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Abstract. This work is motivated by the monitoring of conductive clogging deposits in steam
generator at the level of support plates. One would like to use monoaxial coils measurements to
obtain estimates on the clogging volume. We propose a 3D shape optimization technique based on
simplified parametrization of the geometry adapted to the measurement nature and resolution. The
direct problem is modeled by the eddy current approximation of time-harmonic Maxwell’s equations
in the low frequency regime. A potential formulation is adopted in order to easily handle the complex
topology of the industrial problem setting. We first characterize the shape derivatives of the deposit
impedance signal using an adjoint field technique. For the inversion procedure, the direct and
adjoint problems have to be solved for each coil vertical position which is excessively time and
memory consuming. To overcome this difficulty, we propose and discuss a steepest descent method
based on a fixed and invariant triangulation. Numerical experiments are presented to illustrate the
convergence and the efficiency of the method.
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1. Introduction. Non-destructive testing using eddy-current low frequency ex-
citation are widely practiced to detect magnetite deposits in steam generators (SG)
in nuclear power plants. These deposits, due to magnetite particles contained in the
cooling water, usually accumulate around the quatrefoil support plates (SP) and thus
clog the water traffic lane. Many methods and softwares based on signal processing has
been developed in order to detect deposits using standard bobbin coils and are widely
operational in the nuclear industries (see for instance the database of nondestructive
testing [10] and references therein). Estimates of the bulk amount of deposits enable
to supplement a chemical cleaning process, which in some cases may be ineffective
where it leaves significant deposits in the bottom area of the SP foils. The presence of
such deposits generates a reduction and re-distribution of the water in SG circulation
and can cause flow-induced vibration instability risks. This may harm the safety of
the nuclear power plant.

Fig. 1. Three dimensional mesh of the SG and the SP clogging : coils (pink), tube (blue), SP
(grey) and deposit (red).
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2 3D shape reconstruction from eddy-current measurements

In order to obtain better characterizations than those provided by model free
methods, we present and discuss a robust inversion algorithm (for non destructive
evaluation using eddy current signals) based on shape optimization techniques and
adapted parametrizations for the deposit shapes. An overview of techniques for non
destructive evaluations using eddy currents can be found in [7] and we also refer
to [23], [20] and [26] for further engineering considerations. For other model based
inversion methods related to eddy-currents we may refer, without being exhaustive,
to [8, 17, 16, 25, 6]. In the medical context, several inverse source problems related
to eddy-current models have been addressed: non-invasive applications for electroen-
cephalography, magnetoencephalography[3] (see also [1]) and magnetic induction to-
mography [12, 21].

Stated more precisely, the inverse shape problem we shall investigate aims at
retrieving the support of a conductive deposits using monostatic measurements of
coaxial coils and their computable shape derivatives. Our work can be seen as an
extension of [18] to a realistic 3D industrial configuration. Although the deposit
geometry can be an arbitrary three dimensional domain, the available (monostatic)
measurements can only give qualitative information on the width. Since the objective
is to detect the possibility of clogging at the support plate, we found it appropriate
to consider a deposit concentrated in only one of the opening regions at the support
plate (See Figs. 1). The geometrical parameters are then the deposit width at (at
most) one measurement position. In practice, it turned out that a relative robustness
with respect to noise can be achieved if one shape parameter correspond with two
vertical positions of the coils. In order to speed up the inversion procedure, we are led
to consider a fixed geometrical mesh (adapted to the chosen parametrization). This
allows us to obtain an inversion procedure which is not very sensitive to the number of
measurements. Moreover, in order to avoid troubles due to changes in the conductive
region topology, we adopted a vector potential formulation of the 3D eddy-current
model. A careful study of the shape derivative of the solution to this formulation is
conducted. For related shape derivatives associated with Maxwell’s equations we refer
to [9, 15]. We here treat the potential formulation of the eddy current problem. This
derivative allows us to rigorously define the adjoint state, needed to cheaply compute
the coils impedances shape derivatives.

The geometrical setting of the industrial configuration is depicted in Fig. 1. We
denote by Ω the computational domain, which will be a sufficiently large simply
connected cylinder. It contains a conductor domain ΩC composed of the tube, the
support plate and eventually a deposit on the exterior part of the tube: ΩC = Ωt ∪
Ωd∪Ωp, where t stands for the tube, d for the deposit and p for the SP. The insulator
domain Ω \ ΩC is split into two parts: Ωs that indicates the region inside the tube
where the coil (thus the source J) is located and Ωv that denotes the insulator outer
region (where the deposit can be formed). For our purpose we introduce the surface
Γ = ∂Ωd ∩ ∂Ωv that denotes the interface between the deposit and the insulator.

Let us now briefly describe the 3D eddy-current model, which derives from the
full Maxwell’s equation in the time harmonic low frequency case and the adopted
formulation of this problem. Given the bounded domain Ω ⊂ R3, we recall the time-
harmonic Maxwell equations:

curl H + (iωε− σ)E = J in Ω,
curl E− iωµH = 0 in Ω,

and on the boundary ∂Ω we impose a magnetic boundary condition H×n = 0, where
n stands for the outward normal to the boundary ∂Ω. Here H and E denotes the
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magnetic and electric fields, respectively. J is the applied current density, ε is the
electric permittivity, µ is the magnetic permeability and σ is the electric conductivity.
In our case, the applied current density has support strictly included in the insulator
Ωt(interior of the tube). By neglecting the displacement current term, we formally
obtain the eddy-current model, which reads:

(1.1)
curl H = σE + J in Ω,

µH =
1

iω
curl E in Ω,

We refer to the monograph [2] for an extensive overview of eddy-current models and
formulations. In this paper we adopt a potential formulation in which we look for the
magnetic vector potential A and electric scalar potential V (only defined on ΩC) that
satisfies

(1.2)



µH = curl A in Ω,
curl H = σE + J in Ω,

E = iωA +∇V in ΩC ,
div A = 0 in Ω.

n× 1

µ
curl A = 0 on ∂Ω,

A · n = 0 on ∂Ω,

where the equation (1.2)4 stands for the Coulomb gauge condition. The boundary
condition (1.2)5 stands for the magnetic boundary condition and the boundary con-
dition (1.2)6 is equivalent to εE ·n = 0. The electric scalar potential V is determined
up to an additive constant in each connected-component of ΩC , which has a connected
boundary.

Notice that from Maxwell-Ampère equation (1.1)1 we get

(1.3) curl(µ−1 curl A)− σ(iωA +∇V ) = J in Ω.

In the following, the space H(curl; Ω) indicates the set of real or complex valued
functions v ∈ (L2(Ω))3 such that curl v ∈ (L2(Ω))3 and define

X (Ω) := {v ∈ H(curl,Ω),div v = 0 in Ω,v · n = 0 on ∂Ω}.

For a vector magnetic potential A ∈ X (Ω), an electric scalar potential V ∈ H1 (ΩC) /
C (the quotient by constants is relative to each connected component separately) and
a test function Ψ ∈ X (Ω) the weak formulation of (1.3) reads

(1.4)

∫
Ω

1

µ
curl A · curl Ψ dx−

∫
ΩC

σ
(
iωA ·Ψ +∇V ·Ψ

)
dx =

∫
Ω

J ·Ψ.

Moreover, for any test function Φ ∈ H1 (ΩC) /C the weak formulation of the necessary
condition −div (σE) = div J writes −

∫
ΩC
σE · ∇Φds =

∫
ΩC

J · ∇Φds. Therefore

using (1.2)3 we obtain:

(1.5) − σ
∫

ΩC

(iωA +∇V ) · ∇Φdx =

∫
ΩC

J · ∇Φdx.

