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Abstract

This paper explores a common class of diagonal-norm summation by parts (SBP) operators found in the
literature, which can be parameterized by an integer triple (s, t, r) representing the interior order of accuracy
(2s), the boundary order of accuracy (t), and the dimension of the boundary closure (r). There is no simple
formula for determining whether or not an SBP operator exists for a given triple of parameters. Instead,
one must check that certain compatibility conditions are met: namely that a particular linear system of
equations has a positive solution. Partly because of the complexity involved, not much is known about
diagonal-norm SBP operators with 2s > 10.

By utilizing a new algorithm for answering the question “Does an SBP operator exist for the parameters
(s, t, r)?”, it is possible to explore the existence of SBP operators with high order accuracy, and previously
unknown SBP operators with interior order of accuracy as large as 2s = 30 are found. Additionally, a
method for optimizing the spectral radius of the SBP derivative is introduced, and the effectiveness of this
method is explored through numerical experiment.

Keywords: high-order finite difference methods; summation by parts; diagonal energy norm

1. Introduction

The need for high-order numerical methods in the simulation of long-distance advection and wave prop-
agation is well established. The introduction to a 1972 paper by Kreiss and Oliger [8], for example, provides
a review of works dating back to the mid-1960’s indicating that the inadequacy of second-order methods for
applications in meteorology and oceanography was becoming apparent even then. The argument is based
on the observation that the error in a numerical solution of a hyperbolic partial differential equation (PDE)
scales roughly as a constant times Tω(p+1)hp, where p is the order of accuracy of the numerical derivative
operator, h is the spatial step size, ω is a characteristic frequency of the solution, and T is the final time to
which the equation is to be solved. Thus, in order to maintain a given level of error, the spatial step size
should be scaled as h ∼ ω−(p+1)/p T−1/p. For problems wherein ω and T are very large, it is essential that
p be large as well, to avoid the need for overly small h.

For spatial derivative approximations based on finite differences, the combination of wide stencils to allow
high-order accuracy and biased stencils to accommodate domain boundaries presents a particular challenge;
it is very unlikely that an arbitrarily chosen high-order finite difference operator will lead to a stable solver
for a hyperbolic initial-boundary value problem. Because of this, much research has been conducted in the
search for stable and accurate finite difference schemes.

1.1. Summation by parts operators

Among the various types of high-order finite difference operators, the summation by parts (SBP) oper-
ators are unique in that their construction incorporates the construction of a natural discrete energy norm
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that can be used to prove stability for PDE solvers. Numerical schemes based on SBP operators have proven
effective in simulating a wide variety of physical phenomena, including fluid flow [13, 18, 19], elastic wave
propagation [2, 12, 15], and orbiting binary black holes [14].

The basic idea behind SBP operators (see, e.g., References [4, 9, 16]) is straightforward. One seeks to
build, simultaneously, a finite difference operator and an associated vector norm that mimic, in a semi-
discrete setting, some continuum energy estimate for the PDE. The one-dimensional advection equation on
a bounded interval provides the canonical example.

Consider the PDE
ut + ux = 0 x ∈ (0, 1), t > 0, (1)

with suitable initial and boundary conditions. The energy

Eu(t) = ‖u(t, ·)‖2L2 =

∫ 1

0

u(t, x)2 dx,

has the property that, for u solving Equation (1), Eu satisfies

dEu
dt

= 2

∫ 1

0

uut dx = −2

∫ 1

0

uux dx = −
∫ 1

0

∂

∂x
u2 dx = u(t, 0)2 − u(t, 1)2. (2)

Now, consider the following semi-discrete form of Equation (1). In what follows, for the sake of simplifying
formulas, we deviate from convention and index arrays beginning at 0. Let {xi}n−1i=0 be the grid of n
equispaced nodes in [0, 1] with step size h = 1/(n− 1), and let v(t) be the n-vector approximating u in the
method-of-lines interpretation. That is, vi(t) ≈ u(t, xi) solves the semi-discrete equation

vt +Dhv = 0, (3)

for some n× n finite difference operator Dh. Emulating the continuum case, let Ph be an n× n symmetric
positive definite matrix, and define the energy

Ev(t) = ‖v(t)‖2Ph
= v(t)TPh v(t).

If Ph and Dh together satisfy the condition

PhDh +DT
hPh = en−1e

T
n−1 − e0eT0 = Q, (4)

with {ei}n−1i=0 the canonical basis in Rn, then it is straightforward to check that if v is a solution to Equa-
tion (3), then the energy satisfies

dEv

dt
= vTt Ph v + vTPh vt = −vT

(
PhDh +DT

hPh

)
v = v20 − v2n−1,

which is a semi-discrete analog of Equation (2). This property can be used to prove the stability of the fully
discrete numerical solver.

Thus, the construction of an SBP first derivative operator (actually, an operator/norm pair) consists of
constructing n× n matrices Dh and Ph with the following properties.

