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Abstract

This paper is devoted to the convergence analysis of the Adini element
scheme for the fourth order problem in any dimension. We showed that,
under the regularity assumption that the exact solution is in H?*, the
Adini element scheme is O(h?) order convergent in energy norm, and the
convergence rate in L? norm can not be nontrivially higher than O(h?)
order. Numerical verifications are presented.
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1 Introduction

This paper is devoted to the convergence analysis of the Adini element
scheme for the fourth order problem in any dimension. The Adini element, (c.f.
[1] for 2D, [14] for higher dimension) is among the earliest finite elements for
elliptic problems. It uses the rectangles (2D) and generalised rectangles (higher
dimensions) as geometry shapes, and the evaluation and the derivatives of first
order on the vertices as nodal parameters. The generation of stiffness matrix is
easy and friendly, and this element has become a popular one during the past
half century, and stimulated various works, (see [§], [11], [10], [14]). In this
present paper, we discuss the capacity of the Adini element scheme for fourth
order problems, and present a sharp analysis of the upper and lower bound of
the convergence rate in energy and integral norms in arbitrary dimensions.

When used for second order problems, the Adini element scheme is a con-
forming one, and the error analysis is straightforward by the fundamental Céa
lemma and standard arguments. When used for fourth order problems, however,
the Adini element is a nonconforming one, and the convergence analysis is more
subtle. In Wang, Shi and Xu [14] where they generalised the Adini element from
2D to arbitrary dimension, the O(h) convergence rate of Adini element in any
dimension has been proved for fourth order problem. Meanwhile, a higher accu-
racy of the scheme is still expected and numerically observed. In 2D, it has been
proved by Lascaux and Lesaint [§] that the finite element solution converges to
the exact solution with O(h?) order in the energy norm, provided the rectan-
gular cells in the grid are all the same. Then in 2004, Lin and Luo [TI0] showed
the O(h?) convergence of the Adini element without assuming the congruence
of the cells of the grid. Later in 2006, Mao and Chen [I1] showed further the
O(h?) convergence rate for anisotropic grids. So far to our knowledge, the sharp
analysis of the convergence rate of Adini element for fourth order problems in
higher dimensions is still absent.

In this paper, we study the convergence rate of the Adini element scheme
for fourth order problems in higher dimensions. Technically, without making
a crucial use of the nodal interpolation which was done by ([8], [10], [11]) and
which will bring extra regularity assumption on the exact solution in higher
dimension, our analysis relies on the structure of Adini element space only. We
figure out the intrinsic symmetry property of the Adini element space, and show
the O(h?) energy norm convergence rate in a unified way with respect to the
dimensions provided the exact solution belongs to H*.

There have been works that study high accuracy nonconforming finite ele-
ment methods for fourth order problems. Several O(h?) nonconforming finite
elements have been constructed in, e.g., [4 12 [I5]. In contrast to these ele-
ments, the Adini element space does not possess such moment continuities; the
average of the normal derivatives of Adini element function is not continuous
across the internal faces. This hints us to make use of a different way by using
the symmetric property inside one cell, and moreover, this unusual property
makes it hardly possible to make use of the dual argument to obtain higher
order convergence rate in H! or L? norm. Indeed, in the paper, we further
show that the convergence rate in L? norm can not be non-trivially higher than
O(h?) order.

The analysis of the lower bound of the convergence rate of the Adini element
scheme in L? norm is a generalization of Hu-Shi’s work [7], which solved an open



problem whether the convergent order in L? norm can always be higher than
that in the energy norm. Technically, a decomposition of the residual (f, u—wup)
to a leading term and other higher order terms works crucially, and we estimate
the lower bound of the leading term sufficiently. Again, a sharp analysis of the
interpolation operator will play a key role. Therefore, by the discrete Poincaré
inequality, we obtain that the convergence rate of the Adini element scheme for
fourth order problem in energy norm, H'! norm and the integral norm are all of
O(h?) order, and these estimates are all sharp.

The remaining of the paper is organized as follows. In Section 2] we present
some preliminaries of the Adini element. In Section Bl we present the model
problem and the Adini finite element discretization. In Section B2l we show the
O(h?) order convergence rate in energy norm in any dimension. In Section B3]
we further show the O(h?) order convergence in L? norm in any dimension. In
Section[d] some numerical examples are presented to demonstrate our theoretical
results. Finally, in Section Bl some conclusions are given.

