |β|‖I‖0 = ‖ẽhσ‖0 +
√
n|β||Ω| 12 .

By (64) and Hölder inequality, we have

√
n|β||Ω| 12 =

√
n|Ω|− 1

2

∣

∣

∣

∣

∫

Ω

αehp dx

∣

∣

∣

∣

. ‖ehp‖0.

Recall that the estimate of ‖ehp‖0 is uniform in λ, so the above two inequalities imply

that, to have a λ-uniform estimate of ‖ehσ‖0, we only need a λ-uniform estimate of
‖ẽhσ‖0. If we use (65) and the fact div ehσ = div ẽhσ = 0 by definition of ẽhσ, then (61)
gives ‖ẽhσ‖0 . ‖(ẽhσ)D‖0. In addition, it is easy to see ‖(ẽhσ)D‖0 . ‖ẽhσ‖A from the
definition of A (cf. [4, Lemma 3.2]), so it is sufficient to estimate ‖ẽhσ‖A. A direct
computation using the form of A in (58) gives

‖ẽhσ‖2A =
(

A(ehσ − βI), ehσ − βI
)

= (Aehσ, e
h
σ)− 2β(AI, ehσ) + β2(AI, I)

= ‖ehσ‖2A − 2β

2µ+ nλ

∫

Ω

tr ehσ dx+
nβ2

2µ+ nλ
|Ω| (by (58))

= ‖ehσ‖2A − nβ2

2µ+ nλ
|Ω| (by (64))

≤ ‖ehσ‖2A.
As we already have an estimate of ‖ehσ‖A which is uniform in λ, we obtain an
estimate of ‖ẽhσ‖0 uniform in λ as well.

If Γd 6= ∂Ω, then we can apply (61) directly to eσ and have

‖eσ‖0 . ‖(eσ)D‖0 + sup
φ∈H1

Γ
(Ω)

(div eσ, φ)

‖φ‖1
.(66)

Then it is enough to show that the first and second terms in the above are bounded
by ‖eIσ‖0 and ‖ehσ‖A. The first term ‖(eσ)D‖0 is easily estimated by

‖(eσ)D‖0 ≤ ‖(eIσ)D‖0 + ‖(ehσ)D‖0 . ‖eIσ‖0 + ‖ehσ‖A.
To estimate the second term, note that (50) with η = 0 implies that div eσ =
div σ − PV

h div σ, so

(div eσ, φ) = (div(σ − IΣh σ), φ) = −(σ − IΣh σ, gradφ) = −(eIσ, gradφ).
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Thus, the second term in (66) is bounded by ‖eIσ‖0. � �

3.3. Superconvergence and a local post-processing. We show that supercon-
vergence of the displacement error is available for certain choices of (Σh, Vh,Γh,Wh, Qh).
We also show that a new numerical displacement with higher order accuracy can
be obtained from a local postprocessing of the superconvergent numerical displace-
ment.

Suppose that (Σh, Vh,Γh,Wh, Qh) are elements such that

O(Σh) = O(Γh) = O(Wh) = O(Qh) = r, O(Vh) = r − 1

with r ≥ 2. Then we have obtained

‖ehσ, ehu, ehz , ehp , ehγ‖0 . hr(67)

in Theorem 3.2 assuming that exact solutions are sufficiently regular. In particular,
(67) implies that the convergence rate of ‖ehu‖0 is higher than the best approxima-
tion order of Vh. This allows us to use a local post-processing to obtain u∗

h, a
numerical solution of u with better accuracy.

We describe the local post-processing here. Let V ∗
h be the space of polynomials

with 1 degree higher than Vh, Vh,0 ⊂ V ∗
h be the space of piecewise constants, and

V ⊥
h,0 be the L2 orthogonal complement of Vh,0 in V ∗

h . The post-processed solution
u∗
h is defined as the solution of the system

(gradh u
∗
h(t), gradh v) = (A(σh(t) + αph(t)I) + γh(t), gradh v),(68)

(u∗
h, v

′) = (uh(t), v
′),(69)

for all v ∈ V ⊥
h,0 and v′ ∈ Vh,0, where gradh v is the element-wise gradient of v,

which is an n×n matrix-valued function. It is easy to see that u∗
h is well-defined by

checking that (68)–(69) is a nonsingular linear system. The error analysis of this
post-processing is almost the same as the one in [6] but we present a detailed proof
to be self-contained.