(P1) Dh is a finite difference approximation of the first derivative.

(P2) Ph and Dh together satisfy the energy condition (4).

(P3) Ph is a positive definite matrix.
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1.2. The parameters (s, t, r)

Making use of the scale-invariance of the derivative and norm, namely that Dh = 1
hD1 and Ph = hP1,

we now drop the subscript h and assume a step size of h = 1. In their general form, properties (P1)–(P3)
form a large nonlinear system of equations and inequalities in the n2 entries in D and the n(n+ 1)/2 entries
in P . This is undesirable for three reasons: the equations are nonlinear, there are many of them, and their
solution naturally depends on the grid size n.

Fortunately, each of these problems can be treated by standard methods [9, 20]. Let the positive integer
triple (s, t, r) be given. For the remainder of the paper, P is assumed to have the block diagonal form

P =

P̃ 0 0
0 I 0

0 0 P̂

 = PT , (5)

with P̃ and P̂ symmetric positive definite r× r matrices. Furthermore, D is assumed to be a centered finite
difference operator of order 2s in its interior n − 2r rows, and a finite difference operator of order t in its
first r and last r rows. Under these assumptions, D can be factored as

D =

P̃−1 0 0
0 I 0

0 0 P̂−1

 B C0 0

−CT
0 D̃ −ĈT

0

0 Ĉ0 B̂

 , (6)

where B and B̂ are r × r block matrices, C0 and Ĉ0 are r × (n− 2r) blocks of the forms

C0 =
[
C 0
]

and Ĉ0 =
[
0 Ĉ
]
,

respectively, where C, Ĉ ∈ Rr×s. For example, when s = 2 and r = 4, the matrix on the right-hand side of
Equation (6) has a banded structure of the form



× × × ×
× × × ×
× × × × ×
× × × × × ×

× × 0 × ×
× × 0 × ×
× × 0 × ×

. . .
. . .

. . .
. . .

. . .


,

where the shaded block is the matrix C. Since the interior n − 2r rows of D are known, the remaining
unknown quantities lie within P̃ , P̂ , B and B̂.

Remark 1.1. There are, naturally, a wide variety of modifications that can be made to this basic structure.
For example, there is no need to require that the left and right closures are identical in size and order,
nor does the interior method need to be a centered finite difference method. Moreover, the underlying
computational grid need not be uniformly spaced [11], and the a much more general SBP framework has
been developed [6]. Despite the wide variety of modifications available, however, it is still interesting to
consider under what circumstances the conventional SBP first derivative operator can exist.

1.3. The question of existence

The main question of this paper can now be stated as follows.

Question 1. Let the positive integer triple (s, t, r) be given. Does there exist an SBP pair, P and D,
satisfying (P1)–(P3) such that P has the form given in (5) and D has the form given in (6) with order of
accuracy t in its first r and last r rows and order of accuracy 2s in its remaining interior rows?

We will say that an SBP operator for the triple (s, t, r) exists if the answer to Question 1 is affirmative,
and that no such SBP operator exists if the answer is negative. The principal contributions of the present
work are the following.
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• We derive a set of compatibility conditions (similar to the conditions of Kreiss and Scherer [9]) on the
triple (s, t, r) that are necessary and sufficient for the existence of an SBP operator (Section 2). These
conditions decouple the problem of constructing SBP operators into a two-step process: first the norm
P is constructed, if possible, and then the derivative matrix D is constructed. Compatibility conditions
are given for the general block-norm setting (Theorem 1) and are specialized to the diagonal-norm
setting (Theorem 2).

• Focusing on the operators with diagonal norm, we describe a deterministic algorithm for answering
the existence question (Section 3). The algorithm is quite simple, comprising the solution of a linear
system of equations, followed by the solution of a standard linear program.

• Next, we report the results of an automated search of the (s, t, r)-space, showing the existence of
diagonal-norm SBP operators with orders of accuracy as large as 2s = 30 in the interior and t = 15 on
the boundary. (The diagonal-norm operators of highest order accuracy in the literature are 2s = 10
and t = 5.)

• We follow this exploration with the description of a new algorithm for optimizing the SBP derivative
operator (Section 5) and demonstrate the effectiveness of some newly constructed, high-order SBP
operators by numerical experiment (Section 6).

2. Compatibility conditions

In this section, we present a derivation of necessary and sufficient compatibility conditions (similar to
those given in [9]) designed explicitly to allow for the cases t < s and r > 2s. It is sufficient to treat
the top rows of D; the bottom rows are treated analogously. Consider the three matrices X ∈ Rr×(t+1),
X̃ ∈ Rs×(t+1) and Y ∈ Rr×(t+1) defined as

Xij = ij , X̃ij = (r + i)j , and Yij = jij−1,

where, for convenience in dealing with the upper-left entries X00 and Y00 in what follows, we use the notation

00 = 1 and 0 · 0−1 = 0.