2 The preliminaries: the Adini element

2.1 The Adini element

Let K C R? be a d-rectangle, v, = (21,c,%2,¢, + ,%ac)” € R? be the
barycentre of K, and h; the half length of K in x; direction, ¢ = 1,2,...,d.
Then the d-rectangle can be denoted by

K = {,@: ($1,$2,"- ,l‘d)Tlmi :-Ti,c‘f'fihi; -1 Sfl <1,1<:< d}
Particularly, the vertices a;, 1 < i < 2%, of K are denoted by
a; = (v1,c+&i1h1, Toc+Einha, -+ Tac+Eiaha)”, 6] =1, 1< 5 <d, 1 <i<2%

Moreover, denote by Fy ; and Fy ; the two (d — 1)-dimensional faces of K
without the edges parallel to the x; axe; see Figure 1.

The d-dimensional Adini element is defined by the triple (K, Pa(K), D),
where

e the geometric shape K is a d-rectangle;
e the shape function space is
Pa(K) = Q1(K) +span{zfq |1 < i < d, g € Qu(K)}, (1)

here and throughout this paper, Q;(K) denotes the space of all polynomi-
als which are of degree< [ with respect to each variable z;, over K;

e the nodal parameters are, for any v € C(K),

D(v) := <v(ai), Vv(ai)), 2)

where a; are vertices of K,i=1,...,2%
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Figure 1: degrees of freedom for the Adini element

Let o denote the multiple-index with o = (aq,- -+ ,aq), a;(1 < i < d) are
d d

nonnegative integers, and |o| = Y o, ® = [[ z7*. The partial derivative
i=1 i=1

operator can be written as

Hled

= a1 Qq *
a‘rl ...xd

aa

Let e; (1 < i < d) be the d—dimensional unit multi-index with its i—th entry
equal to 1.

2.2 Structural properties of the Adini element

Given Q a d-dimensional domain, 7, is a triangulation on Q, and K €
Tr. Let 11k be piecewise bilinear interpolation operator on K, namely I} v €
Q1(K) and (II};v)(P) = v(P), for any vertex P of K, and v € C(K). Define
on C(K) the operator RL := Id — 11k, with Id being the identity operator.
Define Iy xw = ﬁ J5 wdz, for any w € L*(K). The global version Il of the
interpolation operator Il i is defined as

|k =y k, for any K € Tp. (3)
Lemma 2.1. It holds for wy, € Po(K) that

1 awh
K axi

1 aU}h
=Rk
P O

J1<i<d. (4)

1"
Fri

Proof. Given wy, € P4(K), a direct calculation leads to that

awh
(’)xi

where Qf(K) := span{(z — #c)*}q;|<1,a,=0- Further,

€ Q1(K) +span{(z; —x;.)* 7, € Q(K),1<j<d}, (5)

8wh
axi

Ri () € Sic, Sic = span{((w; —wj.c)* —hj) 3,1 < j < d,G € Qi(K)}. (6)



Noting that (x; — z;.)?, 1 < j < d, evaluate the same on Fi; and Fg ,, we
obtain (). This finishes the proof.
O

For ease of expression, we define the following sets

M Z{(Ch,--- aad)|ai:1’ 2<a; <3, ap <1, k#iaj}a
M ; ={(ar,az,03)| e =1, 2<; <3, ap, <1, 2< k #j < 3}

By means of (@), on Fy;, F; of the element K, we can get that
6wh
(RK o ) (T1, " Tim1, i £ hiy Tig1, oo Ta)

Z Z HO K (8 wh) (7>

1<j<d a€M; ;

J#i
with
; 1 aj aj— a—e;—aje;
Bf(G,0) = — [(aj = 2;0)™ = Wj(w; — 250" ] (@ = 2) 77V, (8)
"
0%wy, € span{l,x;}, if a; = 2, and 0%wy, is constant, if a; = 3. (9)

Noticing that 8., BX(j,«) = 0, if i # j, and Il x (0%wy,) are constant.