Theorem 3.8. Suppose that the assumptions of Theorem 3.2 hold and ‖u‖W 1,1Hr

is finite. Assume also that (σh, uh, γh, zh, ph) is a semidiscrete solution of (23)–(26)
and r′ = r − 1. If we define u∗

h(t) ∈ V ∗
h by (68)–(69), then u∗

h(t) satisfies

‖u(t)− u∗
h(t)‖0 . hr.(70)

Proof. For simplicity we will omit the time variable t in the proof. Let P 0
h , P

∗
h ,

P⊥
h be the L2 projections into Vh,0, V

∗
h , V

⊥
h,0, respectively, and P ∗

h = P 0
h + P⊥

h by

definition. To prove (70), it suffices to show

‖P ∗
hu− u∗

h‖0 . hr(71)

because ‖u − P ∗
hu‖0 . hr holds by the Bramble–Hilbert lemma. To estimate

‖P ∗
hu− u∗

h‖0, consider the orthogonal decomposition

P ∗
hu− u∗

h = P 0
h (u− u∗

h) + P⊥
h (u− u∗

h) ∈ Vh,0 ⊕ V ⊥
h,0.

From the facts P 0
hP

V
h u = P 0

hu and P 0
hu

∗
h = P 0

huh (by the definition of u∗
h), we have

P 0
h (u−u∗

h) = P 0
h (P

V
h u− uh). Recall that ‖PV

h u− uh‖0 . hr is already obtained in
Theorem 3.2, so we only need to show ‖P⊥

h (u− u∗
h)‖0 . hr in order to prove (71).

Since

gradh u = gradu = A(σ + αpI) + γ,
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we have

(gradh u, gradh w) = (A(σ + αpI) + γ, gradh w)

for w ∈ V ⊥
h,0. By subtracting the equation (68) from this equation, we get, for

w ∈ V ⊥
h,0,

(gradh(u − u∗
h), gradh w) = (A(eσ + αepI) + eγ , gradh w).(72)

Using the equality

u− u∗
h = (u − P ∗

hu) + (P ∗
hu− u∗

h) = (u− P ∗
hu) + P⊥

h (u− u∗
h) + P 0

h (u− u∗
h)

to replace u− u∗
h in (72), a direct computation gives

(gradh(P
⊥
h (u− u∗

h)), gradh w)

= −(gradh(u− P ∗
hu)− (A(eσ + αepI) + eγ , gradhw)

because gradh P
0
h (u − u∗

h) = 0. Taking w = P⊥
h (u − u∗

h) in this equation and
multiplying h, we have

(73) h‖ gradh P⊥
h (u − u∗

h)‖0 . h(‖ gradh(u − P ∗
hu)‖0 + ‖A(eσ + αepI) + eγ‖0).

Using the estimate ‖P⊥
h (u− uh)‖0 . h‖ gradh P⊥

h (u− uh)‖0, we get

‖P⊥
h (u− u∗

h)‖0 . h(‖ gradh(u− P ∗
hu)‖0 + ‖A(eσ + αepI) + eγ‖0).

Now we only need to prove that the two terms on the right-hand side of the above
inequality are bounded by chr. For the first term, one can see

h‖ gradh(u− P ∗
hu)‖0 . hr‖u‖r

by the Bramble–Hilbert lemma. For the second term we use the a priori error
estimates of σ, p, γ in Corollary 3.5, and the triangle inequality. � �

3.4. Well-posedness of fully discrete solutions. In this section we discuss the
a priori error analysis of fully discrete solutions. Let N be a positive integer and
∆t = T/N be the time-step size. Define ti = i∆t for i = 0, 1, ..., N and

f i = f(ti), ∂tf
i =

f i − f i−1

∆t
.(74)

Denoting the i-th time step solution by (σi
h, u

i
h, γ

i
h, z

i
h, p

i
h), the full discretization of

(23)–(26) with the backward Euler scheme is

(A(σi
h + αpihI), τ) + (ui

h, div τ) + (γi
h, τ) = 0,(75)

(div σi
h, v) + (σi

h, η) = −(f i, v),(76)

(κ−1zih, w) + (pih, divw) = 0,(77)
(

s0∂tp
i
h, q
)

+
(

A
(

∂tσ
i
h + α∂tp

i
hI
)

, αqI
)

