
Large-scale optimization-based non-negative

computational framework for diffusion equations:

Parallel implementation and performance studies

An e-print of the paper is available on arXiv: 1506.08435.

Authored by

J. Chang
Graduate Student, University of Houston.

S. Karra
Staff Scientist, Los Alamos National Laboratory.

K. B. Nakshatrala
Department of Civil & Environmental Engineering

University of Houston, Texas 77204–4003.

phone: +1-713-743-4418, e-mail: knakshatrala@uh.edu

website: http://www.cive.uh.edu/faculty/nakshatrala

This figure shows the fate of chromium after 180 days using the single-field Galerkin

formulation. The white regions indicate the violation of the non-negative constraint.

2015

Computational & Applied Mechanics Laboratory

ar
X

iv
:1

50
6.

08
43

5v
3

 [
cs

.N
A

]
 9

 A
pr

 2
01

6

Large-scale Optimization-based Non-negative Computational

Framework for Diffusion Equations: Parallel Implementation and

Performance Studies

J. Chang, S. Karra and K. B. Nakshatrala

Correspondence to: e-mail: knakshatrala@uh.edu, phone:+1-713-743-4418

Abstract. It is well-known that the standard Galerkin formulation, which is often the formulation

of choice under the finite element method for solving self-adjoint diffusion equations, does not meet

maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently,

optimization-based methodologies that satisfy maximum principles and the non-negative constraint for

steady-state and transient diffusion-type equations have been proposed. To date, these methodologies

have been tested only on small-scale academic problems. The purpose of this paper is to systematically

study the performance of the non-negative methodology in the context of high performance computing

(HPC). PETSc and TAO libraries are, respectively, used for the parallel environment and optimization

solvers. For large-scale problems, it is important for computational scientists to understand the computa-

tional performance of current algorithms available in these scientific libraries. The numerical experiments

are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better

characterize the efficiency of the solvers. Our studies indicate that the proposed non-negative computa-

tional framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale

problems.

1. INTRODUCTION

The modeling of flow and transport in subsurface is vital for energy, climate and environmental ap-

plications. Examples include CO2 migration in carbon-dioxide sequestration, enhanced geothermal sys-

tems, oil and gas production, radio-nuclide transport in a nuclear waste repository, groundwater contam-

ination, and thermo-hydrology in the Arctic permafrost due to the recent climate change [10,15,17,23].

Several numerical codes (e.g., FEHM [40], TOUGH [37], PFLOTRAN [22]) have been developed to

model flow and transport in subsurface at reservoir-scale. These codes typically solve unsteady Darcy

equations for flow and advection-diffusion equation for transport. The predictive capability of a nu-

merical simulator depends on the robustness of the underlying numerical methods. A necessary and

essential requirement is to satisfy important mathematical principles and physical constraints. One such

property in transport and reactive-transport problems is that the concentration of a chemical species

cannot be negative. Mathematically, this translates to the satisfaction of the discrete maximum princi-

ple (DMP) for diffusion-type equations. Subsurface flow and transport applications typically encounter

geological media that are highly heterogeneous and anisotropic in nature, and it is well-known that

Key words and phrases. high performance computing; anisotropic diffusion; maximum principles; non-negative con-

straint; large-scale optimization.

1

the classical finite element (or finite volume and finite difference, for that matter) formulations do not

produce non-negative solutions on arbitrary meshes for such porous media [6,24,32,35].

Several studies over the years have focused on the development of methodologies that enforce the

DMP and ensure non-negative solutions [32, 33, 35, 36]. However, these studies did not address how

these methods can be used for realistic large-scale subsurface problems that have millions of grid nodes.

Furthermore, complex coupling between different physical processes as well as the presence of multiple

species amplify the degrees-of-freedom (i.e., the number of unknowns). The aim of this paper is to de-

velop a parallel computational framework that solves anisotropic diffusion equations on general meshes,

ensures non-negative solutions, and can be employed to solve large-scale realistic problems.

Large-scale problems can be tackled by using recent advancements in high-performance computing

(HPC) methods and toolkits that can be used on the state-of-the-art supercomputing architecture. One

such toolkit is PETSc [3], which provides data structures and subroutines for setting up structured

and unstructured grids, parallel communication, linear and non-linear solvers, and parallel I/O. These

high-level data structures and subroutines help in faster development of parallel application codes and

minimize the need to program low-level message passing, so that the domain scientists can focus more

on the application. To this end, we develop a non-negative parallel framework by leveraging the existing

capabilities within PETSc. Our framework ensures the DMP for anisotropic diffusion by using lower-

order finite elements and the optimization-based approach in [24,32,35]. The TAO toolkit [31], which

is built on top of PETSc, is used for solving the resulting optimization problems. The robustness of the

proposed framework will be demonstrated by solving realistic large-scale problems.

The rest of this paper is organized as follows. In Section 2, we present the governing equations

and the classical single-field Galerkin finite element formulation for steady-state and transient diffusion

equations. The optimization-based method to ensure non-negative concentrations is also outlined in this

section. In Section 3, the parallel implementation procedure using PETSc and TAO is presented. We also

highlight the relevant data structures used in this study and present a pseudo algorithm describing our

parallel framework. In Section 4, a performance model loosely based on the roofline model is outlined.

This model is used to estimated the efficiency with respect to computing hardware of currently available

solvers within PETSc and TAO. In Section 5, we first verify our implementation using a 3D benchmark

problem from the literature and present a detailed performance study using the proposed model. Then,

we study a large-scale three-dimensional realistic problem involving the transport of chromium in the

subsurface and document the numerical results of the non-negative methodology with the classical

single-field Galerkin formulation. Conclusions are drawn in Section 6.