For example, in two-dimensional case,

Owy, 1 83wh
Ri—— s (@1, £ hi, x2) 25[(962 — m2.0)? — h3]T, K 5r a2 923
1 3 2 54wh
~ - c _h - c)la_ o 39
+ 6[(902 T2.c) (@2 — 22,0)] 9013
and in three-dimensional case
ow
Ri 97 h($1 e £ hi,x2,23)
T1
—Z >l =)™ = By — @)™ T (@ = ) T T o e (0 wn)

J=2a’eMy

Given K € Ty, we define the canonical interpolation operator Ik : C1(K) —
P4(K) by, for any v € CY(K),

(Ixw)(P) = v(P) and (VIIxv)(P) = Vo(P), (10)

for any vertex P of K. The interpolation operator IIx has the following error

estimates:
lv —Tgvlx < ChY Y olsk, 1=0,1,2,3,4, (11)

provided that v € H*(K), where s > 4 and s > £+1 such that H*(K) C C1(K),
see Remark 341



Lemma 2.2. For any u € Py(K) and v € Pao(K), it holds that

) h3 o'u 0%
(V2 (u —gu), V?0) 2k Z Z 8x28x2 97 dz, (12)
i=1 1<]<d
J#
Proof. Tt follows from the definition of P4 (K) that
82
O 2 S Ql( )
d%v i (13)
_gv G Pl ). 6e 0 (K
9,0z, €{p-qlp € Pi(zi,xj), ¢ € QY (K)}

+span{z} - §, § € QY (K), 1 <k <d}, i # ],

where Py (z;, ;) := span{l, z;, z;}, Q' (K) := span{z® }|a, |<1,ai—a,;—0-
Since u € P4(K), we have, with & = =20,

h2h2 d
U7U1+4'Za4§4 ’LJZZ 225&]27 (14)

i=1 1<g<d Ly
7>

where u; € Pa(K).
The Taylor expansion and the definition of the operator Il yield

hi B2p2 d
u—Igu = Z hihg Z Z 1)(5]2. —1). (15)
-
Thus
82(’“ — HKU) h2 84 h2 a4u ‘ .
B R 4,64(125 )+§5$§x?(£?—1),1§z<ygd,
0%(u — Tgu) 0*u
8:ci8xj hzh] 81'1213 616]? <1<y < d
Since
/ (1267 —4)qrdr =0, qp € Q1(K), 1<k #i<d, (16)
K
and
/ (§J2 - 1)€id$ =0, / (E? - 1)§jd$ =0, / (E? — 1)§i§jdx =0,1<i#j<d,
. ) . (17)

a combination of (I3) and () and some elementary calculation yield

9% (u — T xu) 0%v 3 o'u 9%
———Z —— dz = de, 1< <d. 18

/K Oz? Ox? . / 8,7:20302 o2 * i (18)
By the same argument, it yields

0?(u —Mgu) 0%
de = 1
/K Gxiaxj Gxiaxj . 07 ( 9)

which completes the proof. [l



3 The capacity of Adini element for fourth order
problems

3.1 Model problem and finite element discretisation

Let Q € R? be a bounded domain with Lipschitz boundary. In this paper,
We consider the model fourth order elliptic problem:

{ A?u=f, inQ,

u:g—Z:O, on 0f2.

(20)

The variational formulation is, given f € H=%(Q), to find u € V := HZ(Q),
such that
aq(u,v) = (f,v), for any v € V. (21)

d
where agq(u,v) = Z / 0;judijv for u,v € HA(Q).
ij=1"9
Let 75, be a regular d-rectangle triangulation of the domain 2. Define the
Adini element space in a standard way by

Vi = {vel*Q): vlg € Pa(K), YK € Tj,, v and Vv is continuous at

all internal vertices},
and associated with the boundary condition,
Vo = {vn € Vi : vy and Vuy vanishes at all boundary vertices}.

Evidently, Vs, € H'(Q) and Vo C HJ(Q) ([13]). However, Vi, ¢ H?(), and
Vio ¢ HE(Q). Evidently, P3(K) C P4s(K) for any K € T,. By the standard
technique,
inf |v—vplin < ORI olsg, 1=0,1,2,3,4, (22)
vhE€Vho

for any v € H*(Q)). Herein and throughout this paper, C' denotes a generic
positive constant which is independent of the meshsize and may be different at
different places.

Associated with the model problem, the Adini finite element problem is to
find up € Vg, such that

an(un,vn) = (f,vn)L2(q), for any v, € Vi, (23)

where ap,(up,vp) = Z ax (up,vp).

KeTh
Define a semi-norm over Vi, by |unlp = Y jcr, [[Vunl|§ - By Poincare
inequality, | - |5 is a norm on Vjo, and it is equivalent to || - ||, while the latter

denotes the piecewise H2 norm.