− (div zih, q) = (gi, q),(78)

for i ≥ 1 and any (τ, v, η, w, q) ∈ Σh×Vh×Γh×Wh×Qh. This is a system of linear
equations with the same number of equations and unknowns, so it is a nonsingular
linear system if it has a unique solution. Suppose that f i, gi, and the (i − 1)-th



17

time step solution vanish in the above system. Then we show that the i-th step
solution must vanish. To show it, we multiply ∆t to (78) and get

(A(σi
h + αpihI), τ) + (ui

h, div τ) + (γi
h, τ) = 0, ∀τ ∈ Σh,(79)

(div σi
h, v) + (σi

h, η) = 0, ∀(v, η) ∈ Vh × Γh,(80)

(κ−1zih, w) + (pih, divw) = 0, ∀w ∈ Wh,(81)
(

s0p
i
h, q
)

+
(

A
(

σi
h + αpihI

)

, αqI
)

−∆t(div zih, q) = 0, ∀q ∈ Qh.(82)

Taking τ = σi
h, v = ui

h, w = ∆tzih, q = pih, η = −γi
h and adding all the equations,

we have

‖σi
h + αpihI‖2A + (s0p

i
h, p

i
h) + ∆t(κ−1zih, z

i
h) = 0,

so σi
h + αpihI and zih vanish. Note that pih does not necessarily vanish because we

do not assume that s0 is strictly positive on the whole Ω. However, the inf-sup
condition (S3), the fact zih = 0, and (81) can conclude that pih = 0, and therefore
σi
h = 0 as well because σi

h + αpih = 0. Now ui
h = 0 and γi

h = 0 can be obtained
using the inf-sup condition (S4) and (79).

The a priori error analysis of differential algebraic equation with implicit time
discretization is well-studied [23], so here we state the result and will not show the
detailed proof of the error estimates of the fully discrete solutions.

Theorem 3.9. Suppose that (σ, u, γ, z, p) and (σi
h, u

i
h, γ

i
h, z

i
h, p

i
h) are solutions of

(12)–(15) and (75)–(78), respectively. Then the following estimate holds:

sup
0≤i≤N

‖σi − σi
h, u

i − ui
h, γ

i − γi
h, z

i − zih, p
i − pih‖0 ≤ c(∆t+ hm), 1 ≤ m ≤ r,

with a constant c depending on regularity of the exact solution.

Let us give a remark on other time discretizations. We may use other implicit
time discretization schemes with higher order time discretization errors but they
may need numerical initial data compatible with algebraic equations of the problem.
For example, if the Crank–Nicolson method is used and numerical initial data do not
satisfy the algebraic equations of the problem, then the numerical solution does not
satisfy the algebraic equations at all time steps due to the time stepping algorithm
of the Crank–Nicolson method. In order to avoid it, we may choose numerical initial
data as a numerical solution of the algebraic equations. An alternative way is to
take only one time step with the backward Euler method with very small time-step
size and to continue time stepping with the Crank–Nicolson method.

4. Numerical results

We present numerical experiments in this section. For simplicity of presentation,
we assume that the poroelastic medium is homogeneous and isotropic, i.e.,

Cτ = 2µτ + λ tr τI, τ ∈ L2(Ω; S),(83)

Asτ =
1

2µ

(

τ − λ

2µ+ nλ
tr τI

)

, τ ∈ L2(Ω; S)

with positive constants µ and λ.
We set Ω = [0, 1]× [0, 1], and displacement boundary conditions will be given in

all examples. In our experiments, we used two combinations of mixed finite elements
for elasticity and for mixed Poisson problems. As the first combination we use the
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lowest order Arnold–Falk–Winther (AFW1) element [5] for linear elasticity and the
lowest order Raviart–Thomas (RT1) element for mixed Poisson problem. Note that
we use the indices of Raviart–Thomas elements in the FEniCS package (cf. [27]),
which may be different from other literature. The lowest order AFW element has
the lowest order Brezzi–Douglas–Marini element [11] in each row of Σh, V-valued
discontinuous piecewise constant polynomials as Vh, and K-valued discontinuous
piecewise constant polynomials as Γh. Another combination is the lowest order
Taylor–Hood based (THB1) element for linear elasticity and the second lowest order
RT element (RT2) for mixed Poisson problem. The lowest order Taylor–Hood
based element [25] has the lowest order BDM element in each row of Σh, V-valued
piecewise constant polynomials as Vh, and K-valued continuous piecewise linear
polynomials as Γh. For the stability analysis of the AFW1 and THB1 elements, we
refer to [5, 8, 18, 22, 25].

