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A LOW COMPLEXITY ALGORITHM FOR NON-MONOTONICALLY
EVOLVING FRONTS ∗

ALEXANDRA TCHENG, JEAN-CHRISTOPHE NAVE †

Abstract. A new algorithm is proposed to describe the propagation of fronts advected in the
normal direction with prescribed speed function F . The assumptions on F are that it does not
depend on the front itself, but can depend on space and time. Moreover, it can vanish and change
sign. To solve this problem the Level-Set Method [Osher, Sethian; 1988] is widely used, and the
Generalized Fast Marching Method [Carlini et al.; 2008] has recently been introduced. The novelty
of our method is that its overall computational complexity is predicted to be comparable to that
of the Fast Marching Method [Sethian; 1996], [Vladimirsky; 2006] in most instances. This latter
algorithm is O(Nn logNn) if the computational domain comprises Nn points. Our strategy is to use
it in regions where the speed is bounded away from zero – and switch to a different formalism when
F ≈ 0. To this end, a collection of so-called sideways partial differential equations is introduced.
Their solutions locally describe the evolving front and depend on both space and time. The well-
posedness of those equations, as well as their geometric properties are adressed. We then propose
a convergent and stable discretization of those PDEs. Those alternative representations are used to
augment the standard Fast Marching Method. The resulting algorithm is presented together with
a thorough discussion of its features. The accuracy of the scheme is tested when F depends on
both space and time. Each example yields an O(1/N) global truncation error. We conclude with a
discussion of the advantages and limitations of our method.

Key words. front propagation, Hamilton-Jacobi equations, fast marching method, level-set
method, optimal control, viscosity solutions.
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1. Introduction. The design of robust numerical schemes describing front prop-
agation has been a subject of active research for several decades. The need for such
schemes is felt across many areas of applied sciences: geometric optics [36], optimal
control [25, 53], lithography [2, 3, 4], shape recognition [31, 29], dendritic growth
[26, 45], gas and fluid dynamics [32, 33, 52], combustion [58], etc. Depending on
the problem at hand, various issues may arise. Consider the following two interface
propagation phenomena: A fire propagating through a forest, and a large evolving
population of bacteria in a Petri dish. In either case, space can be divided into distinct
regions: burnt vs. unburnt, and populated vs. unpopulated. The boundaries between
those regions form fronts that evolve in time. Those examples differ from one another
in that a fire front can only propagate monotonically, whereas bacteria may advance
or recede, depending on the stimuli present in their environment. This distinction
led to different approaches when modelling those evolutions. Monotone propaga-
tion can be recast into a ‘static’ problem, as opposed to non-monotone evolution,
which is instrinsically time-dependent. As a result, efficient single-pass algorithms
for monotone propagation have been developed. In contrast, accurate algorithms for
non-monotonically evolving fronts require a larger number of computations. In this
paper, we propose a model that reconciles the advantages of previous methods – We
accurately describe non-monotone front evolution with an algorithm that performs a
low number of operations.

One of the early means of accurately propagating fronts was to use the Level-Set
Method (LSM) [35]. This implicit approach embeds the front as the zero-level-set of
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an auxiliary function φ. In the above example, φ could be negative in regions occupied
by bacteria, and positive in other regions. Each contour of this level-set function is
then evolved under the given speed function F , which guarantees that the front itself
moves properly. The robustness and simplicity of the first order discretization of
this problem made it popular. Additionally, this approach can handle a very wide
class of speed functions, including those that change sign. However, describing the
evolution of an (n − 1)-dimensional front in R

n requires solving for a function of
n + 1 variables, since φ depends on space as well as time. Moreover, in order for
the solution to remain accurate, it is often desirable to enforce the signed distance
property |∇φ| ≈ 1 in a neighbourhood of the front. There exists a vast literature
on lowering the computational complexity of the LSM, cf. [5, 39, 44, 37], and on
maintaining the accuracy of the solution, cf. [11, 12, 39, 51, 40]. Nevertheless, those
features are incorporated at the expense of the simplicity and the efficiency of the
original LSM.

The Fast Marching Method (FMM) [41, 54] constitutes the second significant
advance in the field. This approach requires the speed function to be bounded away
from zero, and to be only space-dependent. Under those conditions, the FMM builds
the ‘first arrival time’ function ψ such that to every point ~x in space is associated the
value t = ψ(~x) at which the front reaches ~x, cf. [41, 42, 47, 44]. In the context of
fire propagation, ψ records the time at which the parcel of land burnt. The use of a
Dijkstra-like data structure [19] renders this scheme very efficient. A variant of this
algorithm known as the Fast Sweeping Method runs in O(Nn) complexity [57] when
the computational domain comprises Nn points. Recently, Falcone et al. [9] proposed
a Generalized FMM (GFMM) that is able to handle vanishing speeds. This algorithm
is supported by theoretical results on its convergence in the class of viscosity solutions.
The examples presented are found to accurately propagate the fronts subject to a wide
range of speed functions. However, when F depends on time, the GFMM no longer
makes use of a Dijkstra-like data structure. Its overall complexity is expected to revert
to that of the LSM in such instances.

In the light of this previous work, it is desirable to design an algorithm able to
handle speed functions that change sign, while retaining the efficiency of the FMM.
This is the main purpose of this article. Note that if F changes sign, a point ~x in
space may be reached by the front several times. This implies that the arrival time
can no longer be described as a function depending solely on space. However, it
is still possible to locally describe it as the graph of a function. Consider the set
M := {(~x, t) : ~x belongs to the front at time t}. The set M consists of the surface
traced out by the fronts as they evolve through space and time. If M embeds as a
Ck-manifold of dimension n in R

n × (0, T ), then by definition, each point (~x, t) ∈M
belongs to a neighbourhood that is locally the image of a Ck-function of n variables.
The fact that under mild assumptionsM is a compact subset of Rn×(0, T ) guarantees
that we only need a finite number of neighbourhoods to coverM, or equivalently, a
finite number of functions to parametrizeM. The images of those functions – which
possibly depend on time as well as space – provide local representations of the setM.
Our approach makes use of those other representations whenever the purely spatial
one is not available – e.g., when n = 2 and M cannot be locally described by the
standard first arrival time function {t = ψ(x, y)}, we may describe it as {x = ψ̃(y, t)}
or {y = ψ̄(x, t)}. To this end, we introduce sideways PDEs solved by those Ck-
functions. We illustrate in detail how they relate to previous work, argue that they
are well-posed, and show that their solution does provide a local description of M.
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Moreover, we provide a scheme to discretize them, prove that it converges to the
correct viscosity solution, and show that it is stable.

In practice, the proposed algorithm amounts to augmenting the FMM to be able
to describe M near those points (~x, t) where F (~x, t) = 0. The fact that different
representations are used to build different parts ofM implies that those pieces need
to be woven together along their overlapping parts, to form a single codimension
one subset of Rn × (0, T ). This is done by storing the (n + 1)-dimensional normal
associated to each point and by using interpolation. To illustrate the overall method,
examples are presented where an O(1/N) global truncation error is achieved. Those
tests all feature speed functions that vanish, and possibly depend on time.

Since the algorithm always approximates a function of n-variables, the dimen-
sionality of the problem is never raised, unlike what happens in the LSM. As a result,
the computational complexity is expected to be comparable to that of the FMM.

Outline of the article. This paper is organized as follows. We state the problem
we are addressing in §2. We also present the LSM and the FMM, before providing
a simple example to motivate our method. The case where F is bounded away from
zero and depends on time is addressed in §3. The sideways PDEs we use in regions
where F ≈ 0 are introduced in §4. A discussion of their properties is provided along
with a convergent and stable scheme to discretize them. We explain how the different
formalisms can be woven into a single method in §5. The pseudo-codes are given and
discussed in §6. We predict the complexity and accuracy of the overall method in
§7 and §8. Four examples are then covered in details in §8. Those assess the global
behaviour and the accuracy of the scheme. The advantages and weaknesses of our
approach are discussed in §9, where an additional example is covered to address the
limitations of the method. We conclude in §10.

2. Preliminaries.

2.1. Problem statement. Let a subset C0 ⊂ R
n be closed with no boundary.

Assume it is an orientable manifold of codimension one, with a well defined unique
outer normal n̂0(~x). Suppose C0 is advected in time, and denote the resulting subset
of Rn at time t by Ct. We want to describe Ct for 0 < t < T in the case where each
point ~x ∈ Ct is advected under the velocity

~v = ~v(~x, t) = F (~x, t)n̂(~x, t) (2.1)

i.e., with the prescribed speed function F = F (~x, t), in the direction of the outward
normal to Ct, n̂ = n̂(~x, t).

2.2. Assumptions. In addition to the assumptions already stated, in the rest
of this paper we assume that the following hold. The initial set C0 is known exactly,
and is assumed to be C2 in the sense that if it is given as the image of a map,
e.g., ~γ : Sn−1 −→ R

n, then ~γ ∈ C2(Sn−1). The speed F = F (~x, t) is known exactly
for all (~x, t). Unless otherwise specified, it is allowed to vanish and change sign. It
does not depend on the curve itself, or any of its derivatives. For simplicity, we also
make the following strong assumption: the map F : Rn × (0, T ) −→ R is analytic. In
particular, this implies that the subset defined as F := {(~x, t) : F (~x, t) = 0} is closed
and has codimension one in R

n × [0, T ]. We let K be the Lipschitz constant of F .
Together, those assumptions guarantee that for any given t ∈ (0, T ), there exists a
well defined normal n̂ = n̂(~x, t) almost everywhere along Ct.
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2.3. Previous Work. For completeness we briefly go over two of the meth-
ods mentioned in the introduction. Considering that the set R

n \ Ct consists of two
connected components, we define At to be the bounded one.