2. GOVERNING EQUATIONS AND ASSOCIATED NON-NEGATIVE NUMERICAL

METHODOLOGIES

Let Ω ⊂ Rnd be a bounded open domain, where “nd” is the number of spatial dimensions. The

boundary of the domain is denoted by ∂Ω = Ω−Ω, which is assumed to be piecewise smooth. A spatial

point is denoted by x ∈ Ω. The gradient and divergence operators with respect to x are, respectively,

denoted as grad[·] and div[·]. As usual, the boundary is divided into two parts: ΓD and ΓN. ΓD is that

part of the boundary on which Dirichlet boundary conditions are prescribed, and ΓN is the part of the

boundary on which Neumann boundary conditions are prescribed. For mathematical well-posedness,

we assume ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. The unit outward normal to boundary is denoted as

n̂(x). The diffusivity tensor is denoted by D(x), which is assumed to symmetric, bounded above and
2

uniformly elliptic. That is,

D(x) = DT(x) ∀x ∈ Ω (2.1)

and there exists two constants 0 < ξ1 ≤ ξ2 < +∞ such that

ξ1y
Ty ≤ yTD(x)y ≤ ξ2y

Ty ∀x ∈ Ω and ∀y ∈ Rnd (2.2)

2.1. Governing equations for steady-state response. We shall denote the steady-state con-

centration field by c(x). The governing equations can be written as follows:

−div[D(x)grad[c]] = f(x) in Ω (2.3a)

c(x) = cp(x) on ΓD (2.3b)

−n̂(x) ·D(x)grad[c] = qp(x) on ΓN (2.3c)

where f(x) is the volumetric source/sink, cp(x) is the prescribed concentration, and qp(x) is the pre-

scribed flux. For uniqueness, we assume ΓD 6= ∅.
2.1.1. Maximum principle and the non-negative constraint. The above boundary value problem is

a self-adjoint second-order elliptic partial differential equation (PDE). It is well-known that such PDEs

possess an important mathematical property – the classical maximum principle [8]. The mathematical

statement of the classical maximum principle can be written as follows: If c(x) ∈ C2(Ω) ∩ C0(Ω),

∂Ω = ΓD, and f(x) ≤ 0 in Ω then

max
x∈Ω

c(x) = max
x∈∂Ω

cp(x) (2.4)

Similarly, if f(x) ≥ 0 in Ω then

min
x∈Ω

c(x) = min
x∈∂Ω

cp(x) (2.5)

To make our presentation on maximum principles simple, we have assumed stronger regularity on the

solution (i.e., c(x) ∈ C2∩C0(Ω)), and assumed that Dirichlet boundary conditions are prescribed on the

entire boundary. However, maximum principles requiring milder regularity conditions on the solution,

even for the case when Neumann boundary conditions are prescribed on the boundary, can be found in

literature (see [29,30]).

If f(x) ≥ 0 in Ω and cp(x) ≥ 0 on the entire ∂Ω then the maximum principle implies that c(x) ≥ 0

in the entire domain, which is the non-negativity of the concentration field.

2.1.2. Single-field Galerkin weak formulation. The following function spaces will be used in the rest

of this paper:

U :=
{
c(x) ∈ H1(Ω)

∣∣ c(x) = cp(x) on ΓD
}

(2.6)

W :=
{
w(x) ∈ H1(Ω)

∣∣ w(x) = 0 on ΓD
}

(2.7)

where H1(Ω) is a standard Sobolev space [1]. The single-field Galerkin weak formulation corresponding

to equations (2.3a)–(2.3c) reads: Find c(x) ∈ U such that we have

B(w; c) = L(w) ∀w(x) ∈ W (2.8)

3

where the bilinear form and linear functional are, respectively, defined as

B(w; c) :=

∫
Ω

grad[w(x)] ·D(x)grad[c(x)] dΩ (2.9a)

L(w) :=

∫
Ω
w(x)f(x) dΩ +

∫
ΓN

w(x)qp(x) dΓ (2.9b)

Since D(x) is symmetric, by Vainberg’s theorem [13], the single-field Galerkin weak formulation given

by equation (2.8) is equivalent to the following variational problem:

minimize
c(x)∈U

1

2
B(c; c)− L(c) (2.10)

2.1.3. A methodology to enforce the maximum principle for steady-state problems. Our methodology

is based on the finite element method. We decompose the domain into “Nele” non-overlapping open

element sub-domains such that

Ω =
Nele⋃
e=1

Ω
e

(2.11)

(Recall that a superposed bar denotes the set closure.) The boundary of Ωe is denoted by ∂Ωe := Ω
e−Ωe.

We shall define the following finite dimensional vector spaces of U and W:

Uh :=
{
ch(x) ∈ U

∣∣ ch(x) ∈ C0(Ω), ch(x)
∣∣
Ωe ∈ Pk(Ωe), e = 1, · · · , Nele

}
(2.12a)

Wh :=
{
wh(x) ∈ W

∣∣ wh(x) ∈ C0(Ω), wh(x)
∣∣
Ωe ∈ Pk(Ωe), e = 1, · · · , Nele

}
(2.12b)

where k is a non-negative integer, and Pk(Ωe) denotes the linear vector space spanned by polynomials

up to k-th order defined on the sub-domain Ωe. The finite element formulation for equation (2.8) can

be written as: Find ch(x) ∈ Ph such that we have

B(qh; ch) = L(qh) ∀qh(x) ∈ Qh (2.13)

It has been documented in the literature that the above finite element formulation violates the maximum

principle and the non-negative constraint [24,32,35].

We now outline an optimization-based methodology that satisfies the maximum principle and the

non-negative constraint on general computational grids. To this end, we shall use the symbols � and

� to denote component-wise inequalities for vectors. That is, for given any two vectors a and b

a � b means that ai ≤ bi ∀i (2.14)

The symbol � can be similarly defined as well. Let < ·; · > denote the standard inner-product in

Euclidean space. After finite element discretization, the discrete equations corresponding to equation

(2.13) take the form

Kc = f (2.15)

where K is a symmetric positive definite matrix, c is the vector containing nodal concentrations, and

f is the force vector. Equation (2.15) is equivalent to the following minimization problem

minimize
c∈Rndofs

1

2
〈c;Kc〉 − 〈c;f〉 (2.16)

where “ndofs” denotes the number of degrees of freedom for concentration. Equation (2.15) can lead

to unphysical negative solutions.
4

Following [24,32], a methodology corresponding to equation (2.16) that satisfies the non-negative

constraint can be written as follows:

minimize
c∈Rndofs

1

2
< c;Kc > − < c;f > (2.17a)

subject to 0 � c (2.17b)

where 0 is a vector of size ndofs containing zeros. Since K is positive definite, equation (2.17) has a

unique global minimum [4]. Several robust numerical methods can be used to solve equation (2.17),

which include active set strategy, interior point methods [4]. In this paper, to solve the resulting

optimization problems, we shall use the parallel optimization toolkit TAO [31], which has the active-

set Newton trust region (TRON) and quasi-Newton-based bounded limited memory variable metric

(BLMVM) algorithms.