In our numerical experiments the mesh is structured with mesh size h and we
take the backward Euler time discretization with time-step size 0 < ∆t < 1. We
set ∆t = h2 or ∆t = h3 in order to make the convergence rate of the time dis-
cretization errors higher than the one of the spatial discretization errors, so we can
compare the convergence rates of the spatial discretization errors ignoring influ-
ences of time discretization errors. The expected convergence rates of the errors
from the theoretical analysis are summarized in Table 2. All numerical experiments
are implemented using Dolfin, the Python interface of the FEniCS package [27].

Table 1. Finite element spaces for unknowns (BDMk : the k-
th lowest order Brezzi–Douglas–Marini element, RTk : the k-th
lowest order Raviart–Thomas element, CGk : the Lagrange finite
element with polynomials of degree ≤ k, DGk : the finite element
with discontinuous polynomials of degree ≤ k)

Σh Vh Γh Wh Qh

Element 1 BDM1 DG0 DG0 RT1 DG0

Element 2 BDM1 DG0 CG1 RT2 DG1

Table 2. Expected (spatial) convergence rates

error σ − σh u− uh u− u∗
h γ − γh z − zh p− ph

norm L∞L2 L∞L2 L∞L2 L∞L2 L∞L2 L∞L2

Element 1 1 1 1 1 1 1

Element 2 2 1 2 2 2 2

Example 4.1. For the displacement and pressure

u(t, x, y) =

(

x cos(t)
(1 + y2) cos(t+ 1) sin(πx)

)

and p(t, x, y) = x2y cos(t2),(84)

the stiffness tensor (83) and given parameters µ, λ, κ, α, one can compute σ, z, γ,
f , and g, using the equations (3)–(6) and the definition of γ. We compute a nu-
merical solution of this exact solution with inhomogeneous displacement boundary
conditions using the formulation (12)–(15). The numerical results with Element 1



19

Table 3. Errors and convergence rates of unknowns at t = 1.0
with Element 1 for the exact solution with the displacement (84)
(µ = λ = 10, s0 = 1, ∆t = h2).

1

h

‖σ − σh‖ ‖u − uh‖ ‖u − u∗
h‖ ‖γ − γh‖ ‖z − zh‖ ‖p − ph‖

error rate error rate error rate error rate error rate error rate

4 5.93e+0 – 1.92e–1 – 1.10e–1 – 2.50e–1 – 1.51e–1 – 6.24e–2 –

8 2.37e+0 1.32 8.94e–2 1.10 3.54e–2 1.64 1.16e–1 1.11 7.78e–2 0.95 3.19e–2 0.97

16 1.10e+0 1.11 4.26e–2 1.07 1.03e–2 1.78 5.53e–2 1.06 3.90e–2 1.00 1.55e–2 1.05

32 5.40e–1 1.03 2.09e–2 1.03 2.77e–3 1.90 2.72e–2 1.02 1.95e–2 1.00 7.59e–3 1.03

64 2.69e–1 1.00 1.04e–2 1.01 7.15e–4 1.95 1.35e–2 1.01 9.75e–3 1.00 3.77e–3 1.01

Table 4. Errors and convergence rates of unknowns at t = 1.0
with Element 2 for the exact solution with the displacement (84)
(µ = λ = 10, s0 = 1, ∆t = h3).

1

h

‖σ − σh‖ ‖u − uh‖ ‖u − u∗
h‖ ‖γ − γh‖ ‖z − zh‖ ‖p − ph‖

error rate error rate error rate error rate error rate error rate

4 3.19e+0 – 1.62e–1 – 3.63e–2 – 2.23e–1 – 2.61e–2 – 1.09e–2 –

8 7.97e–1 2.00 8.26e–2 0.98 8.13e–3 2.16 4.20e–2 2.41 7.08e–3 1.88 2.84e–3 1.93

16 2.03e–1 1.97 4.14e–2 1.00 2.17e–3 1.91 9.63e–3 2.13 1.87e–3 1.92 7.61e–4 1.90

32 5.14e–2 1.98 2.07e–2 1.00 5.55e–4 1.96 2.34e–3 2.04 4.77e–4 1.97 2.00e–4 1.93

64 1.29e–2 1.99 1.04e–2 1.00 1.40e–4 1.99 5.79e–4 2.01 1.20e–4 1.99 5.13e–5 1.96

Table 5. Errors and convergence rates of unknowns at t = 1.0
with Element 1 for the exact solution with the displacement (84)
(µ = λ = 10, s0 = 10−3, ∆t = h2).