Following [2, Chp-6] (and references therein), by introducing a constant µ∗, repre-
senting a suitable average of µ in Ω, the Coulomb gauge condition (1.2)3 can be
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incorporated in equation (1.4) in the following way
(1.6)∫

Ω

1

µ
curl A·curl Ψ dx+

1

µ∗

∫
Ω

div Adiv Ψ dx−
∫

ΩC

σ
(
iωA ·Ψ +∇V ·Ψ

)
dx =

∫
Ω

J·Ψ.

and the variational space X (Ω) would then be replaced by H(Ω) := H(curl,Ω) ∩
H0(div ,Ω) or equivalently by H1(Ω)3 since the domain Ω is convex and sufficiently
regular. Indeed, div A = 0 is verified in the weak sense. Combining equations (1.6)
with (1.5) we can obtain a symmetric variational formulation as follows

S(A, V ; Ψ,Φ) =

∫
Ω

J ·Ψ dx− 1

iω

∫
ΩC

J · ∇Φ dx ∀ (Ψ,Φ) ∈ Q,(1.7)

where the sesquilinear form S is defined by:

(1.8)
S(A, V ; Ψ,Φ) :=

∫
Ω

(
1

µ
curl A · curl Ψ +

1

µ∗
div Adiv Ψ

)
dx

+
1

iω

∫
ΩC

σ(iωA +∇V ) · (iωΨ +∇Φ) dx.

The coercivity of S on H1(Ω)3×H1 (ΩC) /C (see for instance [2, Chp-6]) ensures the
well-posedness of the problem.

This paper is organized as follows: after this introduction, we state in Section 2
the nonlinear shape optimization problem by the introduction of the misfit function,
which depends on the shape of the defect and in particular its eddy-current signal
response. We derive, in Section 3, the adjoint problem which is based on the shape
derivative of the misfit function. At the end of this Section we explicitly formulate
the shape gradient via the adjoint problem. In Section 4, we present and explain the
algorithm of steepest descent based on the use of fixed predefined grid. With Section 5,
we conclude the paper with numerical experiments that illustrate the robustness of
the method. Some technical materials related to shape derivative are reported in the
appendix for the readers’ convenience.

We conclude this section with the introduction of some useful notations. We
denote by [·] the jump across the interface Γ: [F ] = limt↘0 F (x+ tn)− limt↘0 F (x−
tn) ∀x ∈ Γ, we recall here that n denote the normal to Γ pointing outside Ωd.
For any vector A and differentiable scalar V , we respectively denote the tangential
component and the tangential gradient on some boundary or interface having a normal
n by Aτ := A−(A ·n)n and ∇τV := ∇V −∂nV ·n. We finally shall use the notation
Q(Ω) := H(Ω)×H1 (ΩC) /C.

2. Statement of the inverse problem.

2.1. Impedance measurements. The deposit probing is an operation of scan
with two coils introduced inside the tube along its axis from a vertical position ζmin to
a vertical position ζmax. At each position ζ ∈ [ζmin, ζmax], we measure the impedance
signal Z (ζ). According to [7, (10a)], in the full Maxwell’s system, the impedance
measured in the coil k when the electromagnetic field is induced by the coil l writes

4Zkl =
1

|J |2
∫
∂Ωd

(E0
l × Hk − Ek × H0

l ) · n dS,where E0
l and H0

l are respectively

the electric field and the magnetic field in the deposit-free case with corresponding
permeability and conductivity distributions µ0, σ0, while Ek, Hk are those in the
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case with deposits. Using the divergence theorem, we obtain the following volume
representation of the impedances

4Zkl =
1

|J |2

∫
Ωd

div (E0
l ×Hk −Ek ×H0

l ) dx

=
1

|J |2

∫
Ωd

(curl E0
l ·Hk −E0

l · curl Hk − curl Ek ·H0
l + Ek · curl H0

l ) dx

=
1

iω|J |2

∫
Ωd

(
(

1

µ
− 1

µ0
) curl Ek · curl E0

l − iω(σ − σ0)Ek ·E0
l

)
dx.(2.1)

In the last equality we used the eddy-current model (1.1). Furthermore, using the
relation E = iωA +∇V we replace the electric field E by the vector potential A and
we thus obtain the following shape dependent impedance measurement formula∗

4Zkl(Ωd)

(2.2)

=
iω

|J |2

∫
Ωd

(
(

1

µ
− 1

µ0
) curl Ak · curl A0

l −
1

iω
(σ − σ0)(iωAk +∇Vk) · (iωA0

l +∇V 0
l )

)
dx.

2.2. A least squares formulation. Let us denote by Z\(Ω?d; ζ) the impedance
response signals of a probed deposit Ω?d that we would like to estimate. We shall
use the shape dependent form in the impedance signal response in order to convert
the signal anomaly to a shape perturbation. This inverse problem will be solved by
minimizing a least square misfit function representing the error between computed
and observed signals integrated over the coil positions. This misfit function is defined
as follows:

f(Ωd) =

∫ ζmax

ζmin

|Z(Ωd; ζ)− Z\(Ω?d; ζ)|2 dζ,(2.3)

where Z is either ZFA or ZF3 according to the measurement mode used in practice:

ZFA(Ωd) :=
i

2
(4Z11(Ωd) + 4Z21(Ωd)), or ZF3(Ωd) :=

i

2
(4Z11(Ωd) − 4Z22(Ωd)).

Minimizing this functional using a steepest descent method requires a characterization
of its derivative with respect to perturbations of Ωd. This is the objective of next
section.

3. Adjoint problem and explicit formulation of the shape gradient. We
shall first study the shape derivative of the solution (A, V ) with respect to deforma-
tions of the deposit shape. This derivative will then allow us to obtain an expression of
the cost-functional derivative. A computable version of this derivative is then derived
through the introduction of an adjoint state.

3.1. A preliminary result on the material derivative. In this part, we
formally derive the expression of the material derivative of the solution to the eddy-
current model on a regular open set with constant physical coefficients µ, σ. This
result will be used in next sections to obtain the material derivative of the eddy-
current model with piecewise constant coefficients as well as the shape derivative

∗ Let’s recall the fact that σ0 is an ε-conductivity. Hence the electric field E0
l has a sense with

E0
l = iωA0

l + ∇V 0
l .
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of the impedance measurements. We begin by introducing the shape and material
derivatives [11, Section 6.3.3]. For any regular open set Ω ⊂ R3, we consider a
domain deformation as a perturbation of the identity Id + θ : Ω → Ωθ, x 7→ y,
where θ ∈ C := (C2(R3;R3))3 is a small perturbation of the domain. To make a
difference between the differential operators before and after the variable substitution,
we denote by curlx, div x, ∇x the curl, divergence and gradient operators on Ω with
x-coordinates, and respectively by curly, div y, ∇y those on Ωθ with y-coordinates.
For any (A(Ωθ), V (Ωθ)) defined on Ωθ, we set

Acurl(θ) := (I +∇θ)tA(Ωθ) ◦ (Id + θ),

Adiv (θ) := det(I +∇θ)(I +∇θ)−1A(Ωθ) ◦ (Id + θ),

V∇(θ) := V (Ωθ) ◦ (Id + θ).

These quantities conserve the corresponding differential operators in the following
sense (see for example [22, (3.75), Corollary 3.58, Lemma 3.59])

(3.1)

I +∇θ
det(I +∇θ)

curlx Acurl(θ) = (curly A(Ωθ)) ◦ (Id + θ),

1

det(I +∇θ)
div xAdiv (θ) = (div yA(Ωθ)) ◦ (Id + θ),

(I +∇θ)−t∇xV∇(θ) = (∇yV (Ωθ)) ◦ (Id + θ),

where ∇θ := (
∂θi
∂xj

)i,j is the Jacobian matrix.

In order to simplify the notation we use curl, div and ∇ for respectively curlx, div x
and ∇x.
Let (A(Ω), V (Ω)) be some shape-dependent functions that belong to some Banach
space W(Ω), and θ ∈ C a shape perturbation. The material derivatives (B(θ), U(θ))
of (A, V ), if they exist, are defined as

(3.2)

{
Acurl(θ) = Acurl(0) + B(θ) + o(θ) = A(Ω) + B(θ) + o(θ),

V∇(θ) = V∇(0) + U(θ) + o(θ) = V (Ω) + U(θ) + o(θ),

We also define the shape derivatives (A′(θ), V ′(θ)) of (A, V ) by

(3.3)

{
A′(θ) := B(θ)− (θ · ∇)A(Ω)− (∇θ)tA(Ω),

V ′(θ) := U(θ)− θ · ∇V (Ω).