2.2. Governing equations for transient response. We shall denote the time by t ∈ [0, I], where

I denotes the length of the time interval of interest. We shall denote the time-dependent concentration

by c(x, t). The initial boundary value problem can be written as follows:

∂c

∂t
= div[D(x)grad[c]] + f(x, t) in Ω× (0, I) (2.18a)

c(x, t) = cp(x, t) on ΓD × (0, I) (2.18b)

−n̂(x) ·D(x)grad[c] = qp(x, t) on ΓN × (0, I) (2.18c)

c(x, 0) = c0(x) in Ω (2.18d)

where c0(x) is the prescribed initial concentration, f(x, t) is the time-dependent volumetric source/sink,

cp(x, t) is the time-dependent prescribed concentration on the boundary, and qp(x, t) is the prescribed

time-dependent flux on the boundary.

2.2.1. Maximum principle and the non-negative constraint. The maximum principle of a transient

diffusion equation asserts that the maximum can occur only on the boundary of the domain or in the

initial condition if f(x, t) ≤ 0 and ΓD = ∂Ω. Mathematically, a solution to equations (2.18a)–(2.18a)

will satisfy:

c(x, t) ≤ max

[
max
x∈Ω

c0(x), max
x∈∂Ω

cp(x, t)

]
∀t (2.19)

provided f(x, t) ≤ 0. Similarly, the minimum will occur either on the boundary or in the initial condition

if f(x, t) ≥ 0. That is, if f(x, t) ≥ 0 then a solution to equations (2.18a)–(2.18a) satisfies:

c(x, t) ≥ min

[
min
x∈Ω

c0(x), min
x∈∂Ω

cp(x, t)

]
∀t (2.20)

If f(x, t) ≥ 0 in Ω, cp(x, t) ≥ 0 on the entire ∂Ω, and c0(x) ≥ 0 in Ω then the maximum principle

implies that c(x, t) ≥ 0 in the entire domain at all times, which is the non-negative constraint for the

concentration field for transient problems.

2.2.2. A methodology to enforce the maximum principle for transient problems. We divide the time

interval of interest into N sub-intervals. That is,

[0, I] :=

N⋃
n=0

[tn, tn+1] (2.21)

5

where tn denotes the n-th time-level. We assume that the time-step is uniform, which can be written

as:

∆t = tn+1 − tn (2.22)

Following the recommendation provided in [34] to meet maximum principles, we employ the backward

Euler method for temporal discretization. We shall denote the nodal concentrations at the n-th time-

level by c(n). We shall denote the minimum and maximum values for the concentration by cmin and cmax,

which will be provided by the maximum principle and the non-negative constraint. At each time-level,

one has to solve the following convex quadratic program:

minimize
c(n+1)

1

2
〈c(n+1); K̃c(n+1)〉 − 〈c(n+1); f̃

(n+1)
〉 (2.23a)

subject to cmin1 � c(n+1) � cmax1 (2.23b)

where

K̃ :=
1

∆t
M + K (2.24)

f̃
(n+1)

:= f (n+1) +
1

∆t
Mc(n+1) (2.25)

In the above equation, M is the capacity matrix [34].

3. PARALLEL IMPLEMENTATION

3.1. PETSc and TAO. We leverage on existing scientific libraries such as PETSc and TAO to

formulate our large-scale computational framework. PETSc is a suite of data structures and routines

for the parallel solution of scientific applications. It also provides interfaces to several other libraries

such as Metis/ParMETIS [16] and HDF5 [38] for mesh partitioning and binary data format handling

respectively. The Data Management (DM) data structure is used to manage all information including

vectors and sparse matrices and compatible with binary data formats. To handle unstructured grids in

parallel, a subset of the DM structure called DMPlex (see [3, 20, 21]), as shown in Figure 1, uses the

direct acyclic graph to organize all mesh information. This topology enables the freedom to mix and

match various non vertex-based discretization such as the two-point flux finite volume method and the

classical mixed formulations based on the lowest-order Raviart Thomas finite element space.

Another important feature within PETSc is TAO. The TAO library has a suite of data structures and

routines that enable the solution of large-scale optimization problems. It can support any data structure

or solver within PETSc. Our non-negative methodology will use both the Newton-Trust Region (TRON)

and Bounded Limited-Memory Variable-Metric (BLMVM) solvers available within TAO. BLMVM is

a quasi-Newton method that uses projected gradients to approximate the Hessian, which is useful for

problems where the hessian is too complicated or expensive to compute. Other optimization algorithms

such as TRON and the Gradient Projected Conjugate Gradient (GPCG) typically require Hessian

information and more memory, but they are expected to converge more rapidly than BLMVM. Further

details regarding the implementation of these various methods may be found in [31] and the references

within.

3.2. Finite element implementation. PETSc abstractions for finite elements, quadrature rules,

and function spaces have also been recently introduced and are suitable for the mesh topology within

DMPlex. They are built upon the same framework as the Finite element Automatic Tabulator (FIAT)
6

3 43 42 5

0 1

4

3

2 50 1

depth 0

depth 1

3

4
6

2

5

0 1

5 62

0 1

(a) Optimal 2D and 3D elements

3 43 42 5

876 9 10

0 1

4

3

2 58

7

6 9

10

0 1

depth 0

depth 1

depth 2

depth 3

3

4
6

2

14
20

17

16
22

21

18

15
19

5

0 1

5 62

17161514 18 19 20 21 22

7 8 9 10 11 12 13

0 1

(b) Interpolated 2D and 3D elements

Figure 1. Representation of mesh points within the DMPlex data structure and their

associated directed acyclic graphs

found within the FEniCS Project [18,26,27]. The finite element discretizations simply need the equa-

tions, auxiliary coefficients (e.g., permeability, diffusivity, etc.), and boundary conditions specified as

point-wise functions. We express all discretizations in nonlinear form so let r and J denote the residual

and Jacobian respectively.
7

Following the FEM model outlined in [19], we consider the weak form that depends on fields and

gradients. The residual evaluation can be expressed as:

wTr(c) ∼
∫

Ωe

[w · F0 (c,∇c) +∇w ·F1(c,∇c)] dΩ = 0 (3.1)

where F0(c,∇c) and F1(c,∇c) are user-defined point-wise functions that capture the problem physics.