3.2 Error analysis in energy norm

In this section, we present an upper bound of the energy norm of the error
of the finite element scheme ([23]). A main result of this paper is the theorem
below.



Theorem 3.1. Let u and up be the solutions of 20) and ([23), respectively.
Assume that u € H*(Q). Then

| — unl2,n < Ch?Julyo. (24)

Proof. By the second Strang Lemma, we have

E
lu—unln < O mf Iu — vl + sup M), (25)
VeV wn€Vio  |Whln
where
0%u Ow
En(u,wp) = an(u,wn) — (f,wn) KGZT / ?a—nhd (26)

The first term of (25) is the approximation error and the second one is the
consistency error.

We shall consider separately the faces orthogonal to the z; axes (1 < i < d),
namely we rewrite the consistency error to

d
En(u,wn) =Y Eq, (u,wh), (27)
i=1
with
0%u Owy,
EZ»L u,w = / nzwds
( h) K;_h oK (9712 al'
2
— Z / a_gR}(—awh Ny, ds
KeT;, V9K on g
- B
KeTy, K ;
L K a’wh
KeTy

where 74, is the unit outward normal parallel to the x; axe.



Let K € Ty, and denote g = gi;‘h(. It holds that, by (@),

I{*(9,R awh (/ / ) Rngh
FH ’
= (/ 7/ > Z Z HO K@ whds

1<j<d aEM; ;
J#i

— g Z Z BZ-K(j,a)HO,KGO‘whdx

ox;
K 1<J<daeM”

/5,731 Z Z BK (j, @) 0“wpdx

1<j<d a€M; ;
J#i

g _ o
+/Ka$i Z Z BE(j, )My i — Id)0%wpdx
1<j<d a€M;
i#i
=L + Lf,.

(29)

Integrating by parts yields

L71 8:& Z Z BE(j, 2)0%wp,dx

1<j<d aeM; ;
j#i

/ Z Z BE(j,a)0* % wy,da (30)

z; 1<j<d aeM; ;

J#i
0
()25 5 oo
K ; 1<j<d aEM;
Jj#i

Since u € H*(Q), wy, € HY(Q) and 9% ¢ wy, (a € M”) are tangential deriva-

tives of the faces that orthogonal to the axe z;, thus 24 and 0“ " “wy, (o € M; ;)

oz
are continuous across faces Fj; ;, Fy.,;, we obtain
, ,

S [ 2SS e

KeT; KeTn ? 1<j<d aEM;
" Jgfz B (31)
< ORI ST July 0% wnlo,c,
KeTh

where we have used the fact that max max BX(j,a) < Chlel=1,
VS

A further application of inverse estimate yields

IRPRETD ST
KeT KeTy,
< CR®|ulaglwnlan. (32)



Then, we estimate the second term of ZJ) L,

/ ) Bz'K(.jaO‘)(HO,K — Id)0%wpdx
i 1<]<d aeM”
J#i

/ (Id —TIE) ag S Y BE(, )Mok — Id)0*wpde

P 1<j<daeM;
J#i

+/ HO K E E Ho K — Id)aawhdx.
Ti 1<j<d a€EM;
J#i

According to (@), since

/ [(zjfzjﬁc)th?](HonyId)(cqucsz) dz =0, ¢1, co are constant coefficients,
K

and

/ [(xj —xje) — h?(zj —2j,¢)](Mo,x — Id)es do =0, c3 is a constant,
K

thus, we can get that

/ HO,K
K Xy

The interpolation error estimate and inverse estimate yield

/ (Id —TIo ) ag > Y BE(, )Mok — Id)0*wpda

1<]<d aeM; ;
J#i

< Chlgla. b =Y 0%wp 0. < CRI )y 1 |0%wh 0,5
S Ch2|u|41K|V2wh|01K.

Z Z o) (Ily, x — Id)d%wpdz = 0.

1<j<d a€M; ;
J#i

Then, we can get
Li{(Q S Ch2|u|41K|V2wh|01K.

A combination of [B2) and (36) leads to
ow
zw u ’LUh Z IK a 25RK a h) < Ch2|’u/|4,Q|’LUh|27h.
KeTy,

Similarly we obtain further,

Ep(u,wp) < Ch®|uls.olwna,n.

This, combined with the approximation error estimate, finishes the proof.

(35)

(38)

O

Remark 3.2. Compared with [§] and [12], we prove the O(h?) energy norm
convergence rate without assuming the uniformity of the meshes. Besides, we

only need the lowest reqularity assumption u € H*(S2).

