Skip to main content
Log in

Optimal Quadrilateral Finite Elements on Polygonal Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose three quadrilateral mesh refinement algorithms to improve the convergence of the finite element method approximating the singular solutions of elliptic equations, which are due to the non-smoothness of the domain. These algorithms result in graded meshes consisting of convex and shape-regular quadrilaterals. With analysis in weighted spaces, we provide the selection criteria for the grading parameter, such that the optimal convergence rate can be recovered for the associated finite element approximation. Various numerical tests verify the theory. In addition to the bi-k elements, we also investigate the serendipity elements on the graded quadrilateral meshes in the numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Apel, T., Sändig, A.-M., Whiteman, J.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19(1), 63–85 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Boffi, D., Falk, R.S.: Approximation by quadrilateral finite elements. Math. Comput. 71(239), 909–922 (2002). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Kellogg, R., Pitkäranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33(4), 447–471 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Băcuţă, C., Nistor, V., Zikatanov, L.T.: Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps. Numer. Math. 100(2), 165–184 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boffi, D., Gastaldi, L.: On the quadrilateral \(Q_2\)-\(P_1\) element for the Stokes problem. Intern. J. Numer. Methods Fluids 39(11), 1001–1011 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Cui, J., Sung, L.-Y.: Multigrid methods for the symmetric interior penalty method on graded meshes. Numer. Linear Algebra Appl. 16(6), 481–501 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet, P.G., Raviart, P.-A.: Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Eng. 1, 217–249 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costabel, M., Dauge, M., Nicaise, S.: Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci. 22(8), 1250015–1250063 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dauge, M.: Elliptic boundary value problems on corner domains. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)

  10. Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations. In: Springer Series in Computational Mathematics, vol. 5. Theory and algorithms. Springer, Berlin (1986)

  11. Grisvard, P.: Singularities in Boundary Value Problems. Research Notes in Applied Mathematics, vol. 22. Springer, New York (1992)

    MATH  Google Scholar 

  12. Guo, B., Schwab, C.: Analytic regularity of Stokes flow on polygonal domains in countably weighted Sobolev spaces. J. Comput. Appl. Math. 190(1–2), 487–519 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kondrat’ev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. 16, 209–292 (1967)

    MathSciNet  Google Scholar 

  14. Kozlov, V., Maz’ya, V., Rossmann, J.: Spectral problems associated with corner singularities of solutions to elliptic equations. In: Mathematical Surveys and Monographs, vol. 85. American Mathematical Society, Providence (2001)

  15. Lee, E., Manteuffel, T.A., Westphal, C.R.: Weighted-norm first-order system least-squares (FOSLS) for div/curl systems with three dimensional edge singularities. SIAM J. Numer. Anal. 46(3), 1619–1639 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, H., Mazzucato, A., Nistor, V.: Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains. Electron. Trans. Numer. Anal. 37, 41–69 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Li, H., Nistor, V.: Analysis of a modified Schrödinger operator in 2D: regularity, index, and FEM. J. Comput. Appl. Math. 224(1), 320–338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maz’ya, V., Rossmann, J.: Elliptic equations in polyhedral domains. In: Mathematical Surveys and Monographs, vol. 162. American Mathematical Society, Providence (2010)

  19. Morin, P., Nochetto, R., Siebert, K.: Convergence of adaptive finite element methods. SIAM Rev. 44(4), 631–658 (electronic) (2003), 2002. Revised reprint of “Data oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38(2), 466–488 (2000, electronic); MR1770058 (2001g:65157)]

  20. Raugel, G.: Résolution numérique par une méthode d’éléments finis du probléme de Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris Ser. AB 286(18), A791–A794 (1978)

    MathSciNet  MATH  Google Scholar 

  21. Schatz, A.H., Wahlbin, L.B.: Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements. Math. Comput. 33(146), 465–492 (1979)

    MathSciNet  MATH  Google Scholar 

  22. Shi, Z.C.: A convergence condition for the quadrilateral Wilson element. Numer. Math. 44(3), 349–361 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, S.: On the nested refinement of quadrilateral and hexahedral finite elements and the affine approximation. Numer. Math. 98, 559–579 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Z.: Analysis of some quadrilateral nonconforming elements for incompressible elasticity. SIAM J. Numer. Anal. 34(2), 640–663 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, Z.: Polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals. Int. J. Numer. Anal. Model. 1(1), 1–24 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, Z., Zou, Q.: Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems. Numer. Math. 130(2), 363–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghui Zhang.

Additional information

H. Li was partially supported by the NSF Grants DMS-1158839 and DMS-1418853, and by the Wayne State University Grants Plus Program. Q. Zhang was partially supported by the Natural Science Foundation of China Grants 11001282 and 11471343, and by Guangdong Provincial Natural Science Foundation of China under Grant 2015A030306016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, Q. Optimal Quadrilateral Finite Elements on Polygonal Domains. J Sci Comput 70, 60–84 (2017). https://doi.org/10.1007/s10915-016-0242-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0242-5

Keywords

Mathematics Subject Classification

Navigation