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Abstract

This paper is devoted to the convergence analysis of the Adini element
scheme for the fourth order problem in any dimension. We showed that,
under the regularity assumption that the exact solution is in H

4, the
Adini element scheme is O(h2) order convergent in energy norm, and the
convergence rate in L

2 norm can not be nontrivially higher than O(h2)
order. Numerical verifications are presented.
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1 Introduction

This paper is devoted to the convergence analysis of the Adini element
scheme for the fourth order problem in any dimension. The Adini element, (c.f.
[1] for 2D, [14] for higher dimension) is among the earliest finite elements for
elliptic problems. It uses the rectangles (2D) and generalised rectangles (higher
dimensions) as geometry shapes, and the evaluation and the derivatives of first
order on the vertices as nodal parameters. The generation of stiffness matrix is
easy and friendly, and this element has become a popular one during the past
half century, and stimulated various works, (see [8], [11], [10], [14]). In this
present paper, we discuss the capacity of the Adini element scheme for fourth
order problems, and present a sharp analysis of the upper and lower bound of
the convergence rate in energy and integral norms in arbitrary dimensions.

When used for second order problems, the Adini element scheme is a con-
forming one, and the error analysis is straightforward by the fundamental Céa
lemma and standard arguments. When used for fourth order problems, however,
the Adini element is a nonconforming one, and the convergence analysis is more
subtle. In Wang, Shi and Xu [14] where they generalised the Adini element from
2D to arbitrary dimension, the O(h) convergence rate of Adini element in any
dimension has been proved for fourth order problem. Meanwhile, a higher accu-
racy of the scheme is still expected and numerically observed. In 2D, it has been
proved by Lascaux and Lesaint [8] that the finite element solution converges to
the exact solution with O(h2) order in the energy norm, provided the rectan-
gular cells in the grid are all the same. Then in 2004, Lin and Luo [10] showed
the O(h2) convergence of the Adini element without assuming the congruence
of the cells of the grid. Later in 2006, Mao and Chen [11] showed further the
O(h2) convergence rate for anisotropic grids. So far to our knowledge, the sharp
analysis of the convergence rate of Adini element for fourth order problems in
higher dimensions is still absent.

In this paper, we study the convergence rate of the Adini element scheme
for fourth order problems in higher dimensions. Technically, without making
a crucial use of the nodal interpolation which was done by ([8], [10], [11]) and
which will bring extra regularity assumption on the exact solution in higher
dimension, our analysis relies on the structure of Adini element space only. We
figure out the intrinsic symmetry property of the Adini element space, and show
the O(h2) energy norm convergence rate in a unified way with respect to the
dimensions provided the exact solution belongs to H4.

There have been works that study high accuracy nonconforming finite ele-
ment methods for fourth order problems. Several O(h2) nonconforming finite
elements have been constructed in, e.g., [4, 12, 15]. In contrast to these ele-
ments, the Adini element space does not possess such moment continuities; the
average of the normal derivatives of Adini element function is not continuous
across the internal faces. This hints us to make use of a different way by using
the symmetric property inside one cell, and moreover, this unusual property
makes it hardly possible to make use of the dual argument to obtain higher
order convergence rate in H1 or L2 norm. Indeed, in the paper, we further
show that the convergence rate in L2 norm can not be non-trivially higher than
O(h2) order.

The analysis of the lower bound of the convergence rate of the Adini element
scheme in L2 norm is a generalization of Hu-Shi’s work [7], which solved an open
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problem whether the convergent order in L2 norm can always be higher than
that in the energy norm. Technically, a decomposition of the residual (f, u−uh)
to a leading term and other higher order terms works crucially, and we estimate
the lower bound of the leading term sufficiently. Again, a sharp analysis of the
interpolation operator will play a key role. Therefore, by the discrete Poincaré
inequality, we obtain that the convergence rate of the Adini element scheme for
fourth order problem in energy norm, H1 norm and the integral norm are all of
O(h2) order, and these estimates are all sharp.