1

h

‖σ − σh‖ ‖u − uh‖ ‖u − u∗
h‖ ‖γ − γh‖ ‖z − zh‖ ‖p − ph‖

error rate error rate error rate error rate error rate error rate

4 5.93e+00 – 1.92e–1 – 1.10e–1 – 2.50e–1 – 1.67e–1 – 7.82e–2 –

8 2.37e+00 1.32 8.94e–2 1.10 3.54e–2 1.64 1.16e–1 1.11 8.12e–2 1.05 3.55e–2 1.14

16 1.10e+00 1.11 4.26e–2 1.07 1.03e–2 1.78 5.53e–2 1.06 3.95e–2 1.04 1.60e–2 1.15

32 5.40e-01 1.03 2.09e–2 1.03 2.77e–3 1.90 2.72e–2 1.02 1.96e–2 1.01 7.66e–3 1.06

64 2.69e-01 1.00 1.04e–2 1.01 7.14e–4 1.95 1.35e–2 1.01 9.76e–3 1.00 3.78e–3 1.02

Table 6. Errors and convergence rates of unknowns at t = 1.0
with Element 2 for the exact solution with the displacement (84)
(µ = λ = 10, s0 = 10−3, ∆t = h3).

1

h

‖σ − σh‖ ‖u − uh‖ ‖u − u∗
h‖ ‖γ − γh‖ ‖z − zh‖ ‖p − ph‖

error rate error rate error rate error rate error rate error rate

4 3.19e+ 0 – 1.62e–1 – 3.63e–2 – 2.23e–1 – 2.65e–2 – 1.24e–2 –

8 7.97e–1 2.00 8.26e–2 0.98 8.13e–3 2.16 4.20e–2 2.41 6.68e–3 1.99 2.97e–3 2.06

16 2.03e–1 1.97 4.14e–2 1.00 2.17e–3 1.91 9.63e–3 2.13 1.75e–3 1.93 7.37e–4 2.01

32 5.14e–2 1.98 2.07e–2 1.00 5.55e–4 1.96 2.34e–3 2.04 4.46e–4 1.98 1.85e–4 2.00

64 1.29e–2 1.99 1.04e–2 1.00 1.40e–4 1.99 5.79e–4 2.01 1.12e–4 1.99 4.63e–5 2.00
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Table 7. Errors and convergence rates of unknowns at t = 1.0
with Element 1 for the exact solution with the displacement (84)
(µ = λ = 10, s0 = 0, ∆t = h3).

1

h

‖σ − σh‖ ‖u − uh‖ ‖u − u∗
h‖ ‖γ − γh‖ ‖z − zh‖ ‖p − ph‖

error rate error rate error rate error rate error rate error rate

4 5.93e+0 – 1.92e–1 – 1.10e–1 – 2.50e–1 – 1.67e–1 – 7.82e–2 –

8 2.37e+0 1.32 8.93e–2 1.10 3.54e–2 1.64 1.15e–1 1.11 8.12e–2 1.05 3.55e–2 1.14

16 1.10e+0 1.11 4.26e–2 1.07 1.03e–2 1.78 5.53e–2 1.06 3.95e–2 1.04 1.60e–2 1.15

32 5.40e–1 1.03 2.09e–2 1.03 2.77e–3 1.90 2.72e–2 1.02 1.96e–2 1.01 7.66e–3 1.06

64 2.69e–1 1.00 1.04e–2 1.01 7.14e–4 1.95 1.35e–2 1.01 9.76e–3 1.00 3.78e–3 1.02

Table 8. Errors and convergence rates of unknowns at t = 1.0
with Element 2 for the exact solution with the displacement (84)
(µ = λ = 10, s0 = 0, ∆t = h3).