This framework decouples the problem specification from the mesh and degree of freedom traversal.

That is, the scientist need only focus on providing point function evaluations while letting the finite

element library take care of meshing, quadrature points, basis function evaluation, and mixed forms if

any. The discretization of the residual is written as:

r(c) =

Nele

A
e=1

[
NT BT

]
W

[
F0(cq,∇cq)
F1(cq,∇cq)

]
(3.2)

where A represents the standard assembly operator, N and B are matrix forms of basis functions that

reduce over quadrature points, W is a diagonal matrix of quadrature weights (including the geometric

Jacobian determinant of the element), and cq is the field value at quadrature point q. The Jacobian of

(3.2) needs only the derivatives of the point-wise functions:

J(c) =

Nele

A
e=1

[
NT BT

]
W

[
F0,0 F0,1

F1,0 F1,1

] [
N

B

]
, [Fi,j] =

[∂F0
∂c

∂F0
∂∇c

∂F1
∂c

∂F1
∂∇c

]
(cq,∇cq) (3.3)

The point-wise functions corresponding to the weak form in (2.9) would be:

F0 = −f(x), F1 = D(x)∇cq (3.4a)

F0,0 = 0, F0,1 = 0, F1,0 = 0, F1,1 = D(x) (3.4b)

Similarly, the point-wise functions for the transient response are:

F0 = ċq − f(x, t), F1 = D(x)∇cq (3.5a)

F0,0 =
1

∆t
, F0,1 = 0, F1,0 = 0, F1,1 = D(x) (3.5b)

where ċq denotes the time derivative. A similar discretization is used to project the Neumann boundary

conditions into the residual vector. Assuming a fixed time-step, [Fi,j] and the Jacobian in equation

(3.3) do not change with time and have to be computed only once. If n denotes the time level (n = 0

denotes initial condition) then the residual and Jacobian can be defined as:

r(n) ≡ r(c(n)) (3.6)

J ≡ J(c(0)) (3.7)

To enforce the non-negative methodology, the following objective function b and gradient function g is

provided:

b =
1

2
c(n+1) · Jc(n+1) + c(n+1) ·

[
r(n) − Jc(n)

]
(3.8)

g = J
[
c(n+1) − c(n)

]
+ r(n) (3.9)

BLMVM relies only on the above two equations, whereas TRON needs the Hessian which is equivalent

to J . Algorithm 1 outlines the steps taken in our computational framework.
8

4. PERFORMANCE MODELING

PETSc is a constantly evolving open-source library that brings out new features and algorithms

almost every day. It has capabilities to interface with a large number of other open-source software and

linear algebra packages. However, it is not always known which of these algorithms will have the best

performance across multiple distributed memory HPC systems, especially if these packages have little

documentation and have to be used as black-box solvers. Computational scientists would like to know

which solvers or algorithms to use for their specific need before running jobs on the state-of-the-art HPC

systems. The first and the trivial metric to look for in answering this question is the time-to-solution for

a given solver or optimization method. However, additional information is needed in order to quantify

the hardware and algorithmic efficiency as well as the potential scalability across multiple cores in the

strong sense.

Hardware specifications of HPC systems significantly impact the performance of any numerical

algorithm. Ideally we want our simulations to consume as little wall-clock time as possible as the

number of processing cores increases (i.e., achieving good speedup), but several other factors including

compiler vectorization, cache locality, memory bandwidth, and code implementation may drastically

affect the performance. Table 1 lists the hardware specifications of the two HPC systems (Mustang

and Wolf) that are used in our numerical experiments. The Mustang HPC system consists of relatively

Algorithm 1 Pseudocode for the large-scale transport solver

Create/input DAG on rank 0

Create/input cell-wise velocity on rank 0

if size > 1 then

Partition mesh among all processors

end if

Refine distributed mesh if necessary

Create PetscSection and FE discretization

Set n = 0 and c(0) = 10−8

Insert Dirichlet BC constraints into c(0)

Compute Jacobian J

while true do . Begin time-stepping scheme

Compute Residual r(n)

if Classical Galerkin then . Solve without non-negative methodology

c(n+1) = c(n) − J\r(n)

else . Solve with non-negative methodology

TaoSolve() for c(n+1) based on equations (3.8) and (3.9)

end if

if steady-state or (n) == total number of time steps then

break

else

n+ = 1

end if

end while

9

Table 1. List of HPC systems used in this study

Mustang (MU) Wolf (WF)

Processor AMD Opteron 6176 Intel Xeon E5-2670

Clock rate 2.3 GHz 2.6 GHz

FLOPs/cycle 4 8

Sockets per compute node 2 2

NUMA nodes per socket 2 1

Cores per socket 12 8

Total cores (compute nodes) 38400 (1600) 9856 (616)

Memory per compute node 64 GB 64 GB

L1 cache per core 128 KB 32 KB

L2 cache per core 512 KB 256 KB

L3 cache per socket 12 MB 20 MB

Interconnect 40 Gb/s 40 Gb/s

older generation of processors so it is expected to not perform as well. One could simply measure wall-

clock time across multiple compute nodes on the respective HPC machines and determine the parallel

efficiency of a certain algorithm, but we are interested in quantifying how different algorithms behave

sequentially and what kind of parallel performance to expect before running numerical simulations on

supercomputers. The wall-clock time of any simulation can generally be summed up as a function of

three things: the workload, transfer of data between the memory and CPU register, and interprocess

communication. Hardware efficiency in this context is defined as the amount of time spent performing

work over waiting on memory fetching and cache registers to free up.