The derivative Bdiv (θ) of A which conserve the divergence operator is given by

Bdiv (θ) := B(θ) + (div θI −∇θ − (∇θ)t)A(Ω).(3.4)

Using the chain rule, in any open set of Ω ∩ Ωθ we formally have

A(Ωθ) = A(Ω) + A′(θ) + o(θ),(3.5)

Adiv (θ) = A(Ω) + Bdiv (θ) + o(θ),(3.6)

V (Ωθ) = V (Ω) + V ′(θ) + o(θ).(3.7)

To ease further discussions, in particular the derivation of the variational formulation
(3.18) from (3.15), we give a preliminary result. Assume that the coefficients µ and



H. Haddar, Zixian Jiang and M.-K RIAHI 7

σ are constant on Ω. We set a shape-dependent form

A(Ω)
(
A, V ; Ψ,Φ

)
:=

∫
Ω

1

µ
curl A · curl Ψ dx+

1

iω

∫
Ω

σ(iωA +∇V ) · (iωΨ +∇Φ) dx.

(3.8)

Compared to the variational form S defined in (1.7), the above form A(Ω) get rid of
the penalization term

∫
Ω

(µ∗)−1div Adiv Ψ dx.

Lemma 3.1. Let Ω be a regular open set, µ > 0 and σ ≥ 0 constant on
Ω and Id + θ : Ω → Ωθ a given deformation. Let (A, V ) = (A(Ω), V (Ω)) and
(Ψ,Φ) = (Ψ(Ω),Φ(Ω)) be some shape-dependent functions with sufficient regularity.
We assume that the material derivatives (B(θ), U(θ)) of (A, V ), the shape derivatives
(A′(θ), V ′(θ)) of (A, V ) and the material derivatives (η(θ), χ(θ)) of (Ψ,Φ) defined
with (3.2) exist. If (A(Ω), V (Ω)) satisfy in the weak sense

(3.9)


curl(µ−1 curlA)− σ(iωA +∇V ) = 0 in Ω,

divA = 0 in Ω,

σ(iωA +∇V ) · n = 0 on ∂Ω,

then the shape derivative of A(Ω) that we denote by A′(Ω)(θ), i.e. A(Ωθ)
(
A, V ; Ψ,Φ

)
=

A(Ω)
(
A, V ; Ψ,Φ

)
+ A′(Ω)(θ)

(
A, V ; Ψ,Φ

)
+ o(θ), satisfies

(3.10)
A′(Ω)(θ)

(
A, V ; Ψ,Φ

)
= A(Ω)

(
A′(θ), V ′(θ); Ψ,Φ

)
+ A(Ω)

(
A, V ;η(θ), χ(θ)

)
+

∫
∂Ω

1

µ
(θ · curlA)(n · curl Ψ) ds

+
1

iω

∫
∂Ω

σ(n · θ)(iωAτ +∇τV ) · (iωΨτ +∇τΦ) ds.

The proof of this Lemma is given in the Appendix.

3.2. Material derivative of the solution to the eddy-current problem. In
this part, we show the existence of the material derivative of the solution to the eddy-
current problem with respect to a domain variation, and give its weak formulation with
a right hand side in the form of some boundary integrals. We rewrite the variational
formulation of the eddy-current model (1.7) on Ωθ. For any test functions (Ψ,Φ) ∈ Q
(3.11)

S(A(Ωθ), V (Ωθ); Ψ(Ωθ),Φ(Ωθ)) =

∫
Ωθ

(
1

µ
curly A · curly Ψ +

1

µ∗
div yAdiv yΨ

)
dy

+
1

iω

∫
ΩCθ

σ(iωA +∇V ) · (iωΨ +∇Φ) dy

=

∫
Ωθ

J ·Ψ dy − 1

iω

∫
ΩCθ

J · ∇Φ dy.

We choose the test functions as follows (so that their material derivatives vanish)
Ψ = (I +∇θ)tΨ(Ωθ) ◦ (Id + θ), Φ = Φ(Ωθ) ◦ (Id + θ). Since the supports of J and θ
are disjoint, i.e. supp(J) ∩ supp(θ) = ∅, the right-hand side of the weak formulation
(3.11) writes simply: ∫

Ω

J · Ψ dx− 1

iω

∫
ΩC

J · ∇Φdx.(3.12)
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We consider the following term which conserves the divergence operator

Ψdiv (θ) := det(I +∇θ)(I +∇θ)−1(I +∇θ)−tΨ

= det(I +∇θ)(I +∇θ)−1Ψ(Ωθ) ◦ (Id + θ),

div Ψdiv (θ) = det(I +∇θ)
(
div yΨ(Ωθ)

)
◦ (Id + θ).

By variable substitution y = (Id + θ)x, the left hand side of (3.11) can be written as
(3.13)∫

Ω

(
1

µ

(I +∇θ)t(I +∇θ)

|det(I +∇θ)|
curl Acurl · curlΨ +

1

µ∗

1

|det(I +∇θ)|
div Adiv div Ψdiv

)
dx

+
1

iω

∫
ΩC

σ|det(I +∇θ)|(I +∇θ)−1(I +∇θ)−t
(
iωAcurl +∇V∇

)
·
(
iωΨ +∇Φ

)
dx.

Theorem 3.2. Let θ ∈ C a domain perturbation. Let µ > 0, σ ≥ 0 belong
to L∞(Ω). We recall that J ∈ L2(Ω)3 has compact support in Ωs ⊂ Ωv and satisfies
divJ = 0 in Ωs and supp(J)∩supp(θ) = ∅. If (A(Ω), V (Ω)) = (Acurl(0), V∇(0)) is the
solution to the eddy-current problem (1.7) and (A(Ωθ), V (Ωθ)) =

(
(I+∇θ)−tAcurl(θ)◦

(Id + θ)−1, V∇(θ) ◦ (Id + θ)−1
)

the solution to the problem (3.11), then

lim
‖θ‖C→0

∥∥∥(Acurl(θ)−Acurl(0), V∇(θ)− V∇(0)
)∥∥∥
Q

= 0.

Proof. We recall that A(Ω) and A(Ωθ) satisfy the Coulomb gauge condition on
Ω and on Ωθ respectively: div A(Ω) = 0 on Ω, div yA(Ωθ) = 0 on Ωθ. From the weak
formulations (1.7), (3.11) the identities (3.12), (3.13) and the developments in (A.1)
we obtain
(3.14)

S
(
Acurl(θ)−Acurl(0), V∇(θ)− V∇(0);Ψ , Φ

)
=

∫
Ω

1

µ
(div θI −∇θ − (∇θ)t) curl Acurl(θ) · curlΨ dx

+
1

iω

∫
ΩC

σ(−div θI +∇θ + (∇θ)t)(iωAcurl(θ) +∇V∇(θ)) · (iωΨ +∇Φ) dx+ o(θ).

Obviously the right hand side of the above equality goes to zero as ‖θ‖C → 0. Since the
form S is coercive (see [2, Section 6.1.2]), this implies

∥∥(Acurl(θ)−Acurl(0), V∇(θ)−
V∇(0)

)∥∥
Q → 0 as ‖θ‖C → 0.

Theorem 3.3. Under the same assumptions as in Theorem 3.2, the material
derivative of the solution (A(Ω), V (Ω)) to the eddy-current problem (1.7) with respect
to a domain variation Id + θ exists. If it is denoted by (B(θ), U(θ)), then

lim
‖θ‖C→0

1

‖θ‖C

∥∥∥(Acurl(θ)−Acurl(0)−B(θ), V∇(θ)− V∇(0)− U(θ)
)∥∥∥
Q

= 0.

