Skip to main content
Log in

Local and Parallel Finite Element Algorithm Based on Oseen-Type Iteration for the Stationary Incompressible MHD Flow

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we are concerned with the local and parallel finite element algorithm based on the Oseen-type iteration for solving the stationary incompressible magnetohydrodynamics. Under the uniqueness condition, the error estimates with respect to iterative step m and small mesh sizes H and \(h\ll H\) of the proposed method are derived. Finally, some numerical experiments are provided to show the high efficiency of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gunzburger, M.D., Meir, A.J., Peterson, J.S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comput. 56, 523–563 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Moreau, R.: Magneto-hydrodynamics. Kluwer Academic Publishers, Dordrecht (1990)

    Google Scholar 

  3. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  4. Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Badia, S., Codina, R., Planas, R.: On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics. J. Comput. Phys. 234, 399–416 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, F.Y., Xu, L.W.: Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Phys. 231, 2655–2675 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, F.Y., Xu, L.W., Yakovlev, S.: Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field. J. Comput. Phys. 230, 4828–4847 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, X.J., He, Y.N.: Two-level newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics. J. Sci. Comput. 63, 426–451 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, X.J., He, Y.N.: Convergence of some finite element iterative methods related to different Reynolds numbers for the 2D/3D stationary incompressible magnetohydrodynamics. Sci. China Math. 59, 589–608 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Layton, W.J., Meir, A.J., Schmidt, P.G.: A two-level discretization method for the stationary MHD equations. Electron. Trans. Numer. Anal. 6, 198–210 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Salah, N.B., Soulaimani, A., Habashi, W.G.: A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 190, 5867–5892 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gerbeau, J.-F., Bris, C.L., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2006)

    Book  MATH  Google Scholar 

  13. Yuksel, G., Ingram, R.: Numerical analysis of a finite element, Crank–Nicolson discretization for MHD flows at small magnetic Reynolds numbers. Int. J. Numer. Anal. Model. 10, 74–98 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. M2AN. Math. Model. Numer. Anal. 42, 1065–1087 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, Y.Q., Shi, Z.C., Tang, T., Xue, W.M.: A multilevel successive iteration method for nonlinear elliptic problems. Math. Comput. 73, 525–539 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, Y.Q., Chen, Y.P.: A multi-level iterative method for solving finite element equations of nonlinear singular two-point boundary value problems. Nat. Sci. J. Xiangtan Univ. 16, 23–26 (1994)

    MATH  Google Scholar 

  17. Huang, Y.Q., Xue, W.M.: Convergence of finite element approximations and multilevel linearization for Ginzburg–Landau model of \(d\)-wave superconductors. Adv. Comput. Math. 17, 309–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, Y.N., Xu, J.C., Zhou, A.H., Li, J.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109, 415–434 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shang, Y.Q., He, Y.N.: A parallel Oseen-linearized algorithm for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 209, 172–183 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, Y.N., Mei, L.Q., Shang, Y.Q., Cui, J.: Newton iterative parallel finite element algorithm for the steady Navier–Stokes equations. J. Sci. Comput. 44, 92–106 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, J.C.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, Y.P., Liu, H.W., Liu, S.: Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods. Int. J. Numer. Methods Eng. 69, 408–422 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, Y.Q., Kornhuber, R., Widlund, O., Xu, J.C.: Domain Decomposition Methods in Sicience and Engineering XIX. Springer, Berlin (2011)

    Book  Google Scholar 

  25. Huang, Y.Q., Xu, J.C.: A conforming finite element method for overlapping and nonmatching grids. Math. Comput. 72, 1057–1066 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dong, X.J., He, Y.N., Zhang, Y.: Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 276, 287–311 (2014)

    Article  MathSciNet  Google Scholar 

  27. Hasler, U., Schneebeli, A., Schötzau, D.: Mixed finite element approximation of incompressible MHD problems based on weighted regularization. Appl. Numer. Math. 51, 19–25 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sermane, M., Temam, R.: Some mathematics questions related to the MHD equations. Commun. Pure Appl. Math. XXXIV, 635–664 (1984)

    Google Scholar 

  29. Brenner, S.C., Cui, J., Li, F.Y., Sung, L.-Y.: A nonconforming finite element method for a two-dimensional curl–curl and grad–div problem. Numer. Math. 109, 509–533 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Girault, V., Raviart, P.A.: Finite Element Approximation of Navier–Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  31. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem I: regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. He, Y.N.: Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations. IMA J. Numer. Anal. 35, 767–801 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. He, Y.N., Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms for the Navier–Stokes problem. J. Comput. Math. 24, 227–238 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Hecht, F., Pironneau, O., Hyaric, A., Ohtsuka, K.: http://www.freefem.org

Download references

Acknowledgments

The authors sincerely thank the reviewers and editor for their helpful suggestions. The first author is supported by NSFC (No. 11401174). The second author is supported by the Major Research Plan of NSFC (No. 91430213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Huang, Y. Local and Parallel Finite Element Algorithm Based on Oseen-Type Iteration for the Stationary Incompressible MHD Flow. J Sci Comput 70, 149–174 (2017). https://doi.org/10.1007/s10915-016-0246-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0246-1

Keywords

Mathematics Subject Classification

Navigation