(This is only a notational convenience to avoid the need to consider special cases in what follows. These
conventions are never treated as computationally valid.)

With these definitions, D is a tth order derivative approximation in the first r rows if and only if

P̃−1BX + P̃−1CX̃ = Y or equivalently BX + CX̃ = P̃ Y.

Moreover, D satisfies the energy condition (4) if and only if

B +BT = −e0eT0 , B̂ + B̂T = er−1e
T
r−1.

Splitting B into its symmetric and antisymmetric parts yields

B = B1 +B2, B1 =
1

2
(B +BT ) = −1

2
e0e

T
0 , B2 =

1

2
(B −BT ) = −BT

2 .

Thus, the equation for B and P can be written as

1

2
(B −BT )X = B2X = P̃ Y − CX̃ −B1X. (7)

The form of Equation (7) suggests a solution strategy. First, determine conditions on the norm P̃—the
compatibility conditions—which guarantee solvability of Equation (7) for B2. If such a norm exists, then
necessarily a corresponding SBP derivative operator must exist. Conversely, if Equation (7) is not solvable
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for any choice of norm P̃ , then we may conclude that no SBP operator/norm pair exists for the given
parameters.

Let L : Rr×r → Rr×(t+1) be the linear operator with action LB = 1
2 (BX − BTX). Then the standard

solvability theorem of linear algebra states that Equation (7) can be solved if and only if the right-hand side
is orthogonal to the nullspace of L∗ (with orthogonality and the adjoint defined in some inner product). It
is convenient to use the standard inner product on Rm×n:

〈U, V 〉 = trace(UV T ) =

m−1∑
i=0

n−1∑
j=0

UijVij .

Keeping in mind two fundamental properties of the matrix trace, namely that

trace(U) = trace(UT ) and trace(UV ) = trace(V U)

whenever the dimensions of U and V are compatible with both products, we can compute the adjoint of L
as follows.

2 〈LB,A〉 = trace(BXAT )− trace(BTXAT ) = trace(BXAT )− trace(AXTB)

= trace(BXAT )− trace(BAXT ) = trace(B(AXT −XAT )T ) =
〈
B,AXT −XAT

〉
.

So L∗A = 1
2 (AXT −XAT ). Thus, we have proved the following lemma.

Lemma 1. Equation (7) is solvable if and only if there exists a P̃ such that
〈
P̃ Y − CX̃ −B1X,A

〉
= 0

for every A ∈ Rr×(t+1) satisfying AXT = XAT .

This lemma provides the first form of the compatibility condition. An SBP operator for the parameter
triple (s, t, r) exists if and only if one can find a positive definite matrix P̃ such that the right-hand side of
Equation (7) is orthogonal to the nullspace N(L∗) of L∗, or equivalently, if and only if the right-hand side
is orthogonal to each element of a basis for N(L∗). A basis is given by the following lemma.

Lemma 2. A matrix A satisfies AXT = XAT if and only if A = XE for some E = ET ∈ R(t+1)×(t+1).

Proof. Suppose AXT = XAT . Since X has full column rank, XTX is invertible, and, thus,

A = AXTX(XTX)−1 = XATX(XTX)−1 = XE.

To see that E is symmetric, observe that XEXT = AXT = XAT = XETXT and so XTXEXTX =
XTXETXTX. Since XTX is invertible, E = ET . The converse is straightforward.

Corollary 1. Equation (7) is solvable if and only if there exists a P̃ such that〈
P̃ Y − CX̃ −B1X,X(epe

T
q + eqe

T
p )
〉

= 0 for all p = 0, 1, . . . , t, q = p, p+ 1, . . . , t. (8)

Before forming the entire inner product in Equation (8), it is useful to compute a few separate terms.
First, observe that for any matrix Z ∈ Rr×(t+1)〈

Z,Xepe
T
q

〉
= trace(Zeq(Xep)T ) = trace((Xep)TZeq) = (Xep)TZeq.

Now, considering the first term in the inner product in Equation (8), we find

〈
P̃ Y,Xepe

T
q

〉
= (Xep)T (P̃ Y eq) =

r−1∑
k=0

Xkp

r−1∑
`=0

P̃k`Y`q =

r−1∑
k=0

r−1∑
`=0

qkp`q−1P̃k`.
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Turning to the second form in the right-hand side, we find〈
CX̃,Xepe

T
q

〉
= (Xep)T (CX̃eq) =

r−1∑
k=0

Xkp

s−1∑
`=0

Ck`X̃`q =

r−1∑
k=0

s−1∑
`=0

kp(r + `)qCk`.

Finally, we find

〈
B1X,Xepe

T
q

〉
= (Xep)T (B1Xeq) =

r−1∑
k=0

Xkp

r−1∑
`=0

(B1)k`X`q = −1

2

r−1∑
k=0

r−1∑
`=0

kp`qδk0δ`0 = −1

2
δp0δq0.