2.3.1. The Level-Set Method. This approach was introduced by Osher &
Sethian in [35]. Their idea is to embed the curve Ct as the zero-level-set of a function φ :
R
n×[0, T ]→ R, i.e., Ct = {~x : φ(~x, t) = 0}. In this setting, the outward normal n̂(~x, t)

is ∇φ
|∇φ| . The Level-Set Equation is derived from linear advection φt + ~v(~x, t) · ∇φ = 0

to yield the following Initial Value Problem (IVP):

{
φt + F |∇φ| = 0 on R

n × (0, T )
φ(~x, 0) = φ0(~x) on R

n × {0} (2.2)

where φ0(~x) is such that {~x : φ0(~x) = 0} = C0. This method enjoys many desirable
properties that have been studied in a variety of contexts [20, 21, 22, 23, 37, 44]. One
of the most prominent is that topological changes are accurately handled, and do
not require special treatment. In [35], the authors propose various discretizations of
this evolution on a spatial domain that comprises Nn points. The resulting method
has complexity O(Nn) at each time step, due to the fact that all the contours of the
level-set function are advected. To lower this high computational cost, it is possible to
work only within a neighbourhood of the zero-level-set: This yields the Narrow Band
LSM [5]. To be able to render the curve Ct accurately, it is desirable to preserve the
signed distance property |∇φ| ≈ 1. To this end, the reinitialization method has been
studied extensively [39, 40, 51, 11]. Early versions of this method tend to displace the
zero-level-set, yielding inaccuracies in the final CT . Moreover, they usually involve a
large number of computations.

2.3.2. The Fast Marching Method. The Fast Marching Method was inde-
pendently proposed by Sethian [41] & Tsitsiklis [54]. Strongly rooted in control theory,
it requires that F = F (~x) ≥ δ > 0 on R

n. Under those conditions, the FMM solves
the following Eikonal equation, whose unknown is the time ψ : Rn 7→ R at which each
point is reached by the curve

{
|∇ψ| = 1

F on Ac0 \ C0
ψ(~x) = 0 on C0 (2.3)

The FMM makes use of a Narrow Band to advance the front in a manner that enforces
the characteristic structure of the PDE into the solution. See [41, 42, 47, 44] and [25]
for details. Recent improvements of this method include on the one hand the work of
Zhao [57], who further lowered the complexity of the algorithm to develop the Fast
Sweeping Method. On the other hand, Vladimirsky relaxed the restrictions on the
speed by allowing it to be time-dependent. We discuss this latter method in §3.

2.4. Motivation. We first present a simple example to motivate the need for
an augmented FMM. Consider the initial curve C0 = {~x : x2 + y2 = r20} ⊂ R

2 and
the time-dependent speed F (t) = 1 − ct, where c and r0 are positive constants. Let

φ0(~x) be the signed distance function φ0(~x) =
√

x2 + y2 − r0 =: r(~x) − r0. The
exact solution to the IVP (2.2) is then φ(x, y, t) = r(~x) −

(
r0 −

(
c t2/2− t

))
. The

evolution of the curve can be formally split into two parts: (1) For t ∈ [0, 1c ], the
circle expands until it reaches the maximal radius R = r0 +

1
2c . (2) For t ∈ (1c , T ],

where T = − 1
c

(
1−√1 + 2cr0

)
, the circle contracts until it collapses to the point

(0, 0) at time T .
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Fig. 2.1. Chart decomposition of M when c = 2 and r0 = 0.25. The circle collapses to (0, 0)
at time T ≈ 1.21. (0) The manifold, sliced by the plane t = 0.83 to yield the magenta curve C0.83.
Three other typical curves Ct are featured with dashed lines. C0 appears as a thick plain line. (1)
M along with W1,− and W1,+ appearing in green. (2) M along with W2,− and W2,+ appearing in
blue. (3) M along with W3,− and W3,+ appearing in red.

Consider the following atlas A to describe the resulting C0-manifoldM featured
on Figure 2.1. Let U := R × [0, T ]. Then A = ∪3i=1{(ψi,±,Wi,±)} where the real-
valued functions ψi,± are defined as:

ψ1,− : U −→ [−R, 0] ψ1,+ : U −→ [0, R]
ψ2,− : U −→ [−R, 0] ψ2,+ : U −→ [0, R]
ψ3,− : R2 −→ [0, 1c ) ψ3,+ : R2 −→ (1c , T ]

(2.4)

and

ψ1,±(y, t) = ±
√

(r0 − c t2/2 + t)2 − y2 (2.5)

ψ2,±(x, t) = ±
√

(r0 − c t2/2 + t)2 − x2 (2.6)

ψ3,±(x, y) =
1

c

(

1±
√

1− 2c(r(~x)− r0)
)

(2.7)

We also define the setsWi,± as the real part of the image of the functions ψi,±. Those
sets are featured on Figure 2.1. The functions ψ3,± can be verified to be the unique
classical solutions to:

{ |∇ψ3,−(~x)| = 1
F (ψ3,−(~x)) on U3,−

ψ3,−(~x) = 0 on C0
(2.8)
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{ |∇ψ3,+(~x)| = − 1
F (ψ3,+(~x)) on U3,+

ψ3,+(~x) = 1
c on C1/c

(2.9)

where U3,− = {~x : r0 < r(~x) < R} and U3,+ = {~x : 0 ≤ r(~x) < R}. Together, the
graphs of ψ3,− and ψ3,+ describe all ofM but the circle of radius R reached at time
t = 1

c . On the other hand this circle lies in the union of the images of ψ1,± and ψ2,±.
Those functions are the unique classical solutions to

{

∓(ψ1,±)t + F (t)
√

1 + (ψ1,±)2y = 0 on R× (0, T ]

ψ1,±(y, 0) = ±
√

r20 − y2 on R× {0}
(2.10)

{
∓(ψ2,±)t + F (t)

√
(ψ2,±)2x + 1 = 0 on R× (0, T ]

ψ2,±(x, 0) = ±
√

r20 − x2 on R× {0} (2.11)

This suggests the following procedure to build M: (1) First, solve for ψ3,−.
(Inter.) Then solve for ψ1,± and ψ2,± restricted to [−R,R]× [ 1c − ǫ, 1c + ǫ] for some
ǫ > 0. (2) Finally, solve for ψ3,+.

Some questions immediately come to mind. Criteria to decide when to move from
(1) to the intermediate step must be chosen. Similarly, knowing which equation to
solve within the intermediate step is a concern. The practical aspects of how a code
reconciles the results of those steps need to be addressed carefully. We discuss all of
these issues, and, as a result, turn the above formal idea into an efficient algorithm
that constructsM.

2.5. Notation. To lighten the notation, we will now work in the setting where
n = 2. All the results discussed extend to arbitrary n.

Continuous setting. We use the letter ψ to denote functions whose image locally
describes M. Suppose ψ : U 7→ R with ψ : (y, t) 7→ ψ(y, t) = x. We introduce the
following subsets of R2:

Γt := {(x, y) ∈ R
2 : ψ(y, t) = x, (y, t) ∈ U} (2.12)

See Figure 2.2 for an illustration. We distinguish between n̂(~x, t) the two-dimensional
outward normal to Ct at ~x; and n̂(~x, t) the three-dimensional outward normal toM
at (~x, t).

Discrete setting. The spatial grids have fixed meshsize ∆x = ∆y =: h. We use

xi = i · h yj = j · h tk = k ·∆t (i, j, k) ∈ Z× Z× {N ∪ {0}} (2.13)

to denote discrete values of space and time. We usually make no distinction between
the continuous functions ψ and their discrete approximations, except in §4. We will
be using indices consistently, so that ψij can be understood as ψ(xi, yj) and ψki as
ψ(xi, t

k). Nevertheless, we will explicitly mention which representation is used. If a
point p belongs toM, then it may be described by one or more of the following three
expressions:

pkj = (ψkj , yj, t
k) pki = (xi, ψ

k
i , t

k) pij = (xi, yj , ψij) (2.14)
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Fig. 2.2. The subset Γ0.55 associated with ψ1,− from §2.4 appears as a black plain line.