The remaining of the paper is organized as follows. In Section 2, we present
some preliminaries of the Adini element. In Section 3.1, we present the model
problem and the Adini finite element discretization. In Section 3.2, we show the
O(h2) order convergence rate in energy norm in any dimension. In Section 3.3,
we further show the O(h2) order convergence in L2 norm in any dimension. In
Section 4, some numerical examples are presented to demonstrate our theoretical
results. Finally, in Section 5, some conclusions are given.

2 The preliminaries: the Adini element

2.1 The Adini element

Let K ⊂ R
d be a d-rectangle, xc = (x1,c, x2,c, · · · , xd,c)

T ∈ R
d be the

barycentre of K, and hi the half length of K in xi direction, i = 1, 2, . . . , d.
Then the d-rectangle can be denoted by

K = {x = (x1, x2, · · · , xd)
T |xi = xi,c + ξihi, −1 ≤ ξi ≤ 1, 1 ≤ i ≤ d}.

Particularly, the vertices ai, 1 ≤ i ≤ 2d, of K are denoted by

ai = (x1,c+ξi1h1, x2,c+ξi2h2, · · · , xd,c+ξidhd)
T, |ξij | = 1, 1 ≤ j ≤ d, 1 ≤ i ≤ 2d.

Moreover, denote by F ′
K,i and F ′′

K,i the two (d − 1)-dimensional faces of K
without the edges parallel to the xi axe; see Figure 1.

The d-dimensional Adini element is defined by the triple (K,PA(K), D),
where

• the geometric shape K is a d-rectangle;

• the shape function space is

PA(K) := Q1(K) + span{x2
i q | 1 ≤ i ≤ d, q ∈ Q1(K)}, (1)

here and throughout this paper, Ql(K) denotes the space of all polynomi-
als which are of degree≤ l with respect to each variable xi, over K;

• the nodal parameters are, for any v ∈ C1(K),

D(v) :=

(
v(ai), ∇v(ai)

)
, (2)

where ai are vertices of K, i = 1, . . . , 2d.
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Figure 1: degrees of freedom for the Adini element

Let α denote the multiple-index with α = (α1, · · · , αd), αi(1 ≤ i ≤ d) are

nonnegative integers, and |α| =
d∑

i=1

αi, x
α =

d∏
i=1

xαi

i . The partial derivative

operator can be written as

∂α =
∂|α|

∂xα1

1 · · ·xαd

d

.

Let ei (1 ≤ i ≤ d) be the d−dimensional unit multi-index with its i−th entry
equal to 1.

2.2 Structural properties of the Adini element

Given Ω a d-dimensional domain, Th is a triangulation on Ω, and K ∈
Th. Let Π1

K be piecewise bilinear interpolation operator on K, namely Π1
Kv ∈

Q1(K) and (Π1
Kv)(P ) = v(P ), for any vertex P of K, and v ∈ C(K). Define

on C(K) the operator R1
K := Id − Π1

K , with Id being the identity operator.
Define Π0,Kw = 1

|K|

∫
K
wdx, for any w ∈ L2(K). The global version Π0 of the

interpolation operator Π0,K is defined as

Π0|K = Π0,K , for any K ∈ Th. (3)

Lemma 2.1. It holds for wh ∈ PA(K) that

R1
K

∂wh

∂xi

∣∣∣∣
F ′

K,i

= R1
K

∂wh

∂xi

∣∣∣∣
F ′′

K,i

, 1 ≤ i ≤ d. (4)

Proof. Given wh ∈ PA(K), a direct calculation leads to that

∂wh

∂xi

∈ Q1(K) + span
{
(xj − xj,c)

2 · q̂, q̂ ∈ Qi
1(K), 1 ≤ j ≤ d

}
, (5)

where Qi
1(K) := span{(x− xc)

α}|aj|≤1,αi=0. Further,

R1
K

(∂wh

∂xi

)
∈ Si

K , Si
K = span{((xj−xj,c)

2−h2
j) · q̂, 1 ≤ j ≤ d, q̂ ∈ Qi

1(K)}. (6)
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Noting that (xj − xj,c)
2, 1 ≤ j ≤ d, evaluate the same on F ′

K,i and F ′′
K,i, we

obtain (4). This finishes the proof.