Combining the above computations, we arrive at a system of (t+ 1)(t+ 2)/2 equations for P̃ .

Theorem 1. An SBP operator with parameters (s, t, r) exists if and only if there is a positive definite matrix
P̃ satisfying

r−1∑
k=0

r−1∑
`=0

(
qkp`q−1 + pkq`p−1

)
P̃k` =

r−1∑
k=0

s−1∑
`=0

(kp(r + `)q + kq(r + `)p)Ck` − δp0δq0 (9)

for every p = 0, 1, . . . , t and q = p, p+ 1, . . . , t.

2.1. SBP operators with diagonal norm

The remainder of the paper is restricted to the case that Ph is diagonal, which is quite natural due to
the fact that these are the only SBP operators for which standard techniques exist for proving stability
for PDEs with variable coefficients or on multi-dimensional curvilinear grids [17]. Although SBP operators
with non-diagonal (block) norm have recently been shown to be stabilizable on curvilinear grids [10] by
the addition of a tuned artificial damping term, the question of existence of diagonal-norm SBP operators
remains an interesting open problem; no such operators with interior order greater than 10 exist in the
literature. Under the assumption that Ph is diagonal, Theorem 1 simplifies somewhat.

Theorem 2. An SBP operator with parameters (s, t, r) and diagonal Ph exists if and only if there is a
diagonal positive definite matrix P̃ satisfying

r−1∑
k=0

(p+ q)kp+q−1P̃kk =

r−1∑
k=0

s−1∑
`=0

(kp(r + `)q + kq(r + `)p)Ck` − δp0δq0 (10)

for every p = 0, 1, . . . , t and q = p, p+ 1, . . . , t.

Remark 2.1. Since the left-hand side of Equation (10) is zero when p = q = 0, the SBP operator can only
exist if

∑
k,` Ck` = 1

2 . If a generic row of the centered difference portion of D has the coefficients[
· · · −αs · · · α−1 0 α1 · · · αs · · ·

]
then ∑

k,`

Ck` =

s∑
i=1

iαi,

so the p = q = 0 equation is simply the requirement that the centered difference operator evaluate derivatives
of linear functions exactly, which will always be true in the present setting. The remaining t(t+3)/2 equations
do involve the r unknowns in P̃ .

Remark 2.2. Although Equation (10) appears to be an overdetermined system if r < t(t+ 3)/2, it is known
(see [9, Theorem 2.1]) that, when r = s = 2t, Equation (10) has a unique solution. Moreover, by [7, Corollary
1], if a norm P exists, then the system must consistent with the requirement that the norm matrix P act
as a 2s-order quadrature rule, providing a lower bound on the number of linearly independent equations
that must be present for solvability. In this paper, we will not concern ourselves with locating the linearly
independent equations since Equation (10) is sufficient for our purposes.

6



Remark 2.3. It is important that r be allowed to vary independently of s, since it appears (see Section 4.1)
that if s = t ≥ 5 and r = 2s, then the unique solution to Equation (10) is not positive and, therefore, that
in general SBP operators do not exist for (s, t, r) = (s, s, 2s).

3. Algorithm for existence

This section describes a method for algorithmically deciding the answer to Question 1 for given param-
eters (s, t, r). That is, the algorithm presented here determines whether or not such an operator/norm pair
exists, but does not completely construct one. The construction, assuming existence is known, is postponed
until Section 5. The entire process that follows is performed in exact arithmetic (i.e., using rational numbers)
since the solvability of Equation (7) requires that P̃ be an exact solution to Equation (10). If P̃ is only an
approximate solution, then Equation (7) is not solvable. Of course, there should be approximate solutions
to Equation (7) in this case, but the details of a finite precision implementation of this algorithm remains
an open question (see Section 7). For the results presented in this paper, the Python library sympy [21] was
used for exact arithmetic.

3.1. Solve the linear system

To initialize the algorithm, Equation (10) is put into the form of a matrix-vector equation Ax = b with
A a [(t + 1)(t + 2)/2] × r matrix and x the vector of unknowns P̃kk. This can be done in exact arithmetic
by Gaussian elimination. As stated in Remarks 2.2 and 2.3, if r = 2s = 2t, Equation (10) has a unique
solution. In this case, the answer to Question 1 is immediate. If x is positive, an SBP operator exists for the
given parameters. If x has any non-positive entries, no SBP operator exists. This is exactly Theorem 2.1
of [9]. For other choices of (s, t, r), however, there is typically a solution manifold of the form

x = x0 +Gy,

where G is r×v, with v the number of degrees of freedom in the solution. In this case, more work is required
to determine if there is a solution with positive entries.