The limiting factor of performance for numerical methods on modern computing architectures is

upper-bounded by the memory bandwidth. That is, the floating point performance given by FLOPS/s

will never reach the theoretical peak performance (TPP). This limitation is particularly important

for iterative solvers and optimization methods that rely on numerous sparse matrix-vector (SpMV)

multiplications (see [28] and the references within). The frequent use of SpMV allows for little cache

reuse and will result in a large number of very expensive cache misses. Such behavior is important

to document when determining how efficient a scientific code is, so performance models such as the

Roofline Model [25, 39], which measures memory transfers, have been used to better quantify the

efficiency with respect to the hardware. Performance models in general can help application developers

identify bottlenecks and indicate which areas of the code can be further optimized. In other words, the

code can be designed so that it maximizes the full benefits of the available computing resources. In the

next section, we will demonstrate that such models can also be used to predict the parallel efficiency

of various optimization solvers on the two very different LANL HPC systems. The key parameter for

these performance models is the Arithmetic Intensity (AI) which is defined as:

AI =
Total FLOPS

Total Bytes Transferred
(4.1)

where the Total Bytes Transferred (TBT) metric denotes the amount of bandwidth needed for a given

floating point operation. The AI serves as a multiplier to the actual memory bandwidth and creates a

“roofline” for the estimation of ideal peak performance. A cache model is needed in order to properly

define the TBT.
10

Table 2. Commonly used PETSc operations and their respective Total Bytes Trans-

ferred. Here we note X,Y, Z as vectors with i = 1, · · · , N entries, a is a scalar value,

and nz denotes the total number of non-zeros. We assume that the sizes of integers and

doubles are 4 and 8 bytes respectively.

PETSc function Operation Total Bytes Transferred

VecNorm() a =
√∑N

i X(i)2 8(N + 1)

VecDot() a =
∑N

i X(i) ∗ Y (i) 8(2N + 1)

VecCopy() Y ← X 8(2N)

VecSet() Y (i) = a 8(2N)

VecScale() Y = a ∗ Y 8(2N)

VecAXPY() Y = a ∗X + Y 8(3N)

VecAYPX() Y = X + a ∗ Y 8(3N)

VecPointwiseMult() Z(i) = X(i) ∗ Y (i) 8(3N)

MatMult() SpMV 4(N + nz) + 8(2N + nz)

To this end, we propose a roofline-like performance model where the TBT assumes a “perfect

cache” – each byte of the data needs to be fetched from DRAM only once. This assumption enables

us to predict a slightly more realistic upper bound of the peak performance than by simply comparing

to the TPP. Table 2 lists the key PETSc functions used for the solvers and their respective estimates

of TBT based on the perfect cache assumption. The formula for SpMV follows the procedure outlined

in [9]. We assume that the TBT formula for operations also involving a sparse matrix and vector like

the incomplete lower-upper (ILU) factorization to be the same as MatMult(). Estimating the TBT

for other important operations like the sparse matrix-matrix and triple matrix products (which are

important for multi-grid methods) is an area of future work. In short, our AI formulation relies on the

following four key assumptions:

(i) All floating-point operations (add, multiply, square roots, etc.) are treated equally and equate to

one FLOP count.

(ii) There are no conflict misses. That is, each matrix and vector element is loaded into cache only

once.

(iii) Processor never waits on a memory reference. That is, any number of loads and stores are satisfied

in a single cycle.

(iv) Compilers are capable of storing scalar multipliers in the register only for pure streaming compu-

tations.

Therefore, the efficiency based on this new roofline-like performance model as:

Efficiency (%) =
Measured FLOPS/s

min

{
TPP

AI× STREAMS

× 100 (4.2)

where the numerator is reported by the PETSc program and the denominator is the ideal performance

upper-bounded by both the TPP and the product of AI and STREAMS bandwidth. STREAMS Triad

[14] is one of the most popular benchmarks for determining the achievable memory performance of a

given machine. Figure 2 denotes the estimated memorybandwidth as a function of number of cores on

a single Mustang and Wolf node. It is interesting to note that although the Wolf node has a greater
11

1 2 4 8 12 16 20 24
No. of processors

0

10

20

30

40

50

60

70

B
a

n
d

w
id

th
 (

G
B

/s
)

Mustang
Wolf

Figure 2. Estimated memory bandwidth of a single Mustang and Wolf compute node

based on the STREAMS Triad Benchmark

bandwidth, there is no performance gain past eight cores. This means that an optimal use of a Wolf

compute node for memory-bandwidth bound algorithms would be eight cores, whereas one would still

see some performance gains when using all 24 cores on a Mustang node.

The performance model that uses equation (4.2) is a serial model so the STREAMS metric for the

Mustang and Wolf systems are 5.65 GB/s and 15.5 GB/s respectively. It should be noted that this

performance model does account for cache effects. That is, it does not quantify the useful bandwidth

sustained for some level of cache. The true hardware and algorithmic efficiency is not be reflected by this

model, so our aim is to show relative performance between select PETSc and TAO solvers. Comparing

the AI and the measured FLOPS/s with the STREAMS bandwidth will give us a better understanding

of how high-performing the PETSc and TAO solvers are for select problems.

5. REPRESENTATIVE NUMERICAL RESULTS

In this section, we compare the performance of our non-negative methodology using the TAO solver

to that of the Galerkin formulation using the Krylov Subspace (KSP) solver. We examine the perfor-

mance using two problems:

(i) a unit cube with a hole under steady-state, and

(ii) a transient Chromium transport problem.