Proof. Let (B(θ), U(θ)) the unique solution in Q to the weak formulation

(3.15) S(B(θ), U(θ);Ψ , Φ) = L(Ψ , Φ) ∀(Ψ , Φ) ∈ Q,
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where
(3.16)

L(Ψ , Φ) :=
∫

Ω

1

µ
(div θI −∇θ − (∇θ)t) curl A · curlΨ dx

−
∫

Ωd

1

µ∗
div

(
(div θI −∇θ − (∇θ)t)A

)
· divΨ dx

+
1

iω

∫
ΩC

σ(−div θI +∇θ + (∇θ)t)(iωA +∇V ) · (iωΨ +∇Φ) dy.

Let Bdiv (θ) defined by (3.4). Then we can rewrite the weak formulation (3.15) as

(3.17)

∫
Ω

(
1

µ
curl B(θ) · curlΨ +

1

µ∗
div Bdiv (θ)divΨ

)
dx

+
1

iω

∫
ΩC
σ(iωB(θ) +∇U(θ)) · (iωΨ +∇Φ) dx

=∫
Ω

1

µ
(div θI −∇θ − (∇θ)t) curl A · curlΨ dx

+
1

iω

∫
ΩC
σ(−div θI +∇θ + (∇θ)t)(iωA +∇V ) · (iωΨ +∇Φ) dx.

From (3.6) and the Coulomb gauge conditions satisfied by A(Ω) and A(Ωθ) we deduce
that div Bdiv (θ) = o(θ). Considering the fact that (A, V ) = (Acurl(0), V∇(0)), (3.14)
and (3.17) yield

S
(
Acurl(θ)−Acurl(0)−B(θ), V∇(θ)− V∇(0)− U(θ);Ψ , Φ

)
+ o(θ)

=

∫
Ω

1

µ
(div θI −∇θ − (∇θ)t)

(
curl Acurl(θ)− curl Acurl(0)

)
· curlΨ dx

+
1

iω

∫
ΩC

σ(−div θI +∇θ + (∇θ)t)
(

iω(Acurl(θ)−Acurl(0)) + (∇V∇(θ)−∇V∇(0)
)
· (iωΨ +∇Φ) dx.

Theorem 3.2 implies that the right hand side of the above equality is of order o(θ) as
‖θ‖C → 0. The coercivity of S ensures the result as stated.

Proposition 3.4. Under the same assumptions as in Theorem 3.2, we assume
in addition that µ, σ are piecewise constant and constant in each subdomain (Ωs, Ωt,
Ωd, Ωv or Ωp). If the domain perturbation θ has support only on a vicinity of the
interface Γ between the deposit domain Ωd and the vacuum Ωv (Γ = Ωd ∩ ∂Ωv) and
vanishes in Ωs, then the material derivatives (B(θ), U(θ)) of (A, V ) satisfies

S(B(θ), U(θ);Ψ , Φ) = L(Ψ , Φ) ∀(Ψ , Φ) ∈ Q,(3.18)

where
(3.19)
L(Ψ , Φ) :=∫

Ωd

(
1

µ
curl((θ · ∇)A + (∇θ)tA) · curlΨ +

1

µ∗
div ((θ · ∇)A + (∇θ)tA)divΨ

)
dx

+
1

iω

∫
ΩC

σ

(
iω
(
(θ · ∇)A + (∇θ)tA

)
+∇(θ · ∇V )

)
· (iωΨ +∇Φ) dx

+

∫
Γ

[
1

µ

]
(θ · n)(n · curlA)(n · curlΨ) ds

+
1

iω

∫
Γ

(θ · n)[σ](iωAτ +∇τV ) · (iωΨτ +∇τΦ) ds.
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Proof. Let Λ := {s, t, d, v, p} a set of indices with its elements indicating the
different sub-domains as well as the corresponding permeabilities and conductivities.
We rewrite left-hand-side of the variational formulation (3.11) as

S(A(Ωθ), V (Ωθ); Ψ(Ωθ),Φ(Ωθ)) =
∑
i∈Λ

Ai(Ωiθ)(A, V ; Ψ,Φ)

+

∫
Ωθ

1

µ∗
div yA(Ωθ) · div yΨ(Ωθ) dy.

According to the definition of the test functions (Ψ(Ωθ),Φ(Ωθ)), their respective
material derivatives vanish. Since (A(Ωθ), V (Ωθ)) satisfy both (1.6), we can apply
Lemma 3.1 to the terms Ai(Ωiθ), which yields the shape derivative∑
i∈Λ

A′i(Ωi)(θ)(A, V ;Ψ , Φ)

=
∑
i∈Λ

Ai(Ωi)(B(θ), U(θ);Ψ , Φ) +
∑
i∈Λ

Ai(Ωi)(−(θ · ∇)A− (∇θ)tA,−(θ · ∇V );Ψ , Φ)

−
∫

Γ

[
1

µ
(θ · curl A)(n · curlΨ)

]
ds− 1

iω

∫
Γ

(θ · n)[σ](iωAτ +∇τV ) · (iωΨτ +∇τΦ) ds

= S(B(θ), U(θ);Ψ , Φ)−
∫

Ω

1

µ∗
div B(θ)divΨ dx

(3.20)

+
∑
i∈Λ

Ai(Ωi)(−(θ · ∇)A− (∇θ)tA,−(θ · ∇V );Ψ , Φ)

−
∫

Γ

[
1

µ

]
(θ · n)(n · curl A)(n · curlΨ) ds

− 1

iω

∫
Γ

(θ · n)[σ](iωAτ +∇τV ) · (iωΨτ +∇τΦ) ds.

In the last equality we have used the transmission conditions [n · curl A] = [n ×
(µ−1 curl A × n)] = 0 on Γ. Using the identities (A.1) and the Coulomb gauge
condition div A = 0, one verifies that on each subdomain Ωi (i ∈ Λ) of Ω

div ((div θI −∇θ − (∇θ)t)A) = −div ((θ · ∇)A + (∇θ)tA).(3.21)

From the derivation of L(Ψ ,Φ) (3.16) and the equality (3.21), one easily deduces that

the shape derivative of the penalization term
∫

Ωθ

1

µ∗
div yA(Ωθ) · div yΨ(Ωθ) dy is

∫
Ω

1

µ∗
div B(θ)divΨ dx+

∫
Ωd

1

µ∗
div

(
(div θI −∇θ − (∇θ)t)A

)
divΨ dx

=

∫
Ω

1

µ∗
div B(θ)divΨ dx−

∫
Ωd

1

µ∗
div ((θ · ∇)A + (∇θ)tA)divΨ dx.(3.22)

We easily get from (3.20) and (3.22) the variational formulation (3.18) with L(Ψ , Φ)
given by (3.19).
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3.3. Expression of the impedance shape derivative using the adjoint
state. Now we shall give a new expression of the impedance measurements using
the above results and the adjoint state. We recall the expression of the impedance
measurements (2.2)

4Zkl(Ωd) =
iω

|J |2

∫
Ωd

(
(

1

µ
− 1

µ0
) curl Ak · curl A0

l

− 1

iω

(
σ − σ0

)
(iωAk +∇Vk) · (iωA0

l +∇V 0
l )

)
dx.

Proposition 3.5. Let (Ak, Vk) be the solution to the variational formulation
(1.7) with coefficients µ, σ, and (A0

l , V
0
l ) the solution to (1.7) with coefficients µ0, σ0

which do not depend on the deposit domain Ωd. Let (A′k, V
′
k) be the shape derivatives

of (A, V ). Under the same assumptions as in Proposition 3.4, the shape derivative of
the impedance measurement 4Zkl(Ωd) is given by

4Z ′kl(Ωd)(θ)

(3.23)

=
iω

|J |2

∫
Ωd

(
(

1

µ
− 1

µ0
) curlA′k · curlA0

l −
1

iω
(σ − σ0)(iωA′k +∇V ′k) · (iωA0

l +∇V 0
l )

)
dx

+
iω

|J |2

∫
Γ

(θ · n)

([
1

µ

]
curlAk · curlA0

l −
1

iω
[σ](iωAkτ +∇τVk) · (iωA0

lτ +∇τV 0
l )

)
ds.

