Skip to main content
Log in

Galerkin Method for the Scattering Problem of a Slit

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, the scattering problem of a slit is considered. By use of the exact Dirichlet-to-Neumann map and the continuity of the total field on the slit, we reformulate this problem to an operator equation. The well-posedness of the solution is proved. We apply Galerkin method to solve this operator equation numerically and prove the convergence of the numerical solution. Finally some computational examples are presented to show the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abda, A.B., Hassen, F.B., Leblond, J., Mahjoub, M.: Sources recovery from boundary data: a model related to electroencephalorgraphy. Math. Comput. Model. 49, 2213–2223 (2009)

    Article  MATH  Google Scholar 

  2. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, Amsterdam, Boston (2003)

    MATH  Google Scholar 

  3. Ammari, H., Bao, G., Wood, A.W.: Analysis of the electromagnetic scattering from a cavity. Jpn. J. Ind. Appl. Math. 19(2), 301–310 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, G., Liu, J.: Accurate computation of the electromagnetic scattering from a cavity. In: Lu Y., Sun W., Tang T. (eds.) Proceedings of the 3rd International Workshop Scientific Computing and Applications. Beijing, pp. 45–54 (2004)

  5. Bao, G., Zhang, W.: An improved mode-matching method for large cavities. IEEE Antennas Wirel. Propag. 4(1), 393–396 (2005)

    Article  Google Scholar 

  6. Barakat, R.: Diffraction of plane waves by a slit between two different media. J. Opt. Soc. Am. 53(11), 1231–1243 (1963)

    Article  Google Scholar 

  7. Cakoni, F., Colton, D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin, Heidelberg, New York (2005)

    MATH  Google Scholar 

  8. Castro, L.P., Speck, F.-O.: Relations between convolution type operators on intervals and on the half line. Integr. Equ. Oper. Theory 37(2), 169–207 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheney, M., Borden, B.: Problems in synthetic-aperture radar imaging. Inverse Probl. 25, 123005 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, Chichester (1983)

    MATH  Google Scholar 

  11. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  12. Costabel, M., Stephan, E.: Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximations. Mathematical Models and Methods in Mechanics, vol. 15, pp. 175–251. Banach Center Publication (1985)

  13. Goodman, J.W.: Introduction to Fourier Optics. Roberts & Co., Publishers, Englewood (2005)

    Google Scholar 

  14. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Springer, Berlin, Heidelberg (2008)

    Book  MATH  Google Scholar 

  15. Inglese, G.: An inverse problem in corrosion detection. Inverse Probl. 13, 977–994 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)

    Book  MATH  Google Scholar 

  17. Kowarz, M.W.: Homogeneous and evanescent contributions in scalar near-field diffraction. Appl. Opt. 34(17), 3055–3063 (1995)

    Article  Google Scholar 

  18. Kraft, C.H.: Modeling leakage through finite apertures with TLM. In: IEEE International Symposium on IEEE Electromagnetic Compatibility, Symposium Record: Compatibility in the Loop. pp. 73–76 (1994)

  19. Li, H., Ma, H., Sun, W.: Legendre spectral Galerkin method for electromagnetic scattering from large cavities. SIAM J. Numer. Anal. 51(1), 353–376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Merlin, R.: Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing. Science 317, 927–929 (2007)

    Article  Google Scholar 

  21. Nishikata, A., Sugiura, A.: Analysis for electromagnetic leakage through a plane shield with an arbitrarily-oriented dipole source. IEEE Trans. Electromagn. Compat. 34, 284–291 (1992)

    Article  Google Scholar 

  22. Stephan, E.P.: Boundary integral equations for screen problems in \(R^3\). Integral Equ. Oper. Theory 10(2), 236–257 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Steward, E.G.: Fourier Optics: An Introduction. Dover, New York (2004)

    Google Scholar 

  24. Sun, W., Wu, J.: Interpolatory quadrature rules for Hadamard finite-part integrals and their superconvergence. IMA J. Numer. Anal. 28(3), 580–597 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Y.: \(L^2\) Theory of Partial Differential Equation. Peking University Press, Beijing (1989)

    Google Scholar 

  26. Wendland, W.L., Stephan, E.T.: A hypersingular boundary element method for two-dimensional screen and crack problems. Arch. Ration. Mech. Anal. 112(4), 363–390 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wendland, W.L., Stephan, E.T.: An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems. Appl. Anal. 18, 183–219 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Wang.

Additional information

The research was supported by the National Natural Science Foundation of China (NSFC 11371172, 11271159) and the TianYuan Special Funds of the National Natural Science Foundation of China (NSFC 11526043).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ma, F. & Zheng, E. Galerkin Method for the Scattering Problem of a Slit. J Sci Comput 70, 192–209 (2017). https://doi.org/10.1007/s10915-016-0248-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0248-z

Keywords

Navigation