1

h

‖σ − σh‖ ‖u − uh‖ ‖u − u∗
h‖ ‖γ − γh‖ ‖z − zh‖ ‖p − ph‖

error rate error rate error rate error rate error rate error rate

4 3.19e+0 – 1.62e–1 – 3.63e–2 – 2.23e–1 – 2.65e–2 – 1.24e–2 –

8 7.97e–1 2.00 8.26e–2 0.98 8.13e–3 2.16 4.20e–2 2.41 6.68e–3 1.99 2.97e–3 2.07

16 2.03e–1 1.97 4.14e–2 1.00 2.17e–3 1.91 9.63e–3 2.13 1.75e–3 1.93 7.37e–4 2.01

32 5.14e–2 1.98 2.07e–2 1.00 5.55e–4 1.96 2.34e–3 2.04 4.46e–4 1.98 1.85e–4 2.00

64 1.29e–2 1.99 1.04e–2 1.00 1.40e–4 1.99 5.79e–4 2.01 1.12e–4 1.99 4.63e–5 2.00

(AFW1 and RT1) and Element 2 (THB1 and RT2) are given through Tables 3, 4, 5
and 6. The parameter values, mesh and time-step sizes are explained in the tables.

Table 9. Relative L2 errors and convergence rates of σ, u, and z
for large λ values

λ 1

h

‖σ − σh‖/‖σ‖ ‖u− uh‖/‖u‖ ‖z − zh‖/‖z‖

error rate error rate error rate

10
1

4 4.51e–01 – 3.46e-01 – 4.09e-01 –

8 2.94e–01 0.62 1.53e-01 1.17 2.24e-01 0.87

16 1.80e–01 0.71 5.94e-02 1.37 1.14e-01 0.98

32 1.04e–01 0.78 2.11e-02 1.49 5.52e-02 1.04

10
4

4 6.23e–01 – 5.88e-01 – 4.82e-01 –

8 4.62e–01 0.43 3.19e-01 0.88 2.54e-01 0.92

16 3.15e–01 0.55 1.50e-01 1.09 1.26e-01 1.01

32 1.98e–01 0.67 6.12e-02 1.29 5.98e-02 1.07

10
7

4 6.24e–01 – 5.89e-01 – 4.82e-01 –

8 4.63e–01 0.43 3.20e-01 0.88 2.55e-01 0.92

16 3.16e–01 0.55 1.50e-01 1.09 1.26e-01 1.01

32 1.98e–01 0.67 6.14e-02 1.29 5.98e-02 1.07

10
10

4 6.24e–01 – 5.89e-01 – 4.82e-01 –

8 4.63e–01 0.43 3.20e-01 0.88 2.55e-01 0.92

16 3.16e–01 0.55 1.50e-01 1.09 1.26e-01 1.01

32 1.98e–01 0.67 6.14e-02 1.29 5.98e-02 1.07
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In Table 3 and Table 5, with different values of s0, we carried out the local
post-processing in the previous section. The post-processed solutions show second
order convergence but this superconvergence is not covered in the error analysis.
Numerical experiments of the same exact solutions with Element 2 are presented
in Table 4 and Table 6 and all the convergence rates are in agreement with the
expected convergence rates. In Table 7 and Table 8, we carried out numerical
experiments for an exact solution with s0 = 0, and can see that convergence rates
are not influenced by this vanishing s0.

Example 4.2. In order to illustrate that our methods are robust for nearly incom-
pressible materials, we consider a problem on Ω = [0, 1]× [0, 1] with

f =

(

xy
sin t

)

, µ = 10, κ = 1, s0 = 10−3,

and boundary conditions

σn = 0, z · n = 0, on Γ = {(x, y) ∈ R
2 : y < 1}.

Since we do not know the exact solution, we compute a numerical solution with
the mesh of Ω bisecting 128× 128 rectangles, and use it to compute the errors of
other numerical solutions with coarser meshes. For simplicity, we use Element 1 in
Table 2. We present relative L2 errors and convergence rates of σ, u, z for different
λ values and mesh refinements in Table 4.1. Due to the limit of computational
resources, our numerical experiments did not reach the asymptotic regime of con-
vergence rates but they clearly show that relative L2 errors of σ, u, z, are not
influenced by large λ values.

5. Conclusion

In the paper, we propose a new finite element method for Biot’s consolidation
model and show the a priori error estimates of semidiscrete problems. In particular,
our error estimates do not require strictly positive s0, and they are robust for nearly
incompressible materials. We illustrate the validity of our analysis by numerical
experiments.
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