For ease of expression, we define the following sets

Mi,j = {(α1, · · · , αd)| αi = 1, 2 ≤ αj ≤ 3, αk ≤ 1, k 6= i, j},

M ′
1,j = {(α1, α2, α3)| α1 = 1, 2 ≤ αj ≤ 3, αk ≤ 1, 2 ≤ k 6= j ≤ 3}.

By means of (6), on F ′
K,i, F

′′
K,i of the element K, we can get that

(
R1

K

∂wh

∂xi

)
(x1, · · · , xi−1, xi,c ± hi, xi+1, · · · , xd)

=
∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)Π0,K(∂αwh),

(7)

with

BK
i (j, α) =

1

αj !

[
(xj − xj,c)

αj − h2
j(xj − xj,c)

αj−2
]
(x− xc)

α−ei−αjej , (8)

∂αwh ∈ span{1, xj}, if αj = 2, and ∂αwh is constant, if αj = 3. (9)

Noticing that ∂xi
BK

i (j, α) = 0, if i 6= j, and Π0,K(∂αwh) are constant.

For example, in two-dimensional case,

R1
K

∂wh

∂x1
(x1,c ± h1, x2) =

1

2
[(x2 − x2,c)

2 − h2
2]Π0,K

∂3wh

∂x1∂x2
2

+
1

6
[(x2 − x2,c)

3 − h2
2(x2 − x2,c)]

∂4wh

∂x1∂x3
2

,

and in three-dimensional case

R1
K

∂wh

∂x1
(x1,c ± h1, x2, x3)

=

3∑

j=2

∑

α′∈M ′

1,j

1

αj !
[(xj − xj,c)

αj − h2
j(xj − xj,c)

αj−2](x− xc)
α−e1−αjejΠ0,K(∂α′

wh)

Given K ∈ Th, we define the canonical interpolation operator ΠK : C1(K) →
PA(K) by, for any v ∈ C1(K),

(ΠKv)(P ) = v(P ) and (∇ΠKv)(P ) = ∇v(P ), (10)

for any vertex P of K. The interpolation operator ΠK has the following error
estimates:

|v −ΠKv|l,K ≤ Ch4−l|v|4,K , l = 0, 1, 2, 3, 4, (11)

provided that v ∈ Hs(K), where s ≥ 4 and s > d
2+1 such that Hs(K) ⊂ C1(K),

see Remark 3.4.
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Lemma 2.2. For any u ∈ P4(K) and v ∈ PA(K), it holds that

(∇2(u−ΠKu),∇2v)L2(K) = −

d∑

i=1

∑

1≤j≤d
j 6=i

h2
j

3

∫

K

∂4u

∂x2
i ∂x

2
j

∂2v

∂x2
i

dx, (12)

Proof. It follows from the definition of PA(K) that

∂2v

∂x2
i

∈ Q1(K),

∂2v

∂xi∂xj

∈ {p · q̃ | p ∈ P1(xi, xj), q̃ ∈ Qi,j
1 (K)}

+ span{x2
k · q̃, q̃ ∈ Qi,j

1 (K), 1 ≤ k ≤ d}, i 6= j,

(13)

where P1(xi, xj) := span{1, xi, xj}, Q
i,j
1 (K) := span{xα}|αk|≤1,αi=αj=0.

Since u ∈ P4(K), we have, with ξi =
xi−xi,c

hi
,

u = u1 +
h4
i

4!

d∑

i=1

∂4u

∂x4
i

ξ4i +
h2
ih

2
j

4

d∑

i=1

∑

1≤j≤d
j>i

∂4u

∂x2
ix

2
j

ξ2i ξ
2
j , (14)

where u1 ∈ PA(K).
The Taylor expansion and the definition of the operator ΠK yield

u−ΠKu =
h4
i

4!

d∑

i=1

∂4u

∂x4
i

(ξ2i − 1)2 +
h2
ih

2
j

4

d∑

i=1

∑

1≤j≤d
j>i

∂4u

∂x2
ix

2
j

(ξ2i − 1)(ξ2j − 1). (15)

Thus

∂2(u−ΠKu)

∂x2
i

=
h2
i

4!