10



3.3 Error analysis of the Adini element in L? norm

In this section, we present the lower bound estimate of the error in L? norm.
This is a generalisation of the result in [7] to arbitrary dimension. The main
result of this section is the theorem below.

Theorem 3.3. Let u and up, be solutions of problem (20) and (23), respectively.
Suppose that w € HZ(Q)H*(Q), s > 4 and s > % + 1. Then, provided

[ fllz2(0) # O,
lu = unl|L2(0) > BR?, (39)

where B =0/ f|[2(q)-

Remark 3.4. By the embedding theorem of the Sobolev space, we need higher
reqularity of the solution in higher dimensions in order to guarantee H*(K) C
CY(K). Furthermore, it ensures the continuity of interpolation operators.

Remark 3.5. For the rectangular domain €2, the condition || f||12(q) # 0 implies

2 . . . 2 . .
that | g2ge-|mi) # 0, 1 < i # j < d. In fact, if |50gem@) =0, 1 <i#j <
d, then u is of the form

d

w=>" > ez + Y g(w),

i=11<j<d i=1
for some function g(x;) with respect to x;. Then the boundary condition indi-
cates u = 0, which contradicts u # 0.

We postpone the proof of Theorem after several technical lemmas.
Define the global interpolation operator II;, to V;, by

M| =g for any K € Tp,. (40)
By means of Lemma 2.2] we can obtain the following crucial result.
Lemma 3.6. For u € HZ(Q)H*(Q), s >4 and s > £ +1, it holds that,
(Vi (u—pu), Villpu) o) > oh?, (41)

for some positive constant o, which is independent of the mesh size h provided
that || f||L2(q) # 0 and that the mesh size is small enough.

Proof. Given any element K, we follow [7] to define Pxv € P4(K) by
/ V! Prvde :/ Vivde, 1=0,1,2,3,4, (42)
K K

for any v € H*(Q), (s > 4 and s > % + 1). Note that the operator Px is
well-defined. The interpolation operator Px has the following error estimates:
|’U - PKU|j,K S Ch’47j|v|4,K; .] - 05 17 25 3745

43
|’U_PK’U|j,K SChl’Ulj-‘rl,Ka j :05132533 ( )

11



provided that v € H*(Q), (s > 4 and s > £ + 1). It follows from the definition
of Pk in (42)) that

V4PK’U = H07Kv4’l}. (44)
By the aid of Px, we have the following decomposition
(Vi(u—Tu), Villau) o) = (Vi(Pru— Tk Pru), Villgu) g2k
KeTh
+ Z (V%(Id - HK)(Id - PK)’U,, V%HKU)L2(K)
KeTh
= Ji1+ Jo. (45)

We first analyze the first term J; on the right-hand side of ({@3]). By means
of Lemma [22] the first term J; on the right-hand side of (#T) can be rewritten
as

SR ID D D e SLaL I
2 2 2
KeT i=1 1<j<d K axiazi du;
J#i
¢ h? oo ot %u |
PP L
Ox2x? 690
KeTy, i=11<5<d
J#i

(46)
d 2
h 64 Id— PK u GQHKu
SDIDID I s
KeTy, i=1 1<]<d Oz; 8z O;
J#i
d 2
h? 0*u 92(Id — M gu)
DI B
KeTy, i=11<j<d i
J#i
: ou _ Ou _ 83y _
Since 32> |p = 0, 57 Fyl, = 0, and 62z oz Fle, 0, 52000 Fy, T 0,
integrating by parts yields
. W 9t Pu 2 h?
SY Y 2 amara - - Y Y 2 G
KeTy, i=1 1<J<d KeT, i=1 1<]<d
J#i Jj#i

d h2» 53
- - Z Z Z EJHW;;]H;(K)

KeTy i=11<j<d

JFi
By the commuting property of (@),
0*(Id — Pr)u o*u
— = (Id-1IL ——s, 1 <1 #£ 5 <d.
Qa3 0x? ( O’K)[?xfax?’ siFis

Note that

011
ZH K“Hm < Cluls k.

12



This and the error estimate of ([@3) yield

d 2
hi &u |2
_ j 2 4112
=33 3 Fligm Il + 0N = Tox) Vhullta o lula s
KeT, i=11<j<d i
J#i
(47)
We turn to the second term .J; on the right-hand side of ([@3]). By the Poincare
inequality, and the commuting property of (@),

[l < Ch* > ||VA(Id = Pr)ullr2(s0)|uls.e
KeTh
< CR*||(Id — o) Viyul| 20y uls,0- (48)

Since the piecewise constant functions are dense in the space L?(12),
|(Id — o) V*ul|p2(q) — 0, when h — 0. (49)
Summation of {7), (@) and (@9]) completes the proof. O

Again, the lemma below can be found in [7].