3. A FMM for time-dependent speeds: The t-FMM. We first address the
problem stated in §2.1 under the following restriction:

F = F (~x, t) ≥ δ > 0 ∀ (~x, t) ∈ R
2 × [0, T ] (3.1)

Allowing the speed to depend on time yields a non-autonomous control problem.
In [55], the author studies this min-time-from-the-boundary problem in the context
of anisotropic front propagation. In our context, the main result of [55] may be
formulated as follows: The value function ψ for this control problem satisfies the
following Hamilton-Jacobi-Bellman equation:

H(∇ψ, ψ, ~x) := ||∇ψ(~x)||F (~x, ψ(~x)) = 1 (3.2)

The implementation of the resulting boundary-value problem:
{ ||∇ψ(~x)|| = 1

F (~x,ψ(~x)) ≤ 1
δ on Ac0 \ C0

ψ(~x) = 0 on C0
(3.3)

closely mimicks that of the classical FMM. The only step that requires modifications
is the one where a tentative value is assigned to each point in the Narrow Band.
Following [55] this step is adjusted as follows. Let ~xij = (xi, yj). Without loss of
generality, assume that ~xi−1,j and ~xi,j+1 are Accepted neighbours of ~xij . Consider
a straight line lying in Quadrant II and ending at ~xij , and suppose it intersects the
line joining ~xi−1,j and ~xi,j+1 at the point x̃. See Figure 3.1. Then: x̃ = ξ~xi−1,j +

(1 − ξ)~xi,j+1 for some ξ ∈ [0, 1]. Letting ~v = ~xij − x̃, we get |~v| =
√

ξ2 + (1− ξ)2 h.
Associate the following value to Quadrant II:

ψII = min
ξ∈[0,1]

{

ψ(x̃) +
√

ξ2 + (1− ξ)2 h

F (~xij , ψ(x̃))

}

(3.4)

Proceeding similarly in the other quadrants yields the values ψI, ψIII and ψIV. The
tentative value assigned to ψij is then ψij = min{ψI, ψII, ψIII, ψIV}. Note that in two
dimensions the minimization problem (3.4) may be solved using a direct method; see
Appendix A. This method converges to the correct viscosity solution, and is globally
1st order [43, 46, 55]. Its complexity is O(Nn logNn). In subsequent sections of this
paper, we will refer to this modified FMM as the ‘t-FMM’. The results presented in
this section yield Algorithm 2 given in §6. Finally, in the general case |F | ≥ δ > 0,
the PDE we wish to solve is ||∇ψ(~x)|| |F (~x, ψ(~x)) | = 1.
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Fig. 3.1. If the characteristic comes from Quadrant II.

4. A local description of the evolving front: The sideways represen-
tation. An option to study the evolution of propagating curves or surfaces is to
represent the front as a function that depends on time, e.g., y = Y (x, t) [42]. Al-
though successful at describing the evolution locally, this approach fails to capture
the global properties of the front. Nevertheless we believe that this approach can be
used near regions where F vanishes.

4.1. Heuristics. We first present an argument in the smooth setting. Consider
the solution φ to IVP (2.2). Suppose φ ∈ C1(~x0, t0) and φ(~x0, t0) = 0. Assume
furthermore that φx(~x0, t0) 6= 0, so that the mapping is locally invertible. From
the Implicit Function Theorem there exist open neighbourhoods (~x0, t0) ∈ V and
U ⊂ R× [0, T ], as well as a function

ψ : U −→ R , ψ : (y, t) 7→ x = ψ(y, t) , ψ ∈ C1(U) , (ψ(y, t), y, t) ∈ V (4.1)

satisfying φ(ψ(y, t), y, t) = 0 ∀ (y, t) ∈ U . Taking full derivatives of φ with respect to
y and t, and using the fact that in V , φ satisfies the LSE pointwise gives:

(−φxψt) + F
√

φ2x + (−φxψy)2 = 0 ⇐⇒ −ψt ± F
√

1 + ψ2
y = 0 (4.2)

where φx and F are evaluated at (x, y, t) = (ψ(y, t), y, t). The sign used in the last
equation depends on φx = ±

√

φ2x. We let a := −sign(φx(~x0, t0)).
Now, let ψ satisfy the following Initial Value Problem:

{

ψt + aF (ψ, y, t)
√

1 + ψ2
y = 0 on U ∩ (R× (t0, T ))

ψ(y, t0) = ψ0(y) on U ∩ (R× {t0})
(4.3)

where ψ0 is chosen such that φ(ψ0(y), y, t0) = 0. Then for all t ∈ (t0, T ) the set Γt
locally describes the curve at time t, i.e., Γt = Ct ∩ V . We now investigate the case
whereM is merely C0. For simplicity, we work with t0 = 0.

Remark. Applying the same argument assuming φt(~x0, t0) 6= 0 allows one to
formally relate the LSE to the Eikonal equation [35]:

φt + F (x, y, ψ)
√

(−φtψx)2 + (−φtψy)2 = 0 ⇐⇒ ||∇ψ|| = −sign(φt)
F (x, y, ψ)

(4.4)

But since by the LSE we have a := −sign(φt) = sign (F (x, y, ψ)), this simplifies to
||∇ψ|| = 1

|F (x,y,ψ)| .
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4.2. Theory. Equation (4.3) is a Cauchy problem of the form

{
ψt +H(y, t, ψ, ψy) = 0 on U ∩ (R× (0, T ))

ψ(y, 0) = ψ0(y) on U ∩ (R× {0}) (4.5)

where the Hamiltonian H : R1 × (0, T ) × R × R
1 → R is defined as H(y, t, ψ, ψy) =

aF (ψ, y, t)
√

1 + ψ2
y. The function ψ0 is defined such that for all y ∈ U ∩ (R× {0}) we

have (ψ0(y), y) ∈ C0. We resort to the rich theory of viscosity solutions of Hamilton-
Jacobi equations to study various properties of this problem [7, 8, 14, 15, 17, 24, 28,
49, 50]. We first address the well-posedness of the PDE. It is a simple matter to
verify that the assumptions on H required to apply Theorem 1.1 in [48] hold in our
context.1 This yields

Theorem 4.1 (Existence & Uniqueness). There exists a unique viscosity solution
ψ to problem (4.5).

We next verify that (4.5) does have the geometric interpretation advertised in the
previous section.

Theorem 4.2 (Γt locally describes Ct). The set Γt enjoys the following property:
Γt = Ct ∩ V.

Proof. Consider IVP (2.2) again:

{
φt + F |∇φ| = 0 on R

2 × (0, T )
φ(~x, 0) = φ0(~x) on R

2 × {0} (4.6)

Since it is known that ~x ∈ Ct ∩V if and only if φ(~x, t) = 0, we may prove the theorem
by showing that: ~x ∈ Γt if and only if φ(~x, t) = 0.

=⇒ We argue by contradiction. Suppose the set T = {T > t > 0 : ∃~x ∈
Γt s.t. φ(~x, t) 6= 0} is not empty and define t∗ = inf T . Since φ is continuous, T is open
and t∗ 6∈ T . Therefore, for all ~x∗ ∈ Γt∗ , φ(~x

∗, t∗) = 0, but for any ǫ > 0 sufficiently
small, there exists ~xǫ ∈ Γt+ǫ such that φ(~xǫ, t + ǫ) 6= 0. If M is differentiable
at (~x∗, t∗), this contradicts the argument presented in §4.1: The Implicit Function
Theorem guarantees that the set V is open. IfM is not differentiable at (~x∗, t∗), then
fix ǫ and for δ > 0 consider ~x0 ∈ Γt+ǫ such that ‖~xǫ−~x0‖ ≤ δ andM is differentiable
at (~x0, t + ǫ). For any δ, such a point can be found since for any T > t + ǫ > 0 the
singularities of Γt+ǫ are subsets of measure 0.2 Again, the Implicit Function Theorem
guarantees that there is a neighbourhood Ṽ of (~x0, t + ǫ) where φ(~x, t) = 0 for any
~x ∈ Γt ∩ Ṽ . Considering the sequence δn = { 1n : n ∈ N} and the corresponding
sequence {~xn}∞n=1, we arrive at the conclusion that φ(~xǫ, t + ǫ) 6= 0 contradicts the
continuity of φ.

⇐= Assume that there exists (~x, t) ∈ V such that φ(~x, t) = 0, but there is no y
such that ~x = (ψ(y), y) ∈ Γt. We re-use the arguments given in the proof of =⇒ : If
M is differentiable at (~x, t) then this contradicts the argument in §4.1. If M is not
differentiable at (~x, t), then we can find a sequence ~xn ∈ Γt converging to ~x such that
φ(~xn, t) = 0, and obtain the contradiction that ψ is not continuous.

4.3. Generalizations. More generally, the above arguments can be applied to
yield that there exists neighbourhoods (~x0, t0) ∈ V and U ⊂ R × [0, T ], as well as a

1with the exception of (H3) in [48]. However, it may be modified to get γR,P ∈ R if p ∈ BN (0, P )
for some P > 0.

2This follows directly from the fact that Problem (4.5) is a first order Hamilton-Jacobi equation.
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unique function ψ : U −→ R, ψ : (z, t) 7→ w = ψ(z, t) with (w cos(θ) + z, w sin(θ) +
z, t) ∈ V satisfying

{

ψt + aF (w cos(θ) + z, w sin(θ) + z, t)
√

ψ2
z + 1 = 0 on U ∩ (R× (0, T ))

ψ(z, 0) = ψ0(z) on U ∩ (R× {0}) (4.7)

in the viscosity sense. Here θ is the polar angle of ~x0, a = −sign(~x0 ·n̂(~x0, t0)) and ψ0 is
chosen such that for all z ∈ U∩(R× {0}), we have (ψ0(z) cos(θ)+z, ψ0(z) sin(θ)+z) ∈
C0. When θ = 0 we recover Problem (4.3), whereas when θ = π/2, we get that
ψ : (x, t) 7→ y = ψ(x, t) with (x, ψ(x, t), t) ∈ V satisfies:

{

ψt + aF (x, ψ, t)
√

ψ2
x + 1 = 0 on U ∩ (R× (0, T ))

ψ(x, 0) = ψ0(x) on U ∩ (R× {0}) (4.8)

in the viscosity sense. In subsequent sections, we will refer to Problems (4.3) and (4.8)
as the yt- and xt-representations ofM, whereas Problem (4.7) will be the skewed rep-
resentation. Those problems provide sideways representations of the evolving front.
For clarity, remarks pertaining to those will usually be made for the special case of
Problem (4.3).