∂4u

∂x4
i

(12ξ2i − 4) +
h2
j

2

∂4u

∂x2
i x

2
j

(ξ2j − 1), 1 ≤ i < j ≤ d,

∂2(u−ΠKu)

∂xi∂xj

= hihj

∂4u

∂x2
ix

2
j

ξiξj , 1 ≤ i < j ≤ d.

Since ∫

K

(12ξ2i − 4)qkdx = 0, qk ∈ Q1(K), 1 ≤ k 6= i ≤ d, (16)

and
∫

K

(ξ2j − 1)ξidx = 0,

∫

K

(ξ2j − 1)ξjdx = 0,

∫

K

(ξ2j − 1)ξiξjdx = 0, 1 ≤ i 6= j ≤ d,

(17)
a combination of (13) and (15) and some elementary calculation yield

∫

K

∂2(u−ΠKu)

∂x2
i

∂2v

∂x2
i

dx = −
h2
j

3

∫

K

∂4u

∂x2
i ∂x

2
j

∂2v

∂x2
i

dx, 1 ≤ i 6= j ≤ d. (18)

By the same argument, it yields
∫

K

∂2(u −ΠKu)

∂xi∂xj

∂2v

∂xi∂xj

dx = 0, (19)

which completes the proof.
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3 The capacity of Adini element for fourth order

problems

3.1 Model problem and finite element discretisation

Let Ω ⊂ R
d be a bounded domain with Lipschitz boundary. In this paper,

We consider the model fourth order elliptic problem:
{

∆2u = f, in Ω,
u = ∂u

∂n
= 0, on ∂Ω.

(20)

The variational formulation is, given f ∈ H−2(Ω), to find u ∈ V := H2
0 (Ω),

such that
aΩ(u, v) = (f, v), for any v ∈ V. (21)

where aΩ(u, v) :=

d∑

i,j=1

∫

Ω

∂iju∂ijv for u, v ∈ H2(Ω).

Let Th be a regular d-rectangle triangulation of the domain Ω. Define the
Adini element space in a standard way by

Vh := {v ∈ L2(Ω) : v|K ∈ PA(K), ∀K ∈ Th, v and ∇v is continuous at

all internal vertices},

and associated with the boundary condition,

Vh0 := {vh ∈ Vh : vh and ∇vh vanishes at all boundary vertices}.

Evidently, Vh ⊂ H1(Ω) and Vh0 ⊂ H1
0 (Ω) ([13]). However, Vh 6⊂ H2(Ω), and

Vh0 6⊂ H2
0 (Ω). Evidently, P3(K) ⊂ PA(K) for any K ∈ Th. By the standard

technique,
inf

vh∈Vh0

|v − vh|l,h ≤ Ch4−l|v|4,Ω, l = 0, 1, 2, 3, 4, (22)

for any v ∈ H4(Ω). Herein and throughout this paper, C denotes a generic
positive constant which is independent of the meshsize and may be different at
different places.

Associated with the model problem, the Adini finite element problem is to
find uh ∈ Vh0, such that

ah(uh, vh) = (f, vh)L2(Ω), for any vh ∈ Vh0, (23)

where ah(uh, vh) :=
∑

K∈Th

aK(uh, vh).

Define a semi-norm over Vh by |uh|
2
h :=

∑
K∈Th

‖∇2uh‖
2
0,K . By Poincare

inequality, | · |h is a norm on Vh0, and it is equivalent to ‖ · ‖h, while the latter
denotes the piecewise H2 norm.