Proof. From (2.2) one has

|J |2

iω
4Zkl(Ωd) = A(Ωd)

(
Ak, Vk; A0

l ,−V 0
l

)
− A0(Ωd)

(
A0
l , V

0
l ; Ak,−Vk

)
,

where A and A0 are the forms defined in (3.8) with respectively the coefficients (µ, σ)
and (µ0, σ0). As (Ak, Vk) (resp. (A0, V 0

k )) satisfies (3.9) with constant coefficients
(µ, σ) (resp. (µ0, σ0)) in Ωd, Lemma 3.1 implies

|J |2

iω
4Z ′kl(Ωd)(θ)(3.24)

= A′(Ωd)(θ)
(
Ak, Vk; A0

l ,−V 0
l

)
− A′0(Ωd)(θ)

(
A0
l , V

0
l ; Ak,−Vk

)
= A(Ωd)

(
A′k(θ), V ′k(θ); A0

l ,−V 0
l

)
+ A(Ωd)

(
Ak, Vk; B0

l (θ),−U0
l (θ)

)
− A0(Ωd)

(
A0
l

′
(θ), V 0

l
′
(θ); Ak,−Vk

)
− A0(Ωd)

(
A0
l , V

0
l ; Bk(θ),−Vk(θ)

)
+

∫
Γ

(
1

µ
(θ · curl Ak)(n · curl A0

l )−
1

µ0
(θ · curl A0

l )(n · curl Ak)

)
ds

− 1

iω

∫
Γ

[σ](θ · n)(iωAkτ +∇τVk) · (iωA0
lτ +∇τV 0

l ) ds,(3.25)

where (Bk(θ), Uk(θ)), (B0
l (θ), U0

l (θ)) are the material derivatives of (Ak, Vk) and
(A0

l , V
0
l ) respectively. Now we will compute term by term (3.24). Remark at first

that

A0(Ωd)
(
A0
l

′
(θ), V 0

l
′
(θ); Ak,−Vk

)
= 0
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because the shape derivatives (A0
l

′
(θ), V 0

l
′
(θ)) vanish as the potentials (A0

l , V
0
l ) in

the deposit-free configuration do not depend on Ωd. This, together with (3.3), also
implies

B0
l (θ) = (θ · ∇)A0

l + (∇θ)tA0
l and U0

l (θ) = θ · ∇V 0
l .

Hence, by substituting (B0
l (θ), U0

l (θ)) with the above expressions, one gets

A(Ωd)
(
Ak, Vk; B0

l (θ),−U0
l (θ)

)
= A(Ωd)

(
Ak, Vk; (θ · ∇)A0

l + (∇θ)tA0
l ,−θ · ∇V 0

l

)
= S1 − S2

with

S1 =

∫
Ωd

1

µ
curl Ak · curl

(
(θ · ∇)A0

l + (∇θ)tA0
l

)
dx

S2 =
1

iω

∫
Ωd

σ
(
iωAk +∇Vk

)
·
(
iω((θ · ∇) + (∇θ)t)A0

l +∇(θ · ∇V 0
l )
)

dx.

We compute S1 and S2

S1 =

∫
Ωd

1

µ
curl Ak · curl(curl A0

l × θ) dx

=

∫
Ωd

curl(
1

µ
curl Ak) · (curl A0

l × θ) dx+

∫
Γ

1

µ
(curl Ak × n) · (curl A0

l × θ) ds

=

∫
Ωd

σ(iωAk +∇Vk) · (curl A0
l × θ) dx+

∫
Γ

1

µ
(curl Ak × n) · (curl A0

l × θ) ds,

and

S2 =
1

iω

∫
Ωd

σ
(
iωAk +∇Vk

)
·
(

iω
(
∇(θ ·A0

l ) + curl A0
l × θ

)
+∇(θ · ∇V 0

l )

)
dx

=
1

iω

∫
Ωd

σ
(
iωAk +∇Vk

)
·
(

(iω curl A0
l × θ) +∇

(
θ · (iωA0

l +∇Vk)
))

dx

=
1

iω

∫
Ωd

σ
(
iωAk +∇Vk

)
· (iω curl A0

l × θ) dx.

The last equality is obtained by integration by parts and by the fact that div (σ(iωAk+
∇Vk)) = 0 in Ωd and that σ(iωAk +∇Vk) · n = 0 on Γ. Therefore

A(Ωd)
(
Ak, Vk; B0

l (θ),−U0
l (θ)

)
= S1 − S2 =

∫
Γ

1

µ
(curl Ak × n) · (curl A0

l × θ) ds

=

∫
Γ

1

µ

(
(θ · n)(curl Ak · curl A0

l )− (θ · curl Ak)(n · curl A0
l )

)
ds.

(3.26)



H. Haddar, Zixian Jiang and M.-K RIAHI 13

Similarly, we have
(3.27)

A0(Ωd)
(
A0
l , V

0
l ; Bk(θ),−Uk(θ)

)
= A0(Ωd)

(
A0
l , V

0
l ; A′k(θ),−V ′k(θ)

)
+A0(Ωd)

(
A0
l , V

0
l ; (θ · ∇)Ak + (∇θ)tAk,−θ · ∇Vk

)
= A0(Ωd)

(
A′k(θ), V ′k(θ); A0

l ,−V 0
l

)
+

∫
Γ

1

µ0

(
(θ · n)(curl Ak · curl A0

l )− (n · curl Ak)(θ · curl A0
l )

)
ds.

From (3.24), (3.26) and (3.27), and considering the fact that the support of θ is on a
vicinity of Γ, we get (3.23).

On Γ, we have

curl Ak · curl A0
l = (n · curl Ak)(n · curl A0

l ) + (curl Ak × n) · (curl A0
l × n).

With the above equality and the relations (3.3), it follows that

4Z ′kl(Ωd)(θ)

=
iω

|J |2

∫
Ωd

{
(

1

µ
− 1

µ0
) curl Bk · curl A0

l −
1

iω
(σ − σ0)(iωBk +∇Uk) · (iωA0

l +∇V 0
l )

}
dx

− iω

|J |2

∫
Ωd

{
(

1

µ
− 1

µ0
) curl((θ · ∇)Ak + (∇θ)tAk) · curl A0

l

− 1

iω
(σ − σ0)

(
iω
(
(θ · ∇)Ak + (∇θ)tAk

)
+∇(θ · ∇Uk)

)
· (iωA0

l +∇V 0
l )

}
dx

+
iω

|J |2

∫
Γ

(θ · n)

{[
1

µ

]
(n · curl Ak)(n · curl A0

l )

−
[

1

µ

]
(

1

µ
curl Ak × n) · ( 1

µ0
curl A0

l × n)

− 1

iω
[σ](iωAkτ +∇τVk) · (iωA0

lτ +∇τV 0
l )

}
ds.

We follow the method of Hadamard representation to give an expression of Z ′kl(Ωd)(θ)
dependent of ((A′(θ), V ′(θ)) or (B(θ), U(θ))) of the solution (A, V ) by introducing
the adjoint state (Pl,Wl) ∈ Q related to the solution (A0

l , V
0
l ) in the deposit-free

case. The adjoint problem writes

S∗(Pl,Wl; Ψ,Φ) = L∗(Ψ,Φ) ∀(Ψ,Φ) ∈ Q,(3.28)

where for any (A, V ), (Ψ,Φ) in Q we have S∗(A, V ; Ψ,Φ) := S(Ψ,Φ; A, V ) and

L∗(Ψ,Φ) :=

∫
Ωd

(
1

µ
− 1

µ0
) curl A0

l · curl Ψ

+

∫
Ωd

1

iω
(σ − σ0)(iωA0

l +∇V 0
l ) · (iωΨ +∇Φ) dx.