4.4. Discretization. Finite-differences schemes for problems such as (4.5) have
been discussed [16, 18, 48]. Based on these works, we propose the following dis-
cretization for Equation (4.3). In this subsection only, we will distinguish between
the continuous function ψ, and its discrete approximation which we denote as χ.
The spatial derivative χy must be computed in an upwind fashion. To this end, we
introduce the one-sided operators

D+
l χ

r :=
χrl+1 − χrl

h
D−
l χ

r :=
χrl − χrl−1

h
(4.9)

and suggest:

χr+1
l = χrl − a ·∆t · F (χrl , yl, tr) ·

√

1 + upw(χr, l, r, α) (4.10)

where

upw(χr, l, n, α) := max{α, 0}
(

min
{
D+
l χ

r, 0
}2

+max
{
D−
l χ

r, 0
}2
)

−min{0, α}
(

max
{
D+
l χ

r, 0
}2

+min
{
D−
l χ

r, 0
}2
)

(4.11)

The constant α acts as a switch and is defined as α = sign (aF (χrl , yl, t
r)).

Proposition 4.3. (Convergence.) Let M be defined as the local bound on
F , i.e., M r

l = sup(x,y,t)∈B(pr
l
,2h){|F (x, y, t)|}, where prl = (χrl , yl, t

r). Assume that

max
{
|D+

l χ
r|, |D−

l χ
r|
}
≤ P for all l ∈ L and 0 ≤ r ≤ R. Suppose ∆t satisfies

M r
l ·∆t ≤

h

2P
(4.12)

Then the above scheme is such that χ→ ψ as h and ∆t→ 0, with rate

‖χ− ψ‖∞ ≤ c
√
∆t (4.13)

for all l, where the constant c depends on ‖ψ0‖, ‖Dψ0‖, the numerical Hamiltonian
g, and R∆t where 0 ≤ r ≤ R.
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Proof. We proceed by showing that the scheme is monotone and consistent in
the sense of [48]. The results then follow from Theorem 3.1 of that same paper. The
scheme can be rewritten as

χr+1
l = χrl −∆t · g

(
yl, t

r, χrl , D
+
l χ

r, D−
l χ

r
)

(4.14)

where the numerical Hamiltonian g is easily verified to be consistent, i.e.,

g (y, t, s, δ, δ) = H(y, t, s, δ) ∀(y, t) ∈ U , s ∈ R, |δ| < P (4.15)

We verify monotonicity by showing that the function

G(χrl−1, χ
r
l , χ

r
l+1) = χrl − a ·∆t · F (u, yl, tr) ·

√

1 + upw(χr, l, r, α) (4.16)

is a non-decreasing function of each of its argument, for fixed u, yl and t
r. We only

treat the case α > 0, since the other case is symmetric. Writing F = F (u, yl, t
r) for

short gives

G(b, c, d) =







c− a∆t F
√

1 +
(
d−c
h

)2
if d− c < 0, c− b < 0

c− a∆t F
√

1 +
(
c−b
h

)2
if d− c > 0, c− b > 0

c− a∆t F
√

1 +
(
d−c
h

)2
+
(
c−b
h

)2
if d− c < 0, c− b > 0

c− a∆t F if d− c > 0, c− b < 0

(4.17)

For the first case: Gb, Gd ≥ 0 are trivial to check while Gc ≥ 0 only if

1 ≥
(

F 2

(
∆t

h

)2

− 1

)(

−d− c
h

)2

⇐=
√
1 + P 2

P
≥M r

l

∆t

h
(4.18)

Case 2 yields the same condition, whereas Case 3 gives the more restrictive one present
in the assumption of the claim. Case 4 is trivial.

Proposition 4.4. (Stability.) The above scheme is stable, provided that

∆t < min

{
h

2PM r
l

,
P − 2

KP
√
1 + 2P 2

,
2

Pδ

}

(4.19)

for some δ > 0. The constant P is such that max
{
|D+

l χ
r|, |D−

l χ
r|
}
≤ P for all l ∈ L

and 0 ≤ r ≤ R.
Proof. Applying Theorem 7 of [34] to our scheme, it is possible to show that for

h small enough, the explicit Euler map defined as

Sl∆t(χ) = χl − a∆t · F (χl, yl, t)
√

1 + upw(χr, l, r, α) (4.20)

is a strict contraction in ℓ∞. Bounding Sl∆t(χ) − Sl∆t(τ) from below (resp. above)
yields the 2nd (resp. 3rd) bound in (4.19).

When defining ‘upw’, we implicitly assumed that both χrl+1 and χ
r
l−1 were known.

In the instance where one of those values is not known, we set χr+1
l to +∞. Indeed, no

value can be assigned to χr+1
l since it is not possible to infer where the characteristic

going through the point prl = (χrl , yl, t
r) comes from.

Remark. Assuming P = O(1/h), we may revisit the bounds on ∆t given in (4.19).
The first bound is not very restrictive, even though it scales like O(h2). Indeed F ≈ 0
implies that M r

l should always be small. The bounds imposed by stability are O(h),
which agrees with the usual CFL number of an advection problem.
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5. Weaving the representations. Both approaches just discussed in §3 and
§4 provide methods that locally build the manifoldM. We now address the question
of when to use a specific representation.

5.1. The Sign Test. Since the approach presented in §3 relies on the assumption
that the speed is bounded away from 0, the sign of F is monitored throughout the
algorithm. In particular, whenever a point in (xi, yj) is assigned a value ψij using
the (t)-FMM, the Sign Test is performed as follows. Suppose the point pi−1,j =
(xi−1, yj , ψi−1,j) was used in the computation of ψij . Considering the line in xyt-
space joining the point pi−1,j and pij , we check the number of times d that the speed
changes sign along this line. If d = 0, the algorithm can keep running the (t-)FMM:
The pair (pi−1,j , pij) is said to pass the Sign Test. If d = 1, we should change
representation: The pair (pi−1,j , pij) fails the Sign Test. If d > 1, the grid has to be
refined.

5.2. Conversion of data: Interpolation. Suppose that the pair (pi−1,j , pij)
just failed the Sign Test discussed in §5.1. Then the algorithm must change represen-
tation. Without loss of generality, let us suppose that the algorithm switches from the
xy- to the yt-representation. This means the manifold is locally sampled by points of
the form plm = (xl, ym, t), where l ∈ L ⊂ I and m ∈ M ⊂ J . The yt-representation
requires points of the form prm = (x, ym, t

r), where r ∈ R ⊂ K. See Figure 5.1.

5.3. Computing the outward normal. Computing the outward normal n̂
accurately at each point sampling M is a crucial component of the algorithm. In

regions where the level-set function φ is C1, we have n̂ =
(φx,φy,φt)
|(φx,φy,φt)|

. We use the

Implicit Function Theorem: If ψ(y, t) = x satisfies φ(ψ(y, t), y, t) = 0, then φy =
−φxψy and φt = −φxψt. Since φx 6= 0, we set ~n = (+sign(φx), ψy, ψt) and n̂ = ~n/|~n|.
We keep track of the normal associated to each point by defining the function

Norm : R2 × R
+ −→ S2 Norm (pij) = n̂(pij) (5.1)

5.4. The Orientation Test. Whenever a point is computed, the algorithm
determines the orientation of the outward normal at this point. As explained in §4,
this can be done based on the sign of n̂3, the time component of n̂. We define

Orient3 : R2 × R
+ −→ {−1,+1} Orient3 (pij) = −sign (n̂3) (5.2)

The algorithm requires finding which points pab in a neighbourhood of pij have the
same orientation as pij . This is done using the Orientation Test. A pair (pij , pab)
is said to pass the Orientation Test if Orient3 (pij) = Orient3 (pab), and to fail it
otherwise.

6. Algorithms & Discussion. We introduce some notation before giving the
details of the algorithms. We make use of four lists. Accepted and Narrow Band are
lists of triplets, e.g., pij = (xi, yj, ψij). Pile and Far Away are lists of coordinates,
e.g., (xi, yj). We define the space and time projection operators as follows: if pij =
(xi, yj , ψij), then

πs : R
2 × R

+ −→ R
2 πs(pij) = (xi, yj) (6.1)

πt : R
2 × R

+ −→ R
+ πt(pij) = ψij (6.2)

The following function will be used:

Grid : R2 −→ R
+ Grid : (xi, yj) −→ ψij (6.3)
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Fig. 5.1. Converting the data using interpolation. (a) Some data in the xy-representation.
The point pαβ appears in red. (b) We only keep those points used for interpolation. (c) Performing
one-dimensional interpolation line by line, we obtain data in the yt-representation. Those are the
light green squares. (d) Using the boundary data from (c), the sideways PDE can be solved, to obtain
the dark blue squares. By design, the domain shrinks by two points every time step.

The set of coordinates N((xi, yj)) = {(xa, yb) : |(i, j) − (a, b)| = 1} consists of
the nearest neighbours of (xi, yj). We use Table 6.1 to define two sets of triplets:
NeighEik((xi, yj)) and NeighSide(pαβ). The first one is used to compute the value
ψij in Algorithms 5 and 2. Similarly the second set is used in Algorithm 4, where
the relevant component of n̂(pαβ), the normal at pαβ, is denoted by ηi. We are now
ready to present the main algorithms.