3.2 Error analysis in energy norm

In this section, we present an upper bound of the energy norm of the error
of the finite element scheme (23). A main result of this paper is the theorem
below.
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Theorem 3.1. Let u and uh be the solutions of (20) and (23), respectively.
Assume that u ∈ H4(Ω). Then

|u− uh|2,h ≤ Ch2|u|4,Ω. (24)

Proof. By the second Strang Lemma, we have

|u− uh|h ≤ C
(

inf
v∈Vh0

|u− v|h + sup
wh∈Vh0

|Eh(u,wh)|

|wh|h

)
, (25)

where

Eh(u,wh) := ah(u,wh)− (f, wh) =
∑

K∈Th

∫

∂K

∂2u

∂n2

∂wh

∂n
ds. (26)

The first term of (25) is the approximation error and the second one is the
consistency error.

We shall consider separately the faces orthogonal to the xi axes (1 ≤ i ≤ d),
namely we rewrite the consistency error to

Eh(u,wh) =

d∑

i=1

Exi
(u,wh), (27)

with

Exi
(u,wh) =

∑

K∈Th

∫

∂K

∂2u

∂n2

∂wh

∂xi

nxi
ds

=
∑

K∈Th

∫

∂K

∂2u

∂n2
R1

K

∂wh

∂xi

nxi
ds

=
∑

K∈Th

(

∫

F ′′

K,i

−

∫

F ′

K,i

)
∂2u

∂x2
i

R1
K

∂wh

∂xi

ds

:=
∑

K∈Th

IKi (
∂2u

∂x2
i

,R1
K

∂wh

∂xi

), (28)

where nxi
is the unit outward normal parallel to the xi axe.
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Let K ∈ Th and denote g = ∂2u
∂x2

i

|K . It holds that, by (7),

IKi (g,R1
K

∂wh

∂xi

) =

(∫

F ′′

K,i

−

∫

F ′

K,i

)
gR1

K

∂wh

∂xi

ds

=

(∫

F ′′

K,i

−

∫

F ′

K,i

)
g

∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)Π0,K∂αwhds

=

∫

K

∂g

∂xi

∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)Π0,K∂αwhdx

=

∫

K

∂g

∂xi

∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)∂αwhdx

+

∫

K

∂g

∂xi

∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)(Π0,K − Id)∂αwhdx

:= LK
i,1 + LK

i,2.

(29)

Integrating by parts yields

LK
i,1 =

∫

K

∂g

∂xi

∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)∂αwhdx

=−

∫

K

∂2g

∂x2
i

∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)∂α−eiwhdx

+

(∫

F ′′

K,i

−

∫

F ′

K,i

)
∂g

∂xi

∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)∂α−eiwhds.

(30)

Since u ∈ H4(Ω), wh ∈ H1(Ω) and ∂α−eiwh, (α ∈ Mi,j) are tangential deriva-

tives of the faces that orthogonal to the axe xi, thus
∂3u
∂x3

i

and ∂α−eiwh, (α ∈ Mi,j)

are continuous across faces F ′
K,i, F

′′
K,i, we obtain

∑

K∈Th

LK
i,1 = −

∑

K∈Th

∫

K

∂4u

∂x4
i

∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)∂α−eiwhdx

≤ Ch|α|−1
∑

K∈Th

|u|4,K |∂α−eiwh|0,K ,

(31)

where we have used the fact that max
j

max
x∈K

BK
i (j, α) ≤ Ch|α|−1.

A further application of inverse estimate yields

∑

K∈Th

LK
i,1 ≤ Ch2

∑

K∈Th

|u|4,K |∇2wh|0,K

≤ Ch2|u|4,Ω|wh|2,h. (32)
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Then, we estimate the second term of (29) LK
i,2.

LK
i,2 =

∫

K

∂g

∂xi

∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)(Π0,K − Id)∂αwhdx

=

∫

K

(Id−ΠK
0 )

∂g

∂xi

∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)(Π0,K − Id)∂αwhdx

+

∫

K

Π0,K(
∂g

∂xi

)
∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)(Π0,K − Id)∂αwhdx.