The diffusivity tensor is assumed to depend on the flow velocity through

D(x) = (αT ‖v‖+DM) I + (αL − αT)
v ⊗ v

‖v‖
(5.1)

where αL, αT , and DM denote the longitudinal dispersivity, transverse dispersivity and molecular

diffusivity, respectively. We employ the conjugate gradient method and the block Jacobi/ILU(0) pre-

conditioner for solving the linear system from the Galerkin formulation and employ TAO’s TRON and

BLMVM methods for the non-negative methodology. The relative convergence tolerances for both KSP

and TAO solvers are set to 10−6, and ∆t for the transient response in the Chromium problem is initially

set to 0.2 days. For strong-scaling studies shown here, we used OpenMPI v1.6.5 for message passing and

bound processes to cores while mapping by sockets. ParaView [2] and VisIt [5] were used to generate

all contour and mesh plots.
12

(a) Location of the hole (b) Mesh type A

(c) Mesh type B (d) Mesh type C

Figure 3. Cube with a hole: pictorial description and the associated unstructured grids.

Remark 1. Throughout the paper, the non-negative methodology that we refer to, is in fact a

discrete maximum principle preserving methodology, in that, along with the non-negative constraint we

also enforce that the concentrations are less than or equal to 1.

5.1. Anisotropic diffusion in a unit cube with a cubic hole. Let the computational domain

be a unit cube with a cubic hole of size [4/9, 5/9] × [4/9, 5/9] × [4/9, 5/9]. The concentration on the

outer boundary is taken to be zero and the concentration on the interior boundary is taken to be unity.

The volumetric source is taken as zero (i.e., f(x) = 0). The velocity vector field for this problem is

chosen to be

v(x) = ex + ey + ez (5.2)

The diffusion parameters are set as: αL = 1, αT = 0.001, and DM = 0. The pictorial description

of the computational domain and the three mesh types composed of 4-node tetrahedrons are shown in
13

Figure 4. Cube with a hole: numerical solution for cases A1 (left), B2 (middle), and C3

(right) using the Galerkin formulation (top row) and non-negative methodology (bottom

row).

Table 3. Cube with a hole: list of various mesh type and refinement level combinations used

Case Mesh type Refinement level Tetrahedrons Vertices

A1 A 1 199,296 36,378

B1 B 1 409,848 75,427

C1 C 1 793,824 140,190

A2 A 2 1,594,368 278,194

B2 B 2 3,278,784 574,524

C2 C 2 6,350,592 1,089,562

A3 A 3 12,754,994 2,175,330

B3 B 3 26,230,272 4,483,126

C3 C 3 50,804,736 9,172,044

Figure 3. We consider three unstructured mesh types with three levels of element-wise mesh refinement,

giving us nine total case studies of increasing problem size as shown in Table 3. We ran a total of five

different simulations for this study:
14

Table 4. Cube with a hole: minimum and maximum concentrations for each case

Case Min. concentration Max. concentration % nodes violated

A1 -0.0224825 1.00000 9,518/36,378 → 26.2%

B1 -0.0139559 1.00000 32,247/43,180 → 42.8%

C1 -0.0125979 1.00000 57,272/140,190 → 40.9%

A2 -0.0311518 1.00103 82,983/278,194 → 29.2%

B2 -0.0143857 1.00000 255,640/574,524 → 44.9%

C2 -0.0119539 1.00972 453,766/1,089,562 → 41.6%

A3 -0.0258559 1.00646 643,083/2,175,330 → 29.6%

B3 -0.0115908 1.00192 2,073,934/4,483126 → 46.3%

C3 -0.0096186 1.00545 4,932,551/9,172,044 → 53.8%

• Galerkin with CG/block Jacobi

• TRON1: with KSP tolerance of 10−1

• TRON2: with KSP tolerance of 10−2

• TRON3: with KSP tolerance of 10−3

• BLMVM

Table 5. Cube with a hole: wall-clock times (seconds) on Mustang for each solver

Case Galerkin TRON1 TRON2 TRON3 BLMVM

A1 0.337 0.933 0.981 1.14 2.62

B1 0.790 1.72 2.06 2.71 5.04

C1 2.24 4.34 5.80 7.74 13.5

A2 7.21 15.2 21.7 32.5 72.0

B2 15.4 30.0 43.7 57.5 109

C2 40.4 67.8 113 118 286

A3 121 225 414 599 1167

B3 315 498 1061 1344 2524

C3 997 1539 2490 4365 9679

Table 6. Cube with a hole: wall-clock times (seconds) on Wolf for each solver

Case Galerkin TRON1 TRON2 TRON3 BLMVM

A1 0.126 0.388 0.396 0.449 1.01

B1 0.314 0.720 0.853 1.07 2.03

C1 0.888 1.91 2.47 3.31 5.71

A2 2.58 6.34 8.74 12.8 26.2

B2 5.90 12.9 17.8 22.8 46

C2 16.2 30.1 47.3 48.9 133

A3 48.0 98.4 129 247 609

B3 107 171 342 435 1060

C3 281 467 870 1245 3131

15

A1 B1 C1 A2 B2 C2 A3 B3 C3
0

500

1000

1500

2000

Cases

K
S

P
/T

A
O

 S
o
lv

e
r

It
e
ra

ti
o
n
s

Galerkin (KSP)

BLMVM (TAO)

Figure 5. Cube with a hole: solver iterations needed for Galerkin and BLMVM.

A1 B1 C1 A2 B2 C2 A3 B3 C3
0

500

1000

1500

2000

2500

Cases

K
S

P
 I
te

ra
ti
o
n
s

TRON1

TRON2

TRON3

A1 B1 C1 A2 B2 C2 A3 B3 C3
0

5

10

15

20

Cases

T
A

O
 I
te

ra
ti
o
n
s

TRON1

TRON2

TRON3

Figure 6. Cube with a hole: KSP (left) and TAO (right) solver iterations needed for TRON.

The TRON solvers also use the CG and block Jacobi preconditioner but with different KSP tolerances.

Numerical results for both the Galerkin formulation and the non-negative methodologies for some of

the mesh cases are shown in Figure 4. The top row of figures arise from the Galerkin formulation

where the white regions denote negative concentrations, and the bottom row arise from either TRON

or BLMVM. Details concerning the violation of the DMP for each case study can be found in Table 4.

Concentrations both negative and greater than one arise for all case studies. Moreover, simply refining

the mesh does not resolve these issues; in fact, refinment worsens the violation. These numerical results

indicate that our computational framework can successfully enforce the DMP for diffusion problems

with highly anisotropic diffusivity.