6.1. Algorithm 1, Main loop. All steps of the main loop can be checked to
be such that if F = F (x, y) ≥ δ > 0, ∀(x, y) ∈ R

2, it reduces to the classical FMM.
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S = NeighEik((xi, yj)) S = NeighSide(pαβ)

pab = (xa, yb, ψab) • (xa, yb) ∈ N((xi, yj)) • (xa, yb) ∈ {(xl, ym) : l ∈ L,m ∈M}
belongs to S • pab ∈ Accepted • pab ∈ Accepted

if it satisfies • Grid(xa, yb) = ψab • sign(ηi) = sign(n̂i)
• (pαβ , pab) passes the Orient.Test where n̂ =Norm (pab)

Table 6.1
Definitions of two sets used in Algorithms 2, 4 and 5

Algorithm 1 Main Loop

1: while Narrow Band 6= ∅ do

2: procedure Accept a point
3: ψαβ ← min{πt(pij) : pij ∈ Narrow Band}
4: Grid(xα, yβ)← ψαβ , pαβ ← (xα, yβ , ψαβ)
5: remove pαβ from Narrow Band add pαβ to Accepted

6: if (xα, yβ) ∈ Far Away then
7: remove (xα, yβ) from Far Away

8: if ψαβ < T then
9: procedure Update Pile

10: for all (xa, yb) ∈ N((xα, yβ)) do
11: ~v ← (xa, yb)− (xα, yβ)
12: if sign(~v · n̂(pαβ)) = sign(F (pα,β)) or 0 then
13: if Grid(xa, yb) = ψab < +∞ then
14: pab ← (xa, yb, ψab)
15: if Orient3 (pab) 6=Orient3 (pαβ) then
16: add (xa, yb) to Pile

17: else if (xa, yb) ∈ Far Away then
18: add (xa, yb) to Pile

19: procedure Update the Narrow Band
20: for all (xi, yj) ∈ Pile do
21: compute ψij and n̂ij using Algo. 5 if F = F (~x) or Algo. 2 if F = F (~x, t)
22: pij ← (xi, yj , ψij), Norm (pij)← n̂(pij)
23: remove (xi, yj) from Pile.
24: for all p ∈ NeighEik((xi, yj)) do
25: perform the Sign Test for the pair (pij , p)

26: if at least one pair fails the Sign Test then
27: proceed to Algo. 3, which returns (k, l, ψkl), FAIL and n̂
28: pij ← (xk, yl, ψkl), Norm (pij)← n̂, i← k, j ← l

29: Orient3 (pij)← −sign(n̂3(pij))
30: if FAIL== 0 then
31: if ∃ qij ∈ Narrow Band with πs(qij) = πs(pij) then
32: remove qij from Narrow Band

33: add pij to Narrow Band
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Algorithm 2 Solve |∇ψ(x, y)| = 1
|F (x,y,ψ)|

u± ← πt(pi±1j) if pi±1j ∈ NeighEik((xi, yj)), +∞ otherwise.
v± ← πt(pij±1) if pij±1 ∈ NeighEik((xi, yj)), +∞ otherwise.
Θ← [0, 0, 0, 0]
for Quadrant=1. . . 4 do

if Quadrant=1 then
ψv ← v+, ψu ← u+, τv ← h

|F (xi,yj+1,ψv)|
, τu ← h

|F (xi+1,yj,ψu)|
,

(and similarly for other quadrants)
if (ψv = +∞) and (ψu = +∞) then

θ ← +∞,
else

θ ← minξ∈[0,1]{ξψv + (1− ξ)ψu +
√

ξ2 + (1− ξ)2 (ξτv + (1− ξ)τu)}
(see Appendix A for details)

Θ(Quadrant)← θ,

ψij ← min(Θ), Q← argmin(Θ)

The sideways formulations are only used when F ≈ 0. The first procedure, ‘Accept
a point’ is identical to the acceptance procedure in the standard FMM [41], and we
therefore omit to discuss it. For clarity, the point accepted during this step is labelled
as pαβ = (xα, yβ , ψαβ) in the rest of the discussion.

6.1.1. Update Pile. This step is only performed if ψαβ is below a certain pre-
defined time T to ensure that Narrow Band is eventually empty. At this stage the
algorithm needs to decide whether a nearest neighbour (xa, yb) of pαβ should be put
in Pile. To this end three criteria are used: the position, status and orientation
of that neighbour. Simply put, line 12 has the following effect: If F (pαβ) > 0
and the considered neighbour lies inside the curve Cψαβ

, then the pair (xa, yb) is
not added to Pile. Next the status of this nearest neighbour is considered. If the
pair (xa, yb) was traversed by the curve in the past, then it is only added to Pile if
pab := (xa, yb,Grid(xa, yb)) and pαβ have different orientations (lines 13-16). In-
deed a point in the plane can only be traversed twice if the speed has changed sign
in the meantime. If (xa, yb) is still in Far Away, then it is automatically added to
Pile (lines 17-18).

Remark. The presence of the ‘if ψαβ < T ’ in line 8 is in contrast with the
standard FMM, where it is proved that since F ≥ δ > 0, all characteristics exit
the domain in finite time. In this context, the size of the computational domain
determines T .

6.1.2. Update the Narrow Band. This procedure assigns tentative values to
the points in Pile using either the standard FMM (see Appendix B) or Algorithm 2,
depending on the domain of F . Since ψ only solves the Eikonal equation in regions
where |F | ≥ δ > 0, the first lines of those algorithms ensure that the points involved in
the computation of ψij all lie in one such region. The steps outlined in lines 24-28

represent the main modification to the standard FMM algorithm. The Sign Test is
performed to check if the value returned by Algorithm 5 or 2 is valid. If it is not,
then Algorithm 3 is called. Using a sideways representation, it attempts to return a
point (xk, yl, ψkl) ∈ Cψkl

. If it manages to do so, note that as explained in §6.2.4, the
triplet returned may not be (xi, yj , ψij), which is why i and j are relabelled in line
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28. As in the standard FMM, if there already is a point in Narrow Band with the
same spatial coordinates (xi, yj), then it is automatically removed from that list. The
triplet (xi, yj , ψij) is added to Narrow Band. In the event where Algorithm 3 fails, no
new point is added to Narrow Band.

6.2. Algorithm 3, Sideways representation. This algorithm is called by the
main loop when the speed F is close to 0.

6.2.1. Determine representation. In order to work locally, the first step of
this procedure defines a square of side length at most 2sh for some s ∈ N as the new
computational grid. Then the representation is chosen based on the normal at pαβ .

6.2.2. Initialization. This is the step where data are converted, as was men-
tioned in §5.2. The set NeighSide(pαβ) is found; This ensures that the orientation of
the points used next is compatible with the current representation. We take time to
explain what we mean in line 12 in details. It is ideal to build the sideways grid in
such a way that the triplet pαβ is represented exactly on this grid. i.e., For example,

if data are being converted to the yt-representation, then there should be l̃ ∈ L and
r̃ ∈ R such that (yl̃, t

r̃) = (yβ, ψαβ). The function ψ1 : (y, t) 7→ x then satisfies
ψ1(yl̃, t

r̃) = xα, and (xα, yβ, ψαβ) = (ψ1(yl̃, t
r̃), yl̃, t

r̃). This avoids rediscovering the
point pαβ in the procedure ‘Get (xk, yl, ψkl)’ discussed in §6.2.4. Assigning values to
the sideways grid in line 13 is an interpolation problem. See Figure 5.1 (c).

6.2.3. Main loop. The sideways PDE can now be solved. As mentioned in §4.4,
if either ψr−1

l−1 or ψr−1
l+1 are set to +∞, then Algorithm 4 sets ψrl to +∞. As depicted

on Figure 5.1 (d), this has the effect of shrinking the size of the set where the PDE
is solved: At most s time steps can be taken before all the boundary information
available has been used up. When the speed depends on time, we believe that using
adaptive time stepping increases the success rate of Algorithm 3. We pick a small ∆t
as long as the speed has not changed sign. This makes the scheme more accurate,
thereby increasing the chances of assigning a value to (xi, yj). Once F changes sign,
a large ∆t is chosen to increase the likelihood of assigning a value to (xα, yβ).

6.2.4. Get (xk, yl, pkl). Deciding which value is returned by the algorithm is
delicate and may be summarized as follows: By default, the algorithm always tries to
assign a value to the pair in the Narrow Band (lines 22-25). If this is not possible,
then it tries to assign a new value to the pair (xα, yβ) = πs(pαβ) (lines 26-29). If this
cannot be done either, then this representation failed. The algorithm must attempt
using another representation which is chosen based on the ones already attempted.
When the 1st attempt fails. Suppose the xt-representation failed, then the algorithm
attempts to use the yt-representation. When the 2nd attempt fails. Then the scheme
resorts to the skewed representation. When the 3rd attempt fails. If the skewed
representation also fails, then Algorithm 3 fails entirely. Note that this is expected to
happen if (xi, yj) and (xα, yβ) 6∈ Ct for any t ∈ (pαβ , T ). See Example 2 in §8.