3.2. Solve the LP problem

If the previous steps produced a manifold of solutions to the linear system in Equation (10), Question 1
is equivalent to asking whether there exists a y ∈ Rv such that x0 +Gy has all positive entries. To see how
this problem can be solved algorithmically, consider the following optimization problem

maximize min
i
xi,

subject to x = x0 +Gy,
(11)

and note that Equation (10) has a strictly positive solution if and only if the value of the optimization
problem is strictly positive. The optimization problem can be algorithmically solved through a common
technique that transforms the problem into a standard linear program (LP):

maximize η,

subject to xi ≥ η, i = 0, 1, . . . , r − 1,

x = x0 +Gy.

(12)

As an LP, Equation (12) can be solved by the simplex method, thus providing an algorithm for solving
Equation (11). In this case, we conclude that the SBP operator exists if and only if the solution to Equa-
tion (12) is positive. From an implementation perspective, this is the most complex step, as it requires a
simplex solver in exact arithmetic. We did not find an existing library for this, and so implemented our own
simplex solver in Python.

Remark 3.1. By openness, it is clear that if a manifold of solutions exists and if there is one positive solution,
then there are infinitely many positive solutions. In this case, it is not clear which choice of P is “best” in
any particular sense. In this paper, we choose the P maximizing Equation (11) as a particular choice. This
is not quite arbitrary, as described in Remark 5.1.
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s t r dof Ph dof Dh mini xi
1 1 1 0 0 5.000e-01
2 2 4 0 0 3.541e-01
3 3 6 0 1 3.159e-01
4 4 8 0 3 2.575e-01
5 5 11 1 10 2.077e-01
6 6 14 2 21 9.683e-03
7 7 19 5 55 1.907e-01
8 8 23 7 91 4.652e-02
9 9 28 10 — 4.622e-02
10 10 34 14 — 8.357e-02
11 11 40 18 — 3.907e-02
12 12 47 23 — 5.286e-02
13 13 54 28 — 1.933e-02
14 14 62 34 — 1.863e-02
15 15 71 41 — 4.559e-02

Table 1: For the case t = s, the table reports the smallest value of r for which an SBP operator exists. When Ph is non-unique,
the number of degrees of freedom in Ph is reported as “dof Ph”. The value of Equation (11) is reported as mini xi. For the
optimal Ph, the degrees of freedom of Dh is reported as “dof Dh”. Since the computation of the solution space in Dh is much
more computationally taxing than that of Ph, only the cases with s ≤ 8 include the dimension of the solution space for Dh.

4. Existence and nonexistence of SBP operators

This section presents some novel results based on the algorithm of the previous section. It is worth
remarking that, although the algorithm is provably correct, the following computational results rely on
computer-assisted proof. The numerators and denominators of the rational numbers involved are sufficiently
large that we cannot hope to perform the Gaussian elimination and simplex method steps by hand except
in a small number of cases. For example, the value for x0 in the case s = t = 8, r = 23 is

x0 =
83852077150009258297147

299027329581685985280000
.

Although we have done our best to test our code and to compare with SBP results in the literature, the
results presented in this text are nevertheless vulnerable to errors either in the sympy rational number
manipulation routines, the Gaussian elimination routine or in the simplex solver. As an example, an earlier
version of the code produced incorrect results from time to time due to some unexpected behavior in the
symbolic operations of a particular commercial software tool. We have a high degree of confidence in the
computational results presented in this paper, but certainly encourage their verification by others.

4.1. The smallest r for t = s

We first consider the case of an SBP operator of order 2s in the interior and t = s on the boundary.
It can be readily seen that if a solution exists for a particular choice of (s, t, r), then this is also a solution
for (s, t, r′) for any r′ > r. That is, if the answer to Question 1 is affirmative for a particular choice of
parameters, the answer is also affirmative if the finite difference orders are left unchanged and the boundary
closure size is increased. Thus, it is possible to perform a bisection search to locate the smallest r for which
an SBP operator with the given choice s = t exists. Table 1 presents the results of this parameter sweep.
The table also gives the dimension of the solution space of Ph and the value of Equation (11).

As stated previously, the present discussion does not concern the actual construction of an SBP operator,
but merely the question of existence. However, once a suitable norm Ph is found, Equation (7) is then
guaranteed solvable for the block B of an SBP difference operator Dh. Included in Table 1 is a column titled
“dof Dh”, which reports (for some choices of s) the dimension of the solution set for Dh with the choice
of Ph described in Remark 3.1. In Section 5, we discuss a method for choosing a particular Dh from this
solution set.
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s t r dof Ph mini xi
1 1 2 0 5.000e-01
2 2 4 0 3.542e-01
3 3 6 0 3.159e-01
4 4 8 0 2.575e-01
5 4 10 2 3.367e-01
6 5 12 2 2.997e-01
7 6 14 2 9.682e-03
8 6 16 4 2.992e-01
9 6 18 6 3.207e-01
10 7 20 6 2.923e-01
11 7 22 8 3.088e-01
12 8 24 8 2.504e-01
13 8 26 10 2.980e-01
14 9 28 10 4.622e-02
15 9 30 12 2.858e-01

Table 2: For the case r = 2s, the table reports the largest value of t for which an SBP operator exists. When Ph is non-unique,
the number of degrees of freedom in Ph is reported as “dof Ph”. The value of Equation (11) is reported as mini xi.