5.1.1. Performance modeling. We first consider the wall-clock time spent in the solvers on a single

core. Table 5 and 6 depict the solver time for each mesh, and we first note that Mustang system requires

significantly more wall-clock time to obtain a solution than Wolf; this behavior is expected due to the

difference in HPC hardware specifications listed in Table 1, specifically, Mustang has the lower clock rate

and lower bandwidth (as determined through STREAMS Triad). It can also be seen that the various

non-negative solvers consume varying amounts of wall-clock time. BLMVM can require as much as ten
16

A1 B1 C1 A2 B2 C2 A3 B3 C3
0

0.1

0.2

0.3

0.4

0.5

Cases

G
F

L
O

P
S

/s

Galerkin TRON1 TRON2 TRON3 BLMVM

(a) Mustang

A1 B1 C1 A2 B2 C2 A3 B3 C3
0

0.5

1

1.5

Cases

G
F

L
O

P
S

/s

Galerkin TRON1 TRON2 TRON3 BLMVM

(b) Wolf

Figure 7. Cube with a hole: measured floating-point rate (FLOPS/s) on a single core.

times the amount of wall-clock time as the standard Galerkin method. TRON on the other hand, does

not consume nearly as much time but tightening the KSP tolerances will gradually increase the amount

of time. We are interested in determine why these optimization solvers consume more wall-clock time,

whether it be mostly due to additional workload associated with optimization-based techniques or due

to the presence of relatively more complicated and expensive data structures compared to the standard

solvers used for the Galerkin formulation. The first step is noting the total KSP and TAO iterations

needed and how they vary with respect to problem size. Figure 5 depicts the KSP and TAO iterations

for the Galerkin and BLMVM methods respectively. It is well-known that block Jacobi (also known

as ILU(0)) requires more iterates as the size of the problem increases. In other words, the solver may

exhibit poor scaling for extremely large problems, but we see that the BLMVM algorithm has an even

poorer scaling rate of the solver iterates. For the TRON solvers, we document both the KSP and TAO

iterates as shown in Figure 6. We see that tightening the KSP tolerance increases the number of KSP

iterates but requires slightly fewer TAO iterates. This behavior indicates that the more accurate the

computed gradient projection is, the fewer optimization loops the solver has to perform.
17

A1 B1 C1 A2 B2 C2 A3 B3 C3
0

0.05

0.1

Cases

A
ri
th

m
e
ti
c
 I
n
te

n
s
it
y

Galerkin TRON1 TRON2 TRON3 BLMVM

Figure 8. Cube with a hole: arithmetic intensity for all solvers and all cases on a single

processor.

We also examine the measured floating-point rate provided by the PETSc performance logs, as

shown in Figure 7, of all five solvers across their respective machines, and the floating point performance

decreases as the problem size grows. One could compare these numbers to the TPP and see that the

hardware efficiencies are no greater than 5%, but it is difficult to draw any other conclusions with regard

to the computational performance. The calculated AI, based on our proposed performance model, is

shown in Figure 8. It is interesting to note that the AI remains largely invariant with problem size

unlike the wall-clock time, solver iterations, and floating point rates. According to the perfect cache

model, the Galerkin formulation’s AI is greater than any of the non-negative methodologies. The

optimization-based algorithm based on TAO’s BLMVM solver has significantly more streaming/vector

operations which explains the relatively lower AI. Using these metrics in equation (4.2) as well as the

STREAMS Triad bandwidth of one core as shown in Figure 2, the estimated roofline-based efficiencies

are shown in Figure 9. Although the raw floating-point rate of BLMVM is lower than the Galerkin

method, the roofline model suggests that BLMVM is actually more efficient in the hardware sense. The

TRON methods have much lower floating-point rates, but these metrics can be improved or “gamed” by

tightening the KSP tolerances. This behavior leads us to believe that there is some latency associated

with setting up the data structures needed to compute gradient descent projections.

5.1.2. Strong-scaling. The metric of most interest to many computational scientists is the strong-

scaling potential of any numerical framework. We conduct strong-scaling studies to measure the speedup

of all nine case studies over 64 cores. Four Mustang nodes with 16 cores each and 8 Wolf nodes with

8 cores each are allocated for this study. We do not fully saturate the compute nodes because the

STREAMS benchmark indicates that there is little or no gain in memory performance when using a full

node. Figure 10 depicts the speedup on the Mustang system, and Figure 11 depicts the speedup on the

Wolf system. First, we note that the parallel efficiency (actual speedup over ideal speedup) increases

with problem size due to Amdahl’s Law. We also note that Wolf exhibits better strong-scaling due to

the faster speedups for the same test studies. For all problems and machines, the TRON simulations

are slightly less efficient in the parallel sense but can be improved by tightening the KSP tolerances.

Interestingly, the BLMVM algorithm not only has the best roofline efficiency but also the best parallel

speedup. We can infer from these results that although BLMVM is the more efficient optimization in

the hardware sense, TRON is more efficient in the algorithmic sense due to its lesser time-to-solution.
18

A1 B1 C1 A2 B2 C2 A3 B3 C3
0

20

40

60

80

100

Cases

E
ff
ic

ie
n
c
y
 (

%
)

Galerkin TRON1 TRON2 TRON3 BLMVM

(a) Mustang

A1 B1 C1 A2 B2 C2 A3 B3 C3
0

20

40

60

80

100

Cases

E
ff
ic

ie
n
c
y
 (

%
)

Galerkin TRON1 TRON2 TRON3 BLMVM

(b) Wolf

Figure 9. Cube with a hole: estimated floating-point efficiency with respect to the

arithmetic intensity and measured memory bandwidth from STREAMS.

Our study has shown that one can draw correlations between the performance models conducted on a

single-core and the actual speedup across multiple distributed memory nodes. As future solvers and

algorithms are implemented within PETSc, we can use this performance model to assess how efficient

they are in both the hardware and algorithmic sense and how efficiently they will scale in a parallel

setting.