Remark. In practice, after each iteration of the for loop line 17, we check if
either (xi, yj) or (xα, yβ) has been traversed by the curve. If not, then the for loop
keeps going.
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Algorithm 3 Sideways representation

1: procedure Determine representation
2: s ∈ N is picked, ~v ← (−s,−s+ 1, . . . , s− 1, s), L← i+ ~v, M ← j + ~v
3: L← L ∩ I, M ←M ∩ J
4: if |n̂1(pαβ)| > |n̂2(pαβ)| then
5: use yt-representation: z ← x, a← −sign(n̂1(pαβ))
6: else
7: use xt-representation: z ← y, a← −sign(n̂2(pαβ))

8: Attempt ← 1
9: while Attempt> 0 do

10: procedure Initialization
11: get NeighSide(pαβ)
12: the sideways grid (zl, t

r), l ∈ L, r ∈ R is built
13: Grid(zl, t

r)← ψrl using interpolation and NeighSide(pαβ) where possible.
14: Grid(zl, t

r)← +∞ where interpolation cannot be used.

15: procedure Main loop
16: if a 6= 0 then
17: for n = 1 : Rmax do
18: ∆t is determined
19: for l = 2 : Lmax − 1 do
20: compute ψrl using Algo. 4.

21: procedure Get (xk, yl, ψkl)
22: if (xi, yj) is traversed by the curve then
23: ψij is computed using interpolation
24: ψkl ← ψij , xk ← xi, yl ← yj , n̂(ψkl) is computed
25: Attempt ← 0, FAIL ← 0
26: else if (xα, yβ) is traversed by the curve then
27: ψαβ is computed using interpolation
28: ψkl ← ψαβ , xk ← xα, yl ← yβ , n̂(ψkl) is computed
29: Attempt ← 0, FAIL ← 0
30: else This sideways representation failed.
31: if Attempt =1 then
32: if in xt-representation then
33: use yt-representation: z ← x, a← −sign(n̂1(pαβ))

34: if in yt-representation then
35: use xt-representation: z ← y, a← −sign(n̂2(pαβ))

36: Attempt = Attempt +1
37: else if Attempt=2 then
38: use the skewed representation: z ← w, a← −sign((xα, yβ)·n̂(pαβ))
39: Attempt = Attempt +1
40: else if Attempt=3 then
41: Point is not reached before T . ψkl ← +∞, xk ← +∞, yl ← +∞
42: Attempt ← 0, FAIL ← 1
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Algorithm 4 Solve ψt + aF (ψ, y, t)
√

1 + ψ2
y = 0

if (ψr−1
l−1 < +∞) & (ψr−1

l+1 < +∞) then

α← sign(aF (ψr−1
l , yl, t

r−1))

ψrl ← ψr−1
l − a ·∆t · F (ψr−1

l , yl, t
r−1) ·

√

1 + upw(ψr−1, l, r, α)
else

ψrl ← +∞

6.3. General remarks.

6.3.1. Data structure. One of the main differences with the standard FMM is
the way we keep track of the various properties associated to each point. The fact that
a point (xα, yβ) on the plane may be traversed by the curve more than once requires a
slightly richer data structure. For example, the functions Norm and Orient3 have to
be defined over triplets rather than over R2. On the other hand, the lists Pile and
Far Away still consist of coordinates. Note that when the code ends, Narrow Band is
empty whereas Far Away may still contain points. The Accepted list may contain
multiple triplets sharing the same spatial coordinates. In order to keep track of what
the most ‘up-to-date’ value associated with (xa, yb) is, we make use of Grid. Indeed,
this function enjoys the following property: If there are distinct points pij , qij ∈
Accepted such that πs(pij) = πs(qij), then Grid(xi, yj) = max{πt(pij), πt(qij)}.
Viewed as a set, Grid(πs(Accepted)) is the upper semi-continuous envelope ofM.

6.3.2. Recovering the curve fromM. The set Accepted provides a discrete
sampling ofM. Using this point cloud, and possibly the normal n̂ toM at each point,
a continuous representation ofM can be obtained. See for example [6, 10, 38, 27, 30],
and [56]. Given a time t ∈ (0, T ), a contouring algorithm can then be used to find Ct
(see [30]).

6.3.3. Resolution. By construction, the density of points sampling M is ex-
pected to be lower in regions where F ≈ 0. A remedy to this situation is to also
record the points computed in the sideways representations.

7. Complexity of the method. We derive some estimates for the computa-
tional time of the method when n = 2, i.e., two spatial dimensions. Consider a spatial
grid of N2 points with meshsize h. Let ∆t ∼ h, and define N∗ to be the number
of gridpoints traversed by Ct when 0 < t < T . (i.e., if a given gridpoint (xi, yj) is
traversed twice, say at times t1 and t2 where 0 < t1 < t2 < T , then this contributes
+2 to N∗.) By construction, the computational time depends on the size of the set
FM := F ∩M. Indeed, Algorithm 3 is only called when Algorithm 1 fails, which
occurs whenever an accepted point computed by Algorithm 1 is within a spatial dis-
tance h of FM. Let the number of points computed by Algorithm 3 be Ñ . Since the
complexity of Algorithm 1 is well-known [41], let us focus on estimating the complex-
ity of a single call to Algorithm 3. On the square of side 2s, the Narrow Band forms a
one-dimensional subset. Using interpolation to convert the points in a neighbourhood
of this set takes O(s) operations. Algorithm 4 makes at most s2 operations. Those
two steps are performed at most three times. We formally argue that the parameters
of the algorithm can be chosen such that this worse case complexity is not achieved.
The procedure mentioned in the remark of §6.2.4 can be used to prevent Algorithm
4 from making unnecessary computations. In §6.2.3, we explain how using adaptive
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time-stepping increases the success rate of Algorithm 3. Moreover, as N increases,
the time distance between the accepted point computed by Algorithm 1 and FM de-
creases, which in turn makes Algorithm 3 more successful on average. Altogether, this
suggests that the number of attempts taken by Algorithm 3 tends to one for almost all
points; this is confirmed by the examples presented in the next section. As a result,
the complexity of Algorithm 3 tends to O(s) for large N . Given the assumption that
F is analytic, we expect N∗ − Ñ = O(N2) and Ñ = O(N). In practice, the number
of points in the local grid s can be chosen as kN for k ≪ 1. The overall complexity
can therefore be estimated as:

O(N2 log(N2)) +O(N)×O(kN) = O(N2 log(N2))
︸ ︷︷ ︸

(t)−FMM

+ O(kN2)
︸ ︷︷ ︸

augmented part

(7.1)

Note that in the instance where F = ∅, we recover the usual complexity of the FMM,
namely O(N2 log(N2)).

8. Numerical Tests. In this section, we illustrate how the method works with a
variety of examples. We first discuss the methodology used to assess the convergence
of the algorithms, and briefly summarize which features and results are expected. We
then present the examples. More details are provided in Appendix C.

8.1. Error measurement. To assess the convergence of our algorithm, we com-
pute the error associated to each point pij returned by our scheme.

Method 1: Eij . Suppose that an exact solution to the Level-Set Equation (2.2),
φ(x, y, t) > 0 is known, with the property that |∇φ| = 1 for all t. Then evaluating φ
at pij = (xi, yj , ψij) returns the distance to the curve Cψij

. We define Eij = |φ(pij)|.
This method is used for all examples except Example 4 when F < 0.

Method 2: Gij . If an exact solution is not available, we get a numerical solution
accurate enough to be considered exact. To this end, the Level-Set Equation is solved
on a very fine grid using 2nd order stencils in space, and RK2 in time. At each
time step, the zero-contour of φ is found and sampled. The resulting list of points
B provides a discrete approximation of M. The error associated to pij is defined
as the smallest three-dimensional distance to this exact cloud of points, i.e., Gij =
minq∈B{|pij − q|}. This method is used for Example 4, when F < 0.

8.2. Tests performed.
Accuracy of Algorithm 4. In §4.4, it is mentioned that the sideways method we

propose converges with at least O(h1/2) accuracy. To verify this, we pick a domain
U , initialize say x = ψ(ym, t

0) with exact data for some initial time t0, and run
Algorithm 4 for different gridsizes. The result is a subset of M, encoded as a list
of points of the form prm = (ψrm, ym, t

r). An error is associated to each point prm
such that ψrm < ∞ using either Method 1 or 2, i.e., Erm = |ψexact(ym, t

r) − ψrm| or
Grm = minq∈B{|prm − q|}. A two-dimensional L1 norm is then used to report the
results in Figure 8.1, e.g., L1 = h2 ·∑m∈M

∑

r∈RE
r
m.

Accuracy of the full scheme. When testing the accuracy of the full scheme, we
distinguish between different regions of the resulting set Accepted. When study-
ing a region computed by the (t)-FMM, a two-dimensional L1 norm is used: L1 =
h2 ·∑i∈I

∑

j∈J Eij . Note that our assumptions on F imply that the points com-

puted using the sideways representations form one-dimensional sets of R2 × [0, T ].
Consequently, a one-dimensional L1 norm is used to study those points: L1 = h ·
∑

i∈I

∑

j∈J Eij . The global error (computed using all the points in Accepted) is a
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two-dimensional L1 norm. It may be interpreted as an approximation of the volume
enclosed by the exact and the approximated surfaces.

We report the L∞ error qualitatively, through the black & white representations
of the set Accepted. Those figures are obtained by computing the relative error at
each point, i.e., if L∞ = maxi∈I, j∈J{Eij}, then eij = Eij/L∞; and then shading the
point accordingly: The darker a point, the larger its relative error eij .

8.3. Expectations. By assumption, as h→ 0, the 1st order (t)-FMM scheme is
used almost everywhere. This should reflect in the global error: It should follow the
same trend as the (t)-FMM. Moreover, we expect the call to Algorithm 3 to increase
the constant of convergence. A question that we address is the extent to which this
degrades the local and global accuracy. We investigate the behaviour of the scheme
in the presence of shocks & rarefactions in Example 4, as well as in §9.