(33)

According to (9), since

∫

K

[(xj−xj,c)
2−h2

j ](Π0,K−Id)(c1+c2xj) dx = 0, c1, c2 are constant coefficients,

and
∫

K

[(xj − xj,c)
3 − h2

j (xj − xj,c)](Π0,K − Id)c3 dx = 0, c3 is a constant,

thus, we can get that
∫

K

Π0,K(
∂g

∂xi

)
∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)(Π0,K − Id)∂αwhdx = 0. (34)

The interpolation error estimate and inverse estimate yield
∫

K

(Id−Π0,K)
∂g

∂xi

∑

1≤j≤d
j 6=i

∑

α∈Mi,j

BK
i (j, α)(Π0,K − Id)∂αwhdx

≤ Ch|g|2,Kh|α|−1|∂αwh|0,K ≤ Ch|α||u|4,K |∂αwh|0,K

≤ Ch2|u|4,K |∇2wh|0,K .

(35)

Then, we can get
LK
i,2 ≤ Ch2|u|4,K |∇2wh|0,K . (36)

A combination of (32) and (36) leads to

Exi
(u,wh) =

∑

K∈Th

IKi (
∂2u

∂x2
i

,R1
K

∂wh

∂xi

) ≤ Ch2|u|4,Ω|wh|2,h. (37)

Similarly we obtain further,

Eh(u,wh) ≤ Ch2|u|4,Ω|wh|2,h. (38)

This, combined with the approximation error estimate, finishes the proof.

Remark 3.2. Compared with [8] and [12], we prove the O(h2) energy norm
convergence rate without assuming the uniformity of the meshes. Besides, we
only need the lowest regularity assumption u ∈ H4(Ω).
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3.3 Error analysis of the Adini element in L
2 norm

In this section, we present the lower bound estimate of the error in L2 norm.
This is a generalisation of the result in [7] to arbitrary dimension. The main
result of this section is the theorem below.

Theorem 3.3. Let u and uh be solutions of problem (20) and (23), respectively.
Suppose that u ∈ H2

0 (Ω)
⋂
Hs(Ω), s ≥ 4 and s > d

2 + 1. Then, provided
||f ||L2(Ω) 6= 0,

||u − uh||L2(Ω) ≥ βh2, (39)

where β = δ/||f ||L2(Ω).

Remark 3.4. By the embedding theorem of the Sobolev space, we need higher
regularity of the solution in higher dimensions in order to guarantee Hs(K) ⊂
C1(K). Furthermore, it ensures the continuity of interpolation operators.

Remark 3.5. For the rectangular domain Ω, the condition ||f ||L2(Ω) 6= 0 implies

that | ∂2u
∂xi∂xj

|H1(Ω) 6= 0, 1 ≤ i 6= j ≤ d. In fact, if | ∂2u
∂xi∂xj

|H1(Ω) = 0, 1 ≤ i 6= j ≤

d, then u is of the form

u =

d∑

i=1

∑

1≤j≤d
j 6=i

cijxixj +

d∑

i=1

g(xi),

for some function g(xi) with respect to xi. Then the boundary condition indi-
cates u ≡ 0, which contradicts u 6≡ 0.

We postpone the proof of Theorem 3.3 after several technical lemmas.
Define the global interpolation operator Πh to Vh by

Πh|K = ΠK for any K ∈ Th. (40)

By means of Lemma 2.2, we can obtain the following crucial result.

Lemma 3.6. For u ∈ H2
0 (Ω)

⋂
Hs(Ω), s ≥ 4 and s > d

2 + 1, it holds that,

(∇2
h(u −Πhu),∇

2
hΠhu)L2(Ω) ≥ αh2, (41)

for some positive constant α, which is independent of the mesh size h provided
that ||f ||L2(Ω) 6= 0 and that the mesh size is small enough.