Lemma 3.7. Let u and uyp be solutions of problem (20) and (Z3), respectively.
Then,

(—fou—un)r2) = an(u, Mpu —up) — (f, pu — un) 120
+ ap(u — Mpu, v — pu) + ap (v — Mpu, up, — Mpu)  (50)
+2(f, pu — U)LZ(Q) + 2ap (u — Mpu, Tpu).
Proof of Theorem It follows from (B8] that
ah(u, Mpu—wup)— (f, Hhu—uh)Lz(Q) < Ch2|u|47Q|Hhu—uh|h < Ch4|u|421,9. (51)
By the Cauchy-Schwarz inequality and the error estimate ([22]), it yields
ah(u —1Ilpu, u —Hhu) +2(f, IIhu —U)L2(Q) < Ch4(|u|47Q + | |f| |L2(Q))|U|4,Q, (52)
ap(u — Mpu, up, — Mpu) < C’h4|u|iQ. (53)
The error estimate of the last term of (B0)) by Lemma [B.0] gives
ah? < ap(u — Myu, Tyu). (54)
Hence, a combination of (&0)-(B4) leads to
(—fou—un)r2(0) > 0h°. (55)

for some positive constant §, which is independent of the mesh size h and the
mesh size is small enough.

Therefore,
(’LU7 u — uh>L2(Q)
||U7U,h||L2(Q) = sup e
0£weL2(Q) ||w||L2(Q)
(7fa u— uh)L2 Q
> ) > 0/ fllL2@)h°
| = fllz2(o)
This finishes the proof. [l

13



4 Numerical examples

In this section, we present some numerical results of the three-dimensional
Adini element by congruence partition of cubic meshes and non-congruence
partition of domain {2 to demonstrate our theoretical results. Herein, we give
ur(x,y,2) = sin®(rx)sin?(ry)sin?(rz) and uz(z,y,2) = 22(1 — z)%y*(1 —
y)22%(1 — 2)? as the exact solution of problem (20), respectively. One can see
the errors and the rate of convergence computed by uniform cubic meshes with
the meshsize h = % for some integer N in Figure 2. One can also see the errors
and the rate of convergence computed by non-congruence meshes in Figure 3
for logarithmic plot.

The errors of ul(x,y,z) The errors of uz(x,y,z)

T T -3 T T
o L2err o L2err
O Hzerr O  Hzerr

ol 4

0.5

4l
-05F il

log(errors)
log(errors)

1D

1
-25F

L L L L L L L L L L L L
0.4 0.6 0.8 12 1.4 16 0.4 0.6 0.8 1.2 1.4 16

1 1
log(N) log(N)

Figure 2: The errors in L? and H? norms for ui(wz,y,z) and uz(z,y,2) by
uniform cubic meshes

5 Concluding remarks

In this paper, we studied the accuracy of the Adini element as a discretiza-
tion scheme for fourth order problem in any dimension. We showed that the
convergence rate is of O(h?) order in energy norm in any dimension, and more-
over, we show that the convergence rate can not be non-trivially higher than
O(h?) order in integral norm in any dimension. By the Poincare inequality,
we arrive at the conclusion that the convergence rate of Adini element for dis-
cretising fourth order problem is O(h?) in L?, H! and the energy norm. This
presents a complete exploration of the capacity of the scheme.

The results provided in this paper are optimal in two-folded. On one hand,
the full convergence rate of the energy norm is established under the assumption
u € H*(Q), which is standard and of the lowest regularity. On the other hand,
combining the two results together illustrates that neither of these two can be
improved. The analysis of this paper has been sharp and economic enough.
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Figure 3: The errors in L? and H? norms for u(x,vy, 2) and usz(x,y, 2) by non-
congruence meshes

It is somehow surprising to observe the convergence rates in different norms

are of the same order. This is because the Adini element function is not moment
continuous across the edges, but it possesses internal symmetry on every cell
when the grid is of tensor type. This point of view will hint us on other elements.
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