In all examples but the fourth one, the initial curve C0 is the circle centred at the
origin, with radius r0 = 1/4. In all tests, data are initialized with exact values.

8.4. Example 1: F = F (t) = 1− e10t−1. The main purpose of this example is
to illustrate the basic ideas at play in the method. The speed is such that we expect
the circle to first expand up to time t = 0.1 and then contract until it collapses to
the origin. We first assess the order of convergence of the method for the sideways
representation. The results reported on Figure 8.1 clearly indicate that it is O(h).
This is higher than the O(h1/2) rate that was predicted in §4.4. When the entire
code is run, the set of Accepted points is presented on Figure 8.2 (a)-(b). One-
dimensional optimization is used for those points traversed by a characteristic that
is almost aligned with one of the spatial axis. We note that the sideways points
are computed in the yt- (resp. xt-)representation when n̂ aligns better with the x-
(resp. y-)axis. As expected, the sampling of the surface is sparser near the plane
t = 0.1. Remark that in this example, none of the sideways points were computed in
the skewed representation. The global convergence results are presented in Figure 8.2,
(d). We distinguish between the bottom part of the surface, the top part, and those
points computed using the sideways representation. On the one hand, the results
pertaining to the bottom part allow us to conclude that the t-FMM is O(h), as
predicted in §3. On the other hand, we can study the effect of the call to Algorithm 3
on the behaviour of the scheme. Indeed, although the t-FMM also converges withO(h)
when used to build the top part of the surface, it does so with a larger constant. We
conclude that changing representation does deteriorate the accuracy of the sampling
but only to a mild extent. To gain a better understanding of where the loss of
accuracy from the bottom to the top part stems from, the relative L∞ error eij
associated to each point can be viewed on Figure 8.2 (c). Those points computed
using one-dimensional optimization in the t-FMM, just after t = 0.1 bear the largest
errors. Two reasons can explain this: Some of those points are clearly traversed by
characteristics that are not aligned with the spatial axes. Nevertheless, the scheme
resorts to one-dimensional optimization to assign them values, for lack of a better
method. Indeed, when those points are put in Pile, there are not enough neighbours
with negative orientation available to use two-dimensional optimization. We also
suspect the constant of convergence of the t-FMM to depend on δ where |F | ≥ δ > 0.
In practice, this method is found to perform poorly when using points pij such that
F (pij) ≈ 0.

Remark. Those outliers do not degrade the accuracy of the method, even locally.
This is because by design, Fast Marching Methods assign values to the points in
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Fig. 8.1. Convergence results for the sideways scheme, using (left) Method 1 (right) Method 2.

Pile using only those neighbours with a smaller value. As a result, those outliers are
not used in any of the calculations of the values of their neighbours. In practice, it is
found that they eventually become isolated points of the Narrow Band before getting
accepted.

8.5. Example 2: F = F (x) = x. The given speed is such that the curve remains
a circle whose radius grows while its center shifts to the right. Our method adequately
handles this case as a single problem, although the speed changes sign across the y-
axis. As expected, Algorithm 3 fails near the points (0, 0.25) and (0,−0.25), as shown
on Figure 8.3 (a). The sideways scheme was tested both in the xt- and the yt-charts,
and was found to be 1st order in each case (Figure 8.1). The results for the full scheme
show that it converges with O(h) accuracy everywhere (Figure 8.3 (b)). Let us bring
up that a bi-directional FMM was proposed in [13] to solve a related problem.

8.6. Example 3: F = F (x, y, t). (See Appendix C.5 for details about F .) This
example differs significantly from the previous ones in that the set F no longer consists
of planes. The exact solution Ct is a circle that only grows at first, and then starts
moving in the positive x-direction. Our method is observed to perform very well on
this example; We present the resulting surface and the first order convergence results
on Figures 8.1 & 8.4.

8.7. Example 4: Two merging circles. This example tests the ability of the
scheme to capture topological changes. The initial codimension-one manifold consists
of two disjoint circles of radius r0 = 1/4, with centres at (−.3, 0) and (.3, 0). The
speed is such that the circles first expand, until they touch and merge. Then the
speed changes sign, which makes the curve shrink until it pinches off and splits into
two distinct curves. The set Accepted is presented in Figure 8.5 (a).The accuracy
of the sideways scheme is investigated on a domain that comprises the shock when
F > 0, and the rarefaction when F < 0. First order convergence is obtained in each
case (Figure 8.1). The full scheme also shows 1st order convergence (Figure 8.5 (b)).
The convergence of the sideways points and the top part is a little shy of first order,
but this can be attributed to the measurement method. Those results demonstrate
how robust the overall scheme is. Note that a similar example was tackled in [9], with
a speed F that depended linearly on time.
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Fig. 8.2. Example 1: (a) - (b) Different perpectives of the set Accepted. (c) Accepted is
featured. The relative error eij determines the shade of each point. (d) Convergence results.

Fig. 8.3. Example 2: (a) The set Accepted (b) Convergence results.
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Fig. 8.4. Example 3: (a) The set Accepted (b) Convergence results.

Fig. 8.5. Example 4: (a) The set Accepted. (b) Convergence results.

9. Discussion. In the light of the examples presented in the previous section,
we address the limitations, weaknesses and advantages of the algorithm.

We illustrate one of the main limitation of the scheme with an ultimate example.
The speed is chosen such that the initial circle immediately develops a kink along
the x-axis at time t = 0. Its subsequent shape resembles that of an almond slowly
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Fig. 9.1. M for the almond example. The shock appears as a red plain line.

Fig. 9.2. The almond example: The set Accepted (a) side view, (b) viewed from above.

turning in the counterclockwise direction while expanding. The sign of the speed
changes, forcing the curve to contract while retaining its slanted shape. See Appendix
C.7 for details. The most prominent feature of this example is that, as is depicted
on Figure 9.1, the shock is not a straight line. Remark that the speed F does not
satisfy the assumptions of this paper outlined in §2.2: It is only a C0 function of
R

2 × [0, T ]. The surface that results from running the algorithm at high resolution is
shown on Figure 9.2. The shock is clearly visible, and has the expected figure-eight
shape. Nevertheless some points ‘escape’ through the shock when the speed changes
sign, and start out two new fronts that keep on expanding. The problem stems from
the procedure ‘Update Pile’ in Algorithm 1. In order to decide which points go in
Pile, the code distinguishes between the inside and the outside of the curve using
the normal n̂ (cf. line 12 of Algorithm 1). Consider what happens along the shock,
where n̂ has a discontinuity. So long as the expansion is outwards, this does not
cause problems. But when the direction of propagation reverses, some points that
should stay in Far Away are moved into Pile. A possible remedy to this issue is to
approximate the normal cone along the shock. This additional information could be
used as an updating criterion.
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Fig. 9.3. Illustration of what happens if s is chosen too large. Data need to be converted to the
xt-representation, but the set NeighSide(pαβ) of neighbours of the black point (xα, yβ) consists of
two connected components.

On a much more general note, the gluing mechanism between the two formalisms
heavily relies on an accurate computation of the normal. In practice, we found that
the algorithm is rather sensitive to the accuracy of this quantity. Another weakness
of the method is that, as it stands, Algorithm 3 may fail when it is not supposed to.
i.e., Even though (xi, yj) or (xα, yβ) belongs to Ct for some t ∈ (0, T ), the algorithm
does not assign any value to either of those coordinates. Two situations make such a
scenario possible: (1) the time steps taken are too small, or (2) too little information
obtained from interpolation is available. Recall from Proposition 4.3 that the CFL
condition prevents large ∆t. Case (2) can occur if s ∈ N, the number of points
in the local grid in Algorithm 3 is too small. However, if s is large, Algorithm 3
may not be able to carry out the step outlined in line 13. This happens if the
points in NeighSide(pαβ) sample more than one connected component of the set {p ∈
M : πs(p) ∈ [xi−s, xi+s]× [yj−s, yj+s]}. See Figure 9.3 for an illustration. However,
choosing s systematically so as to prevent this situation seems difficult. Ultimately
h and s depend on measurable quantities such as the Lipschitz constants of F and
its derivatives, as well as the local curvatures of Γt. Nevertheless the way those
parameters are intertwined and should be chosen is a question we wish to address in
future work.

The fact that our method is a rather mild modification of the standard FMM
has obvious benefits. As featured in all the examples, the sideways representations
need only be used to compute a relatively small number of points samplingM. This
allows us to safely predict that the computational complexity of the algorithm is lower
than that of pre-existing algorithms used to tackle this problem, such as the LSM or
the GFMM. Nonetheless, it is hard at this point to make more precise complexity
statements.

10. Conclusion. Our aim was to devise an algorithm with low complexity able
to describe the non-linear evolution of codimension one manifolds subject to a space-
& time-dependent speed function that changes sign. To this end, we illustrated how
pre-existing methods can be combined to achieve this goal. The fact that we always
dealt with explicit representations of the manifold implied that the dimensionality of
the problem was never raised. The resulting algorithm was found to have a global
truncation error of O(h). We tested it against a number of examples, some of which
cannot be found in the current literature.
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The algorithm is found to be robust and accurate in all the tests presented.
Regarding the complexity of the method, a legitimate concern is to clearly quantify
how the success rate of Algorithm 3 depends on the various parameters involved, as
well as the speed function F and the manifold M. Once this is done, more precise
statements about the runtime of the algorithm can be made and tested.