Proof. Given any element K, we follow [7] to define PKv ∈ P4(K) by

∫

K

∇lPKv dx =

∫

K

∇lv dx, l = 0, 1, 2, 3, 4, (42)

for any v ∈ Hs(Ω), (s ≥ 4 and s > d
2 + 1). Note that the operator PK is

well-defined. The interpolation operator PK has the following error estimates:

|v − PKv|j,K ≤ Ch4−j |v|4,K , j = 0, 1, 2, 3, 4,

|v − PKv|j,K ≤ Ch|v|j+1,K , j = 0, 1, 2, 3,
(43)
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provided that v ∈ Hs(Ω), (s ≥ 4 and s > d
2 + 1). It follows from the definition

of PK in (42) that
∇4PKv = Π0,K∇4v. (44)

By the aid of PK , we have the following decomposition

(∇2
h(u−Πhu),∇

2
hΠhu)L2(Ω) =

∑

K∈Th

(∇2
h(PKu−ΠKPKu),∇2

hΠKu)L2(K)

+
∑

K∈Th

(∇2
h(Id−ΠK)(Id− PK)u,∇2

hΠKu)L2(K)

= J1 + J2. (45)

We first analyze the first term J1 on the right-hand side of (45). By means
of Lemma 2.2, the first term J1 on the right-hand side of (45) can be rewritten
as

J1 =−
∑

K∈Th

d∑

i=1

∑

1≤j≤d
j 6=i

h2
j

3

∫

K

∂4PKu

∂x2
i ∂x

2
j

∂2ΠKu

∂x2
i

dx

=−
∑

K∈Th

d∑

i=1

∑

1≤j≤d
j 6=i

h2
j

3

∫

K

∂4u

∂x2
ix

2
j

∂2u

∂x2
i

dx

+
∑

K∈Th

d∑

i=1

∑

1≤j≤d
j 6=i

h2
j

3

∫

K

∂4(Id− PK)u

∂x2
i ∂x

2
j

∂2ΠKu

∂x2
i

dx

+
∑

K∈Th

d∑

i=1

∑

1≤j≤d
j 6=i

h2
j

3

∫

K

∂4u

∂x2
ix

2
j

∂2(Id−ΠKu)

∂x2
i

dx.

(46)

Since ∂u
∂xj

∣∣
F ′

K,j

= 0, ∂u
∂xj

∣∣
F ′′

K,j

= 0, and ∂3u
∂2xi∂xj

∣∣
F ′

K,j

= 0, ∂3u
∂2xi∂xj

∣∣
F ′′

K,j

= 0,

integrating by parts yields

∑

K∈Th

d∑

i=1

∑

1≤j≤d
j 6=i

h2
j

3

∫

K

∂4u

∂x2
ix

2
j

∂2u

∂x2
i

dx = −
∑

K∈Th

d∑

i=1

∑

1≤j≤d
j 6=i

h2
j

3

∫

K

( ∂3u

∂x2
ixj

)2
dx

= −
∑

K∈Th

d∑

i=1

∑

1≤j≤d
j 6=i

h2
j

3

∣∣∣∣ ∂3u

∂x2
ixj

∣∣∣∣2
L2(K)

.

By the commuting property of (44),

∂4(Id− PK)u

∂x2
i ∂x

2
j

= (Id−Π0,K)
∂4u

∂x2
i ∂x

2
j

, 1 ≤ i 6= j ≤ d.

Note that
d∑

i=1

∣∣∣∣∂
2ΠKu

∂x2
i

∣∣∣∣
L2(K)

≤ C|u|3,K .
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This and the error estimate of (43) yield

J1 =
∑

K∈Th

d∑

i=1

∑

1≤j≤d
j 6=i

h2
j

3

∣∣∣∣ ∂3u

∂x2
i xj

∣∣∣∣2
L2(K)

+O(h2)||(Id−Π0,K)∇4
hu||

2
L2(K)|u|3,K .

(47)
We turn to the second term J2 on the right-hand side of (45). By the Poincare
inequality, and the commuting property of (44),

|J2| ≤ Ch2
∑

K∈Th

||∇4
h(Id− PK)u||L2(K)|u|3,Ω

≤ Ch2||(Id −Π0)∇
4
hu||L2(Ω)|u|3,Ω. (48)

Since the piecewise constant functions are dense in the space L2(Ω),

||(Id−Π0)∇
4u||L2(Ω) → 0, when h → 0. (49)

Summation of (47), (48) and (49) completes the proof.