To our knowledge, the results for s > 5 are unknown in the literature. Of particular interest is the
nonlinear dependence of r on s (see Remark 2.3). Based on previous results for the cases s = 2, 3 and 4,
it might be expected that SBP operators exist for all r = 2s = 2t (the case considered in [9]). However,
by the nature of the parameter sweep conducted here, we conclude that, for a given s, no SBP operator
(with t = s) exists for r smaller than the value given in the table. The case s = 5, r = 11 has already been
reported (see, e.g., References [5, 10]). However, while a footnote of Reference [5] states that the choice
s = 5, r = 10 “did not result in a positive definite norm”, no proof or explanation is given.

4.2. The largest t for r = 2s

From the previous results, it is clear that asking for r = 2s = 2t is, in general, too restrictive and, if we
require that Dh have its boundary order of accuracy half as large as its interior order of accuracy, the size
of the boundary closure must grow faster than 2s. As a second application of the algorithm, we consider
the opposite question. Suppose we wish to have r = 2s. What is the largest boundary order of accuracy t
for which an SBP operator exists? Table 2 presents the results of such a parameter study. Evidently, it is
not difficult to find SBP operators with r = 2s, provided t is allowed to grow more slowly than s.

5. Optimization of the derivative operator

Another interesting observation about the results presented in Table 1 is that the number of degrees of
freedom in Dh grows rapidly with increasing s. At the end of the algorithm described in Section 3 we are
generally left, not with a single SBP operator, but with an entire linear manifold:

Dh = D0 +
∑
j

ξjDj , (13)

where j varies through all degrees of freedom. Although the primary concern of the present paper is the
existence of SBP operators, the question of “Which is best?” is also important. As described in Reference [5],
there are a wide range of options for defining “best”. Rather than consider each of these, we focus on a
particular objective function: minimizing the spectral radius ρ(Dh). This objective function is interesting
because it controls the CFL condition for explicit PDEs solvers. Moreover, it is unique among the objective
functions considered in the reference in that it is non-convex in the parameters ξj of Dh, and therefore
difficult to optimize globally. Hence the remark in Reference [5]: “Therefore, when we refer to minimizing
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Figure 1: On the left, the spectral radius as a function of 1/h for the optimized s = t = 6, r = 14 SBP operator. On the right,
the spectral radii as functions of 1/h for the optimized s = t = 6, r = 15 and s = t = 7, r = 19 SBP operators.

the spectral radius, we perform a numerical minimization and do not claim that we have actually found a
global minimum.”

In this paper, we suggest an alternative to minimizing the spectral radius directly. The key point is that,
although ρ(C) is not a convex function in the entries of C in general, it is convex for normal matrices C.
And, although Dh is not a normal matrix in general, it is close in some sense to a normal matrix, because(

PhDh −
1

2
Q

)
+

(
PhDh −

1

2
Q

)T

= 0

(see Equation (4)). Since the surrogate matrix PhDh − 1
2Q is skew-symmetric and therefore normal, its

spectral radius agrees with its operator 2-norm and, thus, is a convex function of its entries. Moreover, in
this norm

ρ(Dh) ≤ ‖Dh‖ ≤ ‖P−1h ‖ · ‖PhDh‖ ≤ ‖P−1h ‖ ·
(
‖PhDh −

1

2
Q‖+

1

2

)
.

Provided ‖Ph‖ is not too large, minimizing the norm of the surrogate matrix tends to make the spectral
radius of Dh small. Defining

C0 = PhD0 −
1

2
Q, Ci = PhDi, and C(ξ) = C0 +

∑
j

ξjCj ,

the goal is to minimize ‖C(ξ)‖ with respect to ξ = (ξj). It turns out that this problem can be easily
transformed into a Semidefinite Program (SDP) [3, Sec. 4.6.3], treatable by a number of standard solvers.

Our implementation of this idea is to choose a particular N (we chose N = 100 for our examples) and
to numerically minimize the norm of the surrogate ‖C(ξ)‖ with respect to ξ. Unlike in the previous section,
there is no apparent need to perform this optimization in exact arithmetic. Instead, the elements of the Ci

are evaluated in double precision and are used to set up the SDP, which is then solved through the cvxopt

package [1]. Once the optimal ξ is found, the corresponding Dh is formed from Equation (13).
Using this technique on the case s = t = 7, r = 19 (with a 55-dimensional search space) we located an

SBP operator such that ρ(Dh) ≈ 2/h, as verified with several choices of h. Applying the same technique
to the case s = t = 6, r = 14, however, did not produce suitable results, as might be expected from
careful inspection of Table 1. In particular, the value mini xi associated with this case is a very small
number, implying that ‖P−1h ‖ is large. When we attempted to minimize the surrogate matrix in this case
the resulting SBP operator exhibited (numerically) the scaling ρ(Dh) ≈ 24/h—significantly larger than one
might wish. This problem can be remedied as follows.