From the above considerations we easily derive the jumps condition for the adjoint
states (Pl)

(3.29)

[n · curl Pl] = 0 on Γ,[
µ−1 curl Pl × n

]
= −(

1

µ
− 1

µ0
) curl A0

l × n on Γ.
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It is worth noticing that the adjoint state Pl satisfies the Coulomb gauge condition.
We are now in a position to express the results of proposition 3.5 with the use of
the adjoints states (Pl,Wl). Indeed, we have the following proposition (which is an
immediate consequence of Proposition 3.5 and the definition of the adjoint state)

Proposition 3.6. Let (Ak, Vk) be the potentials induced by the coil k of the eddy-
current problem with deposit domain Ωd, (A0

l , V
0
k ) the potentials induced by the coil

l for the deposit free case, and (Pl,Wl) the adjoint states related to (A0
l , V

0
k ) which

satify the adjoint problem (3.28). Then under the same assumptions as in Theorem
3.2 for µ and σ, the impedance shape derivative (3.28) can be expressed as

4Z ′kl(Ωd)(θ) =
iω

|J |2

∫
Γ

(n · θ)

{[
1

µ

]
(n · curlAk)(n ·Pl − n · curlA0

l )

− [µ]

(
1

µ
curlAk × n

)
·
(

1

µ0
(curlPl)+ × n−

1

µ0
curlA0

l × n
)

+
1

iω
[σ](iωAkτ +∇τVk) · (iωPlτ +∇τWl + iωA0

lτ +∇τV 0
l )

}
ds.(3.30)

3.4. Explicit shape gradient formula. The shape derivative of f(Ωd) is in
the form

f ′(Ωd)(θ) = − ω

|J |2

∫
Γ0

(n · θ)g ds,(3.31)

where the shape-dependent function g depends on the solutions to the forward problem
(Ak, Vk), (A0

l , V
0
l ) and the adjoint state (Pl,Wl). More precisely, g = g11 + g21 for

the absolute mode, and g = g11 − g22 for the differential mode. For any l and k we
have

gkl =

∫ ζmax

ζmin

<
(

(Z(Ωd; ζ)− Z\(ζ))

{[
1

µ

]
(n · curl Ak)(n · curl Pl − n · curl A0

l )

− [µ]

(
1

µ
curl Ak × n

)
·
(

1

µ0
curl Pl × n−

1

µ0
curl A0

l × n
)

+
1

iω
[σ](iωAkτ +∇τVk) · (iωPlτ +∇τWl + iωA0

lτ +∇τV 0
l )

})
dζ.(3.32)

We choose the shape perturbation θ such that θ = gn on the interface Γ, which is a
descent direction since

f ′(Ωd)(θ) = − ω

|J |2

∫
Γ0

|g|2 ds ≤ 0.

4. Numerical algorithms for the deposit reconstruction. We recall that
the computational domain Ω is a cylinder that contains the tube and the SP. We
introduce a family of triangulation Th of Ω, the subscript h stands for the largest
length of the edges in Th. The tetrahedrons of Th match on the interface between
the conductive part (i.e. tube and SP σ 6= 0) and the insulator part (σ = 0). The
triangulation of the conductive parts (with deposits region) is given in Fig. 2 (see
(A)-(B) for a real image and (A’)-(B’) for its F.E model). Since the variational space
(of the regularized variational formulation) is based on H1 functions, the numerical
finite elements approximation will be based on nodal finite elements for the electric
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(A) (B)

(A’) (B’)

Fig. 2. Pictures downloaded from ©-Westinghouse: http://westinghousenuclear.com” . Figure
(A) presents non clogging (healthy) SP, while Figure (B) presents a fully and partially clogged SP.
Figures (A’)-(B’) are representations of used meshes for each configuration respectively.

vector potential V as well as for the magnetic vector potential A. We shall mainly use
P1 Lagrange nodal elements for both. In addition, the boundary conditions (A ·n = 0
on ∂Ω) are taken into account via penalization of degrees of freedoms that belong to
∂Ω. Indeed the same numerical approximation procedure is applied to adjoint states.

We now describe the gradient descent algorithm steps, the geometrical parametriza-
tions and the procedure to accelerate iterations steps. The deposit is assumed to be
located on the outer part of the tube and is concentrated (for the non axisymmet-
ric examples) in one opening part of the SP (see Fig. 2-(B)). The reconstruction
is based on an intuitive approach, which consists in iteratively P0-approximating
the geometry of the deposit on a predefined 3D grid. This method avoid to re-
construct the mesh at each inversion iteration. The predefined grid is defined by
Nh = {T dh ⊂ Th, s.t ∀ simplex K ∈ T dh with a facet parallel to Tube}, where h
stands for the resolution of the grid. We give in Fig. 3 a clipping of Nh. We present in

Fig. 3. Sketch of the deposit shape reconstruction (clipping of 3D representation) on a grid
Gh. The reconstruction uses an invariant grid where P0-interpolation over this grid is set to cary
out the new shape profile.

http://westinghousenuclear.com
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Algorithm 1 the instances of an adapted step gradient descent. It is well known that
the fixed step gradient descent algorithm converges if the step is sufficiently small.
In our case we will allow the step descent to be large at least for the first iterations,
and if the algorithm fails to maintain the decreasing of the cost functional, the step
is reduced by a given factor. 1/2 < δ < 1. The final geometry is the one for which no
local variation (on the predefined grid) decreases the cost functional.

Algorithm 1: Gradient descent algorithm
Data: The impedance signal response of the tested configuration Ω?d
Result: Optimal shape approximation using interpolation on 3D grid
Input: The resolution of the predefined grid h, ,Threshold: ε

Input: L0 Table of size N, a real t and
1

2
< δ < 1

Input: P = E
(
log(0.4 ∗ h)/log(δ)

)
1 Build the 3d mesh grid Nh : mxh ×myh × N

2 Evaluate the cost function f(L0) and the gradient ∇f(L0)

3 k = 0

4 while ‖∇f(Lk)‖2 > ε do

5 tk = h/max1≤n≤N |∇f(Lkn)|
6 for 1 ≤ p ≤ P do

7 tp = δ × tp−1

8 Lp = Lk − tp∇f(Lk)

9 Project the Lp (to the nearest value) on the predefined grid; Evaluate the cost function f(Lp)

10 if f(Lp) < f(Lk) then

11 Update f(Lk+1) = f(Lp)

12 Evaluate the gradient ∇f(Lk+1)

13 Break

14 end

15 if p==P then

16 Print “A singular point is attained”

17 Exit()

18 end

19 end

20 k = k + 1

21 end

5. Numerical implementation and validation. Numerical validation of the
presented method is considered in this section. We use the software FreeFem++ [14]
to deal with the finite elements discretization of the problem. We run our script on
a cluster with distributed memory configuration. We use a direct matrix-inversion
of the linear system where the factorization is achieved using sparse parallel solver
(MUMPS [4, 5]). We present and explain in the sequel some particular techniques to
achieve performance of the direct eddy-current solver (and consequently the inverse
solver).

At each probe position we have to compute a solution associated to different
source term. In order to (numerically) ensure divergence free condition for the source
term one has to exactly mesh the support of the coil. If we build a new mesh related
to the new probe position, we have to assemble new matrices and solve new systems,
which are extremely memory-consuming. We therefore avoid this by creating and use
a unique mesh that incorporates all possible probe positions in a scan of the tube.
This allows us to only modify the right hand side of the system at each coil position.
The factorization of the matrix is done only once per iteration. In order to further
accelerate the resolution we also parallelize the matrix assembly since the cost of
this part appeared to be the more expensive part if not done in parallel. Particular
attention must be taken for the non-homogeneity (change of the conductivities and the
permeability in the domain): We declare the variables σ and µ as P0-Lagrange finite
elements that depends on the elements labels of the non-partitioned mesh. Then,
we apply a graph partitioning (e.g. scotch [24] or metis [19]) to create automatically
partitioned new mesh. Since the partitioning process changes the elements labels to
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,

Fig. 4. History of the impedance responses of the deposits during iterations in the axisymmetric
configuration. |FA| measurements (left) and |F3| measurements (right).

the ranks of the used group of processors, we define the P0-Lagrange non-homogeneous
domain variable on the non-partitioned mesh and then include them in the variational
formulation that admits the partitioning (see [13] for more technical details).