Again, the lemma below can be found in [7].

Lemma 3.7. Let u and uh be solutions of problem (20) and (23), respectively.
Then,

(−f, u− uh)L2(Ω) = ah(u,Πhu− uh)− (f,Πhu− uh)L2(Ω)

+ ah(u−Πhu, u−Πhu) + ah(u −Πhu, uh −Πhu)

+ 2(f,Πhu− u)L2(Ω) + 2ah(u−Πhu,Πhu).

(50)

Proof of Theorem 3.3 It follows from (38) that

ah(u,Πhu−uh)−(f,Πhu−uh)L2(Ω) ≤ Ch2|u|4,Ω|Πhu−uh|h ≤ Ch4|u|24,Ω. (51)

By the Cauchy-Schwarz inequality and the error estimate (22), it yields

ah(u−Πhu, u−Πhu)+2(f,Πhu−u)L2(Ω) ≤ Ch4(|u|4,Ω+ ||f ||L2(Ω))|u|4,Ω, (52)

ah(u −Πhu, uh −Πhu) ≤ Ch4|u|24,Ω. (53)

The error estimate of the last term of (50) by Lemma 3.6 gives

αh2 ≤ ah(u−Πhu,Πhu). (54)

Hence, a combination of (50)-(54) leads to

(−f, u− uh)L2(Ω) ≥ δh2. (55)

for some positive constant δ, which is independent of the mesh size h and the
mesh size is small enough.

Therefore,

||u− uh||L2(Ω) = sup
06=w∈L2(Ω)

(w, u − uh)L2(Ω)

||w||L2(Ω)

≥
(−f, u− uh)L2(Ω)

|| − f ||L2(Ω)
≥ δ/||f ||L2(Ω)h

2.

This finishes the proof.
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4 Numerical examples

In this section, we present some numerical results of the three-dimensional
Adini element by congruence partition of cubic meshes and non-congruence
partition of domain Ω to demonstrate our theoretical results. Herein, we give
u1(x, y, z) = sin2(πx)sin2(πy)sin2(πz) and u2(x, y, z) = x2(1 − x)2y2(1 −
y)2z2(1 − z)2 as the exact solution of problem (20), respectively. One can see
the errors and the rate of convergence computed by uniform cubic meshes with
the meshsize h = 1

N
for some integer N in Figure 2. One can also see the errors

and the rate of convergence computed by non-congruence meshes in Figure 3
for logarithmic plot.
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Figure 2: The errors in L2 and H2 norms for u1(x, y, z) and u2(x, y, z) by
uniform cubic meshes

5 Concluding remarks

In this paper, we studied the accuracy of the Adini element as a discretiza-
tion scheme for fourth order problem in any dimension. We showed that the
convergence rate is of O(h2) order in energy norm in any dimension, and more-
over, we show that the convergence rate can not be non-trivially higher than
O(h2) order in integral norm in any dimension. By the Poincare inequality,
we arrive at the conclusion that the convergence rate of Adini element for dis-
cretising fourth order problem is O(h2) in L2, H1 and the energy norm. This
presents a complete exploration of the capacity of the scheme.

The results provided in this paper are optimal in two-folded. On one hand,
the full convergence rate of the energy norm is established under the assumption
u ∈ H4(Ω), which is standard and of the lowest regularity. On the other hand,
combining the two results together illustrates that neither of these two can be
improved. The analysis of this paper has been sharp and economic enough.
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Figure 3: The errors in L2 and H2 norms for u1(x, y, z) and u2(x, y, z) by non-
congruence meshes

It is somehow surprising to observe the convergence rates in different norms
are of the same order. This is because the Adini element function is not moment
continuous across the edges, but it possesses internal symmetry on every cell
when the grid is of tensor type. This point of view will hint us on other elements.
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