Recall that if the SBP equations are solvable for (s, t, r), then they are solvable for (s, t, r′) for any
r′ > r. In general, increasing r leads to a larger number of degrees of freedom in both Ph and Dh. So, it
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Figure 2: The `∞ error in approximating the first derivative of the function f(x) = ex on the interval [0, 1] plotted against
the number of sample points for several SBP operators suggesting the appropriate orders of convergence. The integer values
in the legend refer to the boundary order (t = s) of the SBP operator. The gray lines denote 5th, 6th, and 7th order slopes
respectively.

is reasonable to ask whether choosing r > 14 might improve the result in the case s = 6. With the choice
s = 6, r = 15 there is an SBP operator with mini xi ≈ 0.24. In this case, the resulting SBP operator exhibits
the scaling ρ(Dh) ≈ 1.92/h. Thus, we conclude, that the smallest r for which an SBP operator exists is not
necessarily the best choice of r. Apparently, it is useful to choose an r for which ‖P−1h ‖ is not too large.

Remark 5.1. It is interesting to note that, although the objective function in Equation (11) was not chosen
specifically for this property, a side-effect of the algorithm described in this paper is to choose, among all
possible Ph, the one with smallest ‖P−1h ‖.

Figure 1 shows the numerically computed spectral radii of the operators described in this section as
functions of 1/h. The coefficients for the optimized s = 6 (r = 15) and s = 7 operators are included online
as supplementary data for this paper, as described in Appendix A.

6. Numerical experiments

As a first test of the SBP operators, we consider a simple convergence study. Taking N uniformly spaced
sample values of the function x 7→ ex on the interval [0, 1], we compare the numerically computed derivative
to the true derivative in `∞ norm. Figure 2 shows the results of this study. The error is plotted against the
number of grid points for three SBP operators. The integer values (5, 6, and 7) in the legend are the values
of s for each operator. All operators have boundary order t = s and interior order 2s. The width of the
closure is chosen to be as small as possible (see Table 1) except in the case t = s = 6, in which case r = 15
is chosen as described in Section 5. Note in particular that P is selected as described in Section 3.2. When
the SBP operator is not unique, D is selected via the optimization problem described in Section 5. The
results in Figure 2 demonstrate that the constructed operators exhibit the appropriate orders of accuracy.

A more interesting test is to consider the operators’ performance in solving the advection PDE

ut + ux = 0 x ∈ (0, 1000), t > 0

with initial and boundary conditions

u(x, 0) = 0, u(0, t) = g(t) = exp
(
−a(t+ 10)2

)
where

a =
− log

(
10−16

)
100

.
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Figure 3: (left) Solution to the advection example of Section 6 at time t = 1000. (right) Error as a function of CPU time for
the advection example using a variety of SBP operators and Adams-Bashforth methods. Points labeled in the form s-q indicate
the results using an SBP operator with interior order 2s and Adams-Bashforth time integration of order q.

The weight a in the Gaussian is designed so that the function is essentially supported (within a tolerance
of 10−16) in an interval of width 20. When the PDE is solved to time t = 1000, the Gaussian hump moves
in from the left boundary and traverses the domain to end centered over the point x = 990 (essentially
supported in the interval [980, 1000] (see Figure 3).

The purpose of the present study is to explore the best choice of method for solving the problem. The
answer, of course, depends on the definition of best and also on the methods available for comparison. For this
particular study, best shall mean that the method achieves a given accuracy in the shortest amount of CPU
time. In this case, the CPU is a 1.6GHz desktop Intel Xeon processor running an advection solver written
in Fortran. Spatial derivatives were approximated using SPB operators of interior order from 4 to 14 and
temporal integration was performed by qth order Adams-Bashforth (ABq) with q ∈ {3, 4, 6, 7, 8}. (Second-
and fifth-order AB are excluded from consideration because their stability regions include an insufficient
amount of the imaginary axis.) These options are summarized in Table 3. As in the previous test, we
selected SBP operators with t = s and with r as small as possible except for the s = 6 case, with P and D
generated as described in Sections 3.2 and 5 respectively. The CFL scaling used to ensure stability is given
by the product of cfl1 and cfl2 given in the table, with the time step size k and spatial step size h related
via cfl1·cfl2k = h. The boundary conditions were enforced using a simultaneous approximation term (SAT)
approach [4], with the semidiscrete equations taking the form

vt +Dhv = −(vT e0 − g(t))P−1h e0.