Numerical experiments deal with several configurations of test cases. Mainly we
present an axisymmetric configuration, then we add the SP and consider the case
where one of the SP foils (flow path) is clogged.

The geometry of the computational domain includes a tube with respective inter-
nal and external radius 9.84 mm and 11.11 mm. The coils are modeled by a crown
with respective internal and external radius 7.83 mm and 8.50 mm. Both coils have
length 2 mm and are separated by 0.5 mm. The scan step of coils is fixed to 1 mm
and cover 20 positions along the tube, which length has been limited to 30 mm.

We used the following values of the electromagnetic parameters. The frequency
ω = 200π, the magnetic permeability of the vacuum µ0 = π × 10−6, magnetic per-
meability of the tube µt = 1.01µ0, the magnetic permeability of the SP µSP = µ0

and the magnetic permeability of the deposit µd = µ0. The conductivity is taken
σt = 1× 103 for the tube, σSP = 1× 102 for the SP and σd = σt for the deposit.

In all numerical experiments, the initialization of our algorithm takes a deposit
with the lowest layers in the grid Gh i.e. with depth 0.5 mm equal to h : the precision
of the fixed grid.

5.1. Axisymmetric and non-axisymmetric geometries. In this part we
consider two configurations of deposits in the vicinity of the tube: deposits around
the tube far from SP and a deposit in one opening of water traffic lane of the SP. The
first case, represents an axisymmetric configuration [18] and the second case represents
a non-axisymmetric configuration because of the presence of SP and the deposit. We
present in Figure 5 a slice on the plane (x,z) of the 3D computational domain. We
show the shape of the axisymmetric deposits Ω?d and the estimated deposits Ωkd result
of the inversion algorithm. Together with this plot we add the y-component of the
solution Ek to show the penetration of the electromagnetic wave inside the tube and
the deposits. With respect to k, a series of measured responses of the estimated
deposit Ωkd is presented in Figure 4. This shows the convergence of the method in the
sense of minimizing the misfit function (2.3) presented in Figure 6.

A more complex configuration consists in taking into account the presence of SP
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Fig. 5. Slice on x-z-plan of the computational domain showing the plot of the y-component of
the eddy-current solution and the deposits Ω?

d (on the left) and the reconstruction in red (on the
right).

Fig. 6. Objective function with respect to iterations in the axisymmetric case.

and therefore non symmetric deposit. The results for this configuration are presented
as follows: In Figure 8 we plot a slice, on the plane (x,z), of the y-component of the
solution Ek together with the shape profile of the deposits Ω?d and its estimation Ωkd
result of the inversion algorithm. The series of the impedance signal responses are
given with respect to k in Figure 7. This highlights the convergence of our algorithm
even with the presence of noise in the non symmetric solution (y-component of Ek)
as it can be seen in Figure 8 and also on the left plot of Figure 9.

5.2. Arbitrary deposit shape. In this subsection in addition to the presence
of the SP, we consider the reconstruction of a deposits with an arbitrary shape that
does not match the parametrization used for the inverse problem: see Figure 10. The
results of the inversion algorithm is given (in terms of k) in Figure 13. The convergence
in the sense of the impedance response measurements is given in Figure 11. The
minimization of the objective function with respect to the iterations of the inversion
is presented in Figure 12.
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,

Fig. 7. History of the impedances during iterations for the SP configuration. |FA| measure-
ments (left) and |F3| measurements (right).

Fig. 8. (left) Slice representation of the computational domain of the configuration with SP
and a plot of the z-component of the eddy-current solution on x-y-plan. (right) Misfit function in
terms of the inversion iterations.

Appendix. Some useful differential identities.

curl(∇f) = 0,(A.1a)

div (curlv) = 0,(A.1b)

(u · ∇)v = (∇v)u,(A.1c)

curlu× v = (∇u− (∇u)t)v,(A.1d)

∇(u · v) = u× curlv + v × curlu+ (u · ∇)v + (v · ∇)u,(A.1e)

curl(u× v) = udiv v − vdivu+ (v · ∇)u− (u · ∇)v.(A.1f)

Appendix A. Proof of Lemma 3.1. We develop the proof of the shape deriva-
tive calculus presented at Lemma 3.1
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Fig. 9. Slice representation of the computational domain of the configuration with SP and a
plot of the y-component of the eddy-current solution on x-z-plan.

Fig. 10. Graph of the arbitrary shaped deposit that clogs one opening (foils) of the tube SP.

Proof. By definition, one has

A(Ωθ)
(
A, V ; Ψ,Φ

)
=

∫
Ωθ

1

µ
curly A(Ωθ) · curly Ψ(Ωθ) dy

+
1

iω

∫
Ωθ

σ(iωA(Ωθ) +∇yV (Ωθ)) · (iωΨ(Ωθ) +∇yΦ(Ωθ)) dy.

With the variable substitution (Id + θ)−1 : y 7→ x and the identities (3.1) related
to Acurl, Adiv and V∇, we rewrite the above form on a fixed reference domain Ω =
(Id + θ)−1Ωθ as

A(Ωθ)
(
A, V ; Ψ,Φ

)
=

∫
Ω

1

µ

(I +∇θ)t(I +∇θ)

|det(I +∇θ)|
curl Acurl · curl Ψcurl dx

+
1

iω

∫
Ω

σ|det(I +∇θ)|(I +∇θ)−1(I +∇θ)−t
(
iωAcurl +∇V∇

)
·
(
iωΨcurl +∇Φ∇

)
dx.

If (B(θ), U(θ)), (η(θ), χ(θ)) are respectively the material derivatives of (A, V ) and
(Ψ,Φ), then one can develop the above form with respect to θ by considering the
developments [11]

|det(I +∇θ)| = 1 + div θ + o(θ),(A.1a)

(I +∇θ)−1 = I −∇θ + o(θ).(A.1b)
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,

Fig. 11. History of the impedances in the case or deposit with arbitrary shape: |FA| measure-
ment (left) and |F3| measurement (right).

Fig. 12. Objective function with respect to iterations for the case of arbitrary shape reconstruc-
tions.

Since (Acurl(0), V∇(0)) = (A(Ω), V (Ω)), (Ψcurl(0),Φ∇(0) = Φ(Ω)), the terms of order
zero with respect to θ in the development give exactly A(Ω)(A, V ; Ψ,Φ), while the
first order terms with respect to θ yield

A′(Ω)(A, V ; Ψ,Φ) = A(Ω)(B(θ), U(θ); Ψ,Φ) + A(Ω)(A, V ;η(θ), χ(θ)) + I1 + I2,

with I1 =

∫
Ω

1

µ
(−div θ +∇θ + (∇θ)t) curl A · curl Ψ dx,

I2 =
1

iω

∫
Ω

σ(div θI −∇θ − (∇θ)t)
(
iωA +∇V

)
·
(
iωΨ +∇Φ

)
dx.

(A.2)

We will rewrite the volume integrals I1, I2 in terms of boundary integrals. Using the
differential identities (A.1) and the fact that (A, V ) satisfy the conditions (3.9), one
verifies

(−div θI +∇θ + (∇θ)t) curl A = − curl((θ · ∇)A + (∇θ)tA) +∇(θ · curl A) + µσ(iωA +∇V )× θ.
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(k=0) (k=2) (k=4)

(k=6) (k=8) (k=10)

(k=11) (k=12) (k=13)

Fig. 13. Slice representation of the iterations of the shape reconstruction: case of an arbitrary
shape clogging one opening of the quatrefoil SP.

Hence

I1 = −
∫

Ω

1

µ
curl((θ · ∇)A + (∇θ)tA) · curl Ψ dx+ I11 + I22,

where I11 =

∫
Ω

1

µ
∇(θ · curl A) · curl Ψ dx and I12 =

∫
Ω

σ
(
(iωA +∇V )× θ

)
· curl Ψ dx.

By Stoke’s theorem, one has

I11 =

∫
Ω

1

µ
div
(
(θ · curl A) curl Ψ

)
dx =

∫
∂Ω

1

µ
(θ · curl A)(n · curl Ψ) ds.