Overall, the present work thoroughly introduces a new algorithm, along with
proofs of convergence and stability, as well as sturdy numerical results. We believe
that the main idea on which it relies – i.e., to change representation based on the speed
function F – may be extended and improved in many ways that shall be explored.

Appendix A. A direct method to compute ψII in the t-FMM, in 2D.
We provide a direct method for solving the minimization problem appearing in

Equation (3.4), in two dimensions. Introducing τ(y) = h
|F (~xij ,ψ(y))|

, we first use linear

interpolation to simplify the quantity we wish to minimize:

ψ(x̃) +
√

ξ2 + (1− ξ)2 h

|F (~xij , ψ(x̃))|
= ψ(x̃) +

√

ξ2 + (1− ξ)2 τ(x̃)

≈ ξψ(~xi−1,j) + (1− ξ)ψ(~xi,j+1) +
√

ξ2 + (1− ξ)2 (ξτ(~xi−1,j) + (1− ξ)τ(~xi,j+1))

=: f(ξ) (A.1)

Minimizing f over ξ ∈ (0, 1) amounts to finding the roots of 0 = c4λ
4 + c3λ

3 + c2λ
2 +

c1λ + c0 where λ ∈ (0, 1) is such that f ′(λ) = 0. This quartic can be solved either
directly with closed formulas, or with Newton’s method — we use the latter. For
each root ri ∈ (0, 1) the corresponding value of ψ is computed as ψII,ri = f(ri). If
ψII,ri < ψ(~xi−1,j) or ψII,ri < ψ(~xi,j+1), then ψII,ri is discarded. Values arising from
minimization in one dimension are also computed as ψII,0 = ψ(~xi,j+1)+ τ(~xi,j+1) and
ψII,1 = ψ(~xi−1,j) + τ(~xi−1,j). The global minimum is found by comparing all those
values.

Appendix B. Algorithm 5, standard FMM. We revisit the standard Fast
Marching Method algorithm, using some of the notation we have introduced.

Algorithm 5 Solve |∇ψ(x, y)| = 1
|F (x,y)|

u± ← πt(pi±1j) if pi±1j ∈ NeighEik((xi, yj)), +∞ otherwise.
v± ← πt(pij±1) if pij±1 ∈ NeighEik((xi, yj)), +∞ otherwise.
u← min(u−, u+), v ← min(v−, v+),
if max(u, v)−min(u, v) < h

|F (xi,yj)|
then

ψij =
1
2

(

(u + v) +

√

2
(

h
F (xi,yj)

)2

− (u− v)2
)

else
ψij = min(u, v) + h

|F (xi,yj)|

Appendix C. Implementation details for the examples.

C.1. Solvers used. We give some details about the examples presented in §8.
All tests were performed using Matlabr [1]. In particular, finding the minimum
value in the Narrow Band is done using the command min .

Whenever a value ψij is computed by the (t)-FMM, the normal n̂ij is approxi-
mated using the one-sided derivatives involving the points used in the computation
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of ψij . For example: if two-dimensional optimization was used in Quadrant III to
obtain ψij , then

~v =

(
ψij − ψi−1,j

h
,
ψij − ψi,j−1

h
,−Orient3 (pij)

)

and n̂(pij) =
~v

|~v| (C.1)

Within Algorithm 3, we approximate the normal as follows. For clarity, say the points
pkj = (ψkj , yj , t

k) and pk−1
j = (ψk−1

j , yj , t
k−1) computed in the yt-representation with

x-orientation a were used to obtain pij = (xi, yj , ψij). Then

~v =

(

−a, a
ψk−1
j+1 − ψk−1

j−1

2h
, a

ψkj − ψk−1
j

dt

)

and n̂(pij) =
~v

|~v| (C.2)

Note that this is not an approximation of the true normal at pij , which is (−a,−φxψy,
−φxψt). However, the only two salient information we need from n̂ are: the sign of
n̂3 and the direction of n̂. The two-dimensional normal is simply obtained from n̂ as

n̂ = (n̂1,n̂2)
|(n̂1,n̂2)|

.

C.2. Choice of parameters. In all examples, the number of points in each
dimension is N + 1, and the spatial grid spacings are even: h = dx = dy. The size of
the local grid in Algorithm 3 was set to be s = ⌊N3 ⌋. As discussed in §6.2.3, we use
adaptive time-stepping, in those examples where F depends on time. In the fine part,
before the time where F = 0, we set ∆t = r1h. Passed that time, we let ∆t = r2h.
To assess the convergence of the sideways methods, a yt-grid with spacings h and
∆t = h/2 was built.Remark that the exact normal n̂ was assigned to the points as
they were accepted in all the examples, except Example 1 where it was computed as
explained in §C.1.

C.3. Example 1. The exact solution to the Level-Set Equation is φ(x, y, t) =
√

x2 + y2 − R(t) where R(t) =
(

r0 − e10t−1
10e + t

)

. Domain: [−.321, .319]2. TF = 0.3.

xt- and yt-rep.: r1 = 1/3, r2 = 2. Skewed rep.: r1 = r2 = 1. Domain for convergence
of Algo. 4: (y, t) ∈ [−0.25, 0.25]× [0, 0.3].

C.4. Example 2. The signed distance function to the curve Ct is given as
φ(x, y, t) =

√

(x − xc(t))2 + y2 − r(t) where xc(t) = r0 sinh t and r(t) = r0 cosh t.
Note that φ does not solve the Level-Set Equation. Domain: [−1.01, 0.99]2. TF = 1.
xt- and yt-rep.: r1 = 1/3, r2 = 2. Skewed rep.: r1 = 1/3, r2 = 5. Domain for
convergence of Algo. 4: (y, t) ∈ [−0.25, 0.25]× [0, 1] and (x, t) ∈ [−0.25, 0.25]× [0, 1].

C.5. Example 3. The exact solution to the Level-Set Equation is φ(x, y, t) =
√

(x− gt)2 + y2 − (r0 + ct) where b = 10, c = 1/2 and g(t) = arctan (b(t− 0.5)) + π
2 .

The speed is

F =
(x− gt)(g′t+ g)
√

(x− gt)2 + y2
+ c =⇒ F ≈

{
c for t small

(x−πt)π√
(x−πt)2+y2

+ c for t large (C.3)

We expect the circle to first expand (when t is small), and then expand while moving
to the right with speed π (when t is large). Domain: [−1.51,+1.49]2. TF = 0.5. xt-
and yt-rep.: r1 = 1/3, r2 = 2. Skewed rep.: r1 = 1/3, r2 = 5. Domain for convergence
of Algo. 4: (y, t) ∈ [−0.25, 0.25]× [0, 0.5].



28 A.TCHENG, J.-C.NAVE

C.6. Example 4. The set C0 consists of two disjoint circles of radius r0 = 0.25,
with centres at (−0.3, 0) and (0.3, 0). The speed is F = 1− e2t−1. The circles touch
along the y-axis when t ≈ 0.08. When t < 0.5 the exact solution to the Level-

Set Equation is φ(x, y, t) = min
{√

(x+ 0.3)2 + y2 −R(t),
√

(x− 0.3)2 + y2 −R(t)
}

where R(t) = r0− e2t−1
2e + t. Domain: [−1.5+0.01e,+1.5+0.01e]2. TF = 1.2. xt- and

yt-rep.: r1 = 1/3, r2 = 2. Skewed rep.: r1 = 1/3, r2 = 5. Domain for convergence of
Algo. 4: (y, t) ∈ [−0.5, 0.5]× [0.2, 0.5] and (y, t) ∈ [−0.5, 0.5]× [0.5, .52].

C.7. The Almond example. The exact solution to the Level-Set Equation is

φ(x, y, t) =

(
√

x2 + y2 − r0 +
ect − 1

ce
− t(1 + C)

)

+
t|xt− y|√
1 + t2

(C.4)

=: φ̃(x, y, t) + g(x, y, t) (C.5)

The constants are set to be: r0 = 1/4, c = 1, and C = .65. The function φ is made
up of two parts: φ̃ is qualitatively the same as in Example 1. Domain: [−0.5, 0.5]2.
TF = 1.9. xt- and yt-rep.: r1 = 1/3, r2 = 2. Skewed rep.: r1 = 1/2, r2 = 6.
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[51] Mark Sussman and Emad Fatemi. An efficient, interface-preserving level set redistancing algo-
rithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput.,
20(4):1165–1191 (electronic), 1999.

[52] Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach for computing solutions
to incompressible two-phase flow. Journal of Computational physics, 114(1):146–159, 1994.

[53] R. Takei and R. Tsai, Y.-H. Optimal trajectories of curvature constrained motion in hamilton-
jacobi formulation (to appear). J. Sci. Comput., 2013.

[54] John N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat.
Control, 40(9):1528–1538, 1995.

[55] A. Vladimirsky. Static PDEs for time-dependent control problems. Interfaces Free Bound.,
8(3):281–300, 2006.

[56] Hong-Kai Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using the level set
method. In Variational and Level Set Methods in Computer Vision, 2001. Proceedings.
IEEE Workshop on, pages 194 –201, 2001.

[57] Hongkai Zhao. A fast sweeping method for Eikonal equations. Mathematics of computation,
74(250):603–627, 2005.

[58] J Zhu and PD Ronney. Simulation of front propagation at large non-dimensional flow distur-
bance intensities. Combustion science and technology, 100(1-6):183–201, 1994.