Asymptotically, with unlimited precision, it is clear that a higher-order method must always outper-
form a lower-order one. However, for any given problem and a given meaningful range of discretiza-
tion step sizes in finite precision, it is not clear which choice of spatial or temporal order will achieve a
given accuracy in the shortest time. In order to compare the methods, we performed a series of com-
putations using each choice of SBP operator paired with each AB integrator, each for the choices N ∈
{2000, 4000, 6000, 8000, 10000, 12000, 14000} grid points on the interval [0, 1000]–giving a total of 6×5×7 =
210 computations. In each computation, the advection problem was solved to time t = 1000, and the
maximum absolute error (computed on the computational grid) at this final time was recorded.

The results of the tests are shown in a scatter plot in Figure 3. To simplify the presentation, we have
chosen to explicitly identify only three particular methods in the cloud of points. These methods are labeled
with the form s-q in the legend, referring to the combination of ABq and the SBP operator with interior order
of accuracy 2s. For this configuration, the SBP operator with s = t = 4 paired with AB4 is most effective
for errors down to approximately 10−4. If smaller errors are required, the s = t = 5 SBP operator paired
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s t r cfl1

2 2 4 1.4
3 3 6 1.6
4 4 8 1.8
5 5 11 1.9
6 6 15 2.0
7 7 19 2.1

q cfl2

3 1.39
4 2.38
6 8.93
7 17.5
8 34.1

Table 3: SBP parameters (left) and Adams-Bashforth order (right) versus CFL multipliers for the advection example in
Section 6. For SBP parameters (s, t, r) and Adams-Bashforth order q, the time step was selected so that cfl1·cfl2k = h.

with AB6 performs well until approximately the error level 10−10, where it is overtaken by the s = t = 7
SBP operator paired with AB6.

Although it is impossible to generalize the results of these tests to predictions for PDEs solvers in general,
the outcome does illustrate a general principle suggested by common sense—there is no single best numerical
method for all problems. Unsurprisingly, if moderate errors are tolerable, a lower-order method does better;
the CFL conditions are less stringent than for high-order methods and the constants preceding the leading-
order error terms tend to be smaller. As the error tolerance decreases, however, the asymptotic accuracy of
the higher-order methods start to win out. It seems a difficult task to determine a priori which spatial and
temporal order of accuracy will lead to the desired results with the least expenditure of computational time.
However, as the example illustrates, there may be realistic instances when very high-order SBP operators
are more efficient than lower-order ones.

7. Conclusion and future research

This paper introduces an algorithm that provably answers the question of existence of diagonal-norm
SBP operators parameterized by a triple (s, t, r), and demonstrates the need to move away from the standard
choice of (s, t, r) = (s, s, 2s) when s ≥ 5. Our hope is that this approach will lead to further research in
the field, and to this end, we conclude with a list of what we consider to be interesting directions of future
research.

Floating point algorithms. As remarked in Section 3, the current algorithm relies crucially on the use of
exact arithmetic. This appears to be the principal bottleneck preventing the discovery of even higher-
order SBP operators than those presented in this text, since this representation leads to very large memory
requirements and computationally expensive arithmetic operations. It would be interesting to know if there
exists a similar algorithm for finding (approximate) SBP operators in floating point arithmetic. Even the
use of a variable-precision library would be an improvement over the need for rational numbers.

Alternative energy norms. The algorithm described in Section 3.2 chooses, among all possible Ph, the one
that maximizes mini Pii. This choice is useful for two reasons. First, if the optimal value is non-positive,
then we immediately conclude that no SBP operator exists. Moreover, as remarked in Section 5, this choice
is good for the application of optimizing the spectral radius of the SBP derivative operator. On the other
hand, if Equation (10) has a manifold of solutions and if one of these solutions is strictly positive, then, in
fact, Equation (10) has an infinite number of strictly positive solutions. It is not clear how the choice of Ph

might influence later steps of the algorithm.

Compact stencil sizes. As can be seen from Table 1, the closure size, r, appears to grow rapidly as s increases.
For example, the 18th order (s = 9) centered operator requires at least 28 points for a 9th order closure.
This derivative operator contains a 9th order derivative approximation with a stencil width of 28 + 9 = 37.
It is not clear whether a method with such a wide stencil would actually be useful in applications, and it
would be interesting to know if there are generalizations of the SBP framework that can reduce this size.
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Appendix A. Coefficients of new SBP operators

The coefficients for the new 6th- and 7th-order SBP operators described in Section 5 are included online
as text files. The files P 6 6 15.txt and D 6 6 15.txt hold the coefficients for Ph and Dh of the 6th order
method, respectively. While P 7 7 19.txt and D 7 7 19.txt hold the coefficients for Ph and Dh of the 7th
order method.

The coefficients are scaled to the case h = 1. In the case of the norm matrices Ph, the data are stored in
rows of 2 columns. Each row holds a pair (i, v) indicating that P̃ii = v. Only the upper-left corner is given,
since the lower-right corner can be obtained from symmetry. For the files containing Dh coefficients, each
row contains a triple (i, j, v) indicating that dij = v. Again, only the upper-left corner is given.
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