By integration by parts (with use of differential identities A.1), we verify

I12 =− 1

iω

∫
Ω

σ
{

(div θI −∇θ)(iωA +∇V ) + (θ · ∇)(iωA +∇V )
}
· (iωΨ) dx

+
1

iω

∫
∂Ω

σ(θ · n)(iωA +∇V ) · (iωΨ) ds.

Therefore

I1 =−
∫

Ω

1

µ
curl((θ · ∇)A + (∇θ)tA) · curl Ψ dx

− 1

iω

∫
Ω

σ
{

(div θI −∇θ)(iωA +∇V ) + (θ · ∇)(iωA +∇V )
}
· (iωΨ) dx

+

∫
∂Ω

1

µ
(θ · curl A)(n · curl Ψ) ds+

1

iω

∫
∂Ω

σ(θ · n)(iωA +∇V ) · (iωΨ) ds.(A.3)
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Now we compute the term I2

I2 =
1

iω

∫
Ω

σ(div θI −∇θ − (∇θ)t)(iωA +∇V ) · (iωΨ) dx+ I21 + I22,

with I21 =
1

iω

∫
Ω

σdiv θ(iωA +∇V ) · ∇Φ dx, I22 =
1

iω

∫
Ω

σ(−∇θ − (∇θ)t)(iωA +∇V ) · ∇Φ dx.

By integration by parts, one obtains

I21 =
1

iω

∫
∂Ω

σ(θ · n)(iωA +∇V ) · ∇Φ ds− 1

iω

∫
Ω

iωσ(θ · ∇)A · ∇Φ dx

− 1

iω

∫
Ω

σD2Φ(iωA +∇V ) · θ dx− 1

iω

∫
Ω

σD2V θ · ∇Φ dx.

Using integration by parts and the fact that div (σ(iωA + ∇V )) = 0 obtained by
applying the divergence operator to (3.9)1, one verifies

I22 =− 1

iω

∫
Ω

σ(∇θ)t(iωA +∇V ) · ∇Φ dx+
1

iω

∫
Ω

D2Φ(iωA +∇V ) · θ dx.

From the differential identities (A.1), one deduces also that

D2V θ + (∇θ)t∇V = (θ · ∇)∇V + (∇θ)t∇V = ∇(θ · ∇V ).

The above equalities yield

I2 =I21 + I22

=
1

iω

∫
Ω

σ(div θI −∇θ − (∇θ)t)(iωA +∇V ) · (iωΨ) dx+
1

iω

∫
∂Ω

σ(θ · n)(iωA +∇V ) · ∇Φ ds

− 1

iω

∫
Ω

σiω
(
(θ · ∇)A + (∇θ)tA

)
· ∇Φ dx− 1

iω

∫
Ω

σ∇(θ · ∇V ) · ∇Φ dx.

(A.4)

(A.3), (A.4) and the fact that σ(iωA +∇V ) · n = 0 on ∂Ω imply

I1 + I2 =A(Ω)
(
− (θ · ∇)A− (∇θ)tA,−(θ · ∇V ); Ψ,Φ

)

+

∫
∂Ω

1

µ
(θ · curl A)(n · curl Ψ) ds+

1

iω

∫
∂Ω

σ(θ · n)(iωAτ +∇τv) · (iωΨτ +∇Φτ ) ds.

(A.5)

From (A.2), (A.5) and the definition of shape derivatives (3.3), one concludes the
result (3.10).

Appendix B. Proof of Proposition 3.6. We give the proof of the stated
theorem 3.6

Proof. Taking (Ψ,Φ) = (Bk(θ), Uk(θ)) ∈ Q in the adjoint problem (3.28) yields

S∗(Pl,Wl; Bk(θ), Uk(θ)) = L∗(Bk(θ), Uk(θ)).

On the other hand, taking (Ψ , Φ) = (Pl,Wl) in the variational formulation (3.18) for
the material derivatives (Bk(θ), Uk(θ)) implies

S(Bk(θ), Uk(θ); Pl,Wl) = L(Pl,Wl).
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Since

S∗(Pl,Wl; Bk(θ), Uk(θ)) = S(Bk(θ), Uk(θ); Pl,Wl)

with the fact that div Pl = 0, one obtains

L∗(Bk(θ), Uk(θ)) = L(Pl,Wl).

=

∫
Ωd

1

µ
curl

(
(θ · ∇)Ak + (∇θ)tAk

)
· curl Pl dx

+
1

iω

∫
ΩC

σ

(
iω
(
(θ · ∇)Ak + (∇θ)tAk

)
+∇(θ · ∇Vk)

)
· (iωPl +∇Wl) dx

+

∫
Γ

[
1

µ

]
(θ · n)(n · curl Ak)(n · curl Pl) ds+

1

iω

∫
Γ

(θ · n)[σ](iωAkτ +∇τVk) · (iωPlτ +∇τWl) ds.

In Ω\Γ one verifies

(θ · ∇)Ak + (∇θ)tAk = curl Ak × θ +∇(θ ·Ak),

curl
(
(θ · ∇)Ak + (∇θ)tAk

)
= curl

(
curl Ak × θ

)
.

Thus, considering (3.29)4 and (3.29)5, we compute

L∗(Bk(θ), Uk(θ))

= I +

∫
Γ

[
1

µ

]
(θ · n)(n · curl Ak)(n · curl Pl) ds+

1

iω

∫
Γ

(θ · n)[σ](iωAkτ +∇τVk) · (iωPlτ +∇τWl) ds,

with I =

∫
Ωd

1

µ
curl

(
curl Ak × θ

)
· curl Pl dx+

1

iω

∫
ΩC

σiω
(

curl Ak × θ
)
· (iωPl +∇Wl) dx.

(B.1)

We remind that (curl Ak×θ) belongs to X(Ω). We multiply (3.29)1 by
(
curlAk × θ

)
,

integrate by parts and then take the complex conjugate, which implies

I =

∫
Ωd

(
1

µ
− 1

µ0
) curl A0

l · curl(curl Ak × θ) dx− 1

iω

∫
Ωd

[σ](iωA0
l +∇V 0

l ) ·
(
iω(curlAk × θ)

)
dx

+

∫
Γ

[
1

µ
curl Pl ·

(
(curl Ak × θ)× n

)]
ds+

∫
Γ

[
1

µ

]
curl A0

l ·
(
(curl Ak × θ)× n

)
ds

=

∫
Ωd

[
1

µ

]
curl A0

l · curl
(
(θ · ∇)Ak + (∇θ)tAk

)
dx

− 1

iω

∫
Ωd

[σ](iωA0
l +∇V 0

l ) ·
(

iω
(
(θ · ∇)Ak + (∇θ)tAk

)
+∇(θ · ∇Vk)

)
dx

−
∫

Γ

(θ · n)[µ]

(
1

µ
curl Ak × n

)
·
(

1

µ0
(curl Pl)+ × n

)
ds

(B.2)
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The last equality is due to the transmission conditions (3.29)2 – (3.29)3 for Pl and
those for Ak on Γ: [n · curl A] = [µ−1n× curl A] = 0. (B.1) and (B.2) imply

L∗(Bk(θ), Uk(θ))−
∫

Ωd

[
1

µ

]
curl A0

l · curl
(
(θ · ∇)Ak + (∇θ)tAk

)
dx

+
1

iω

∫
Ωd

[σ](iωA0
l +∇V 0

l ) ·
(

iω
(
(θ · ∇)Ak + (∇θ)tAk

)
+∇(θ · ∇Vk)

)
dx

=

∫
Γ

(θ · n)

{[
1

µ

]
(n · curl Ak)(n · curl Pl)− [µ]

(
1

µ
curl Ak × n

)
·
(

1

µ0
(curl Pl)+ × n

)

+
1

iω
[σ](iωAkτ +∇τVk) · (iωPlτ +∇τWl)

}
ds.

(B.3)

Considering the definition of L∗(·, ·), we substitute the above integral (B.3) in the
expression of shape derivative of 4Zkl (3.28) and finally obtain (3.30).
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