5.2. Transport of chromium in subsurface. Subsurface clean-up due to anthropogenic con-

tamination is a big challenge [7]. Remediation studies [10,11] need accurate predictions of transport of

the involved chemical species, which are obtained using limited data at monitoring wells and through

numerical simulations. To accurately predict the fate of the contaminant, a transport solver that: a) is

robust, in that it will not give unphysical solutions, and b) can handle field-scale scenarios, is needed.

The computational framework that is proposed in this paper is an ideal candidate for such problems.

We now consider a realistic large-scale problem to predict the fate of chromium in the Los Alamos,

New Mexico area. The chromium was released into the Sandia canyon in the 50s up to early 70s. Back
19

1 16 32 48 64
1

16

32

48

64
Case A1

S
p
e
e
d
u
p

Ideal
Galerkin
TRON1
TRON2
TRON3
BLMVM

1 16 32 48 64
1

16

32

48

64
Case B1

1 16 32 48 64
1

16

32

48

64
Case C1

1 16 32 48 64
1

16

32

48

64
Case A2

S
p
e
e
d
u
p

1 16 32 48 64
1

16

32

48

64
Case B2

1 16 32 48 64
1

16

32

48

64
Case C2

1 16 32 48 64
1

16

32

48

64
Case A3

of cores

S
p
e
e
d
u
p

1 16 32 48 64
1

16

32

48

64
Case B3

of cores
1 16 32 48 64

1

16

32

48

64
Case C3

of cores

Figure 10. Cube with a hole: speedup for all 9 mesh cases up to 64 processors on the

Mustang system (16 cores per node).

then chromium was used as an anti-corrosion agent for the cooling towers at a power plant at the Los

Alamos National Laboratory (see [12] and references therein for details).

Here we study the effectiveness of our proposed framework to this real-world scenario of predicting

the extent of chromium plume. The following is a conceptual model domain that is considered: A

domain of size [496, 503]km × [536, 542]km × [0, 100]m with the permeability field (m2) as shown in

Figure 12. R42 in Figure 12 is estimated to be the contaminant source location and a pumping well

is located at R28. The parameters used for this problem are shown in Table 7, and we employ the
20

1 16 32 48 64
1

16

32

48

64
Case A1

S
p
e
e
d
u
p

Ideal
Galerkin
TRON1
TRON2
TRON3
BLMVM

1 16 32 48 64
1

16

32

48

64
Case B1

1 16 32 48 64
1

16

32

48

64
Case C1

1 16 32 48 64
1

16

32

48

64
Case A2

S
p
e
e
d
u
p

1 16 32 48 64
1

16

32

48

64
Case B2

1 16 32 48 64
1

16

32

48

64
Case C2

1 16 32 48 64
1

16

32

48

64
Case A3

of cores

S
p
e
e
d
u
p

1 16 32 48 64
1

16

32

48

64
Case B3

of cores
1 16 32 48 64

1

16

32

48

64
Case C3

of cores

Figure 11. Cube with a hole: speedup for all 9 mesh cases up to 64 cores on the Wolf

system (8 cores per node).

following boundary conditions:

cp(x = 496km, y, z) = cp(x = 503km, y, z) = cp(x, y = 536km, z) = cp(x, y = 542km, z) = 0 (5.3)

For this highly heterogeneous problem, we employ PETSc’s algebraic multi-grid preconditioner (GAMG)

and couple this with the TRON algorithm for the non-negative solver. Our goal is to examine its strong-

scaling potential across 1024 cores. We first solve the steady flow equation (based on mass balance and

Darcy’s model to relate pressure and mass flux) with the pumping well located at R28. Cell-wise velocity

is obtained from the resulting pressure field and used to calculated element-wise dispersion tensor. We

then solve the transient diffusion problem (with tensorial dispersion) with a constant contaminant source
21

Figure 12. Chromium plume migration in the subsurface: Permeability field (m2) and

the locations of the pumping well (R28) and contaminant source (R42).

located at R40 for up to 180 days. The concentrations at select time levels for Galerkin formulation

and non-negative methodology are shown in Figures 13 and 14, respectively. Negative concentrations

arise with the Galerkin formulation even as the solution approaches steady-state.

Figure 15 depicts the amount of wall-clock time with respect to the number of cores at the first

time level. We see here that the demonstrates good parallel performance across 1024 cores with up

to 35 percent parallel efficiency. Unlike the previous benchmark problem, we consider a case where

we completely saturate a Wolf node by using all 16 cores and notice that the performance is slightly

worse than using a partially saturated node (8 cores). This change of behavior can be attributed to

the lack of memory performance improvement one achieves when using all 16 cores as shown in Figure

2. Interprocess communication becomes a major component of the Wolf simulations so the parallel

scalability gets worse the more efficiently TRON conducts its work. Nonetheless, the higher quality

computing resources of a Wolf node results in faster solve times than the solve time on Mustang even

with lesser parallel efficiency.

Table 7. Chromium plume migration in the subsurface: parameters

Parameter Value

αL 100 m

αT 0.1 m

Contaminant source (R42) 1× 10−4 kg/m2s2

∆t 0.2 days

Domain size 7000 km×6000 km×100 m

DM 1× 10−9 m2/s

Permeability Varies

Pumping well (R28) -0.01 kg/m2s2

Total hexahedrons 1,984,512

Total vertices 2,487,765

v Varies with position

Viscosity 3.95×10−5 Pa s

22

Figure 13. Chromium plume migration in the subsurface: concentrations at select

times using the Galerkin formulation.

23

Figure 14. Chromium plume migration in the subsurface: concentrations at select

times using the non-negative methodology.

24

16 32 64 128 256 512 1024
of cores

10
0

10
1

10
2

10
3

W
a

ll-
c
lo

c
k
 t

im
e

 (
s
)

34.5%

28.1%

20.9%

Ideal - Mustang
Actual - Mustang
Ideal - Wolf (16 cores per node)
Actual - Wolf (16 cores per node)
Ideal - Wolf (8 cores per node)
Actual - Wolf (8 cores per node)

Figure 15. Chromium plume migration in the subsurface: wall-clock time of the TRON

optimization solver with multi-grid preconditioner (GAMG) versus number of processors

after the first time level. Two Wolf cases are considered, where we fully saturate a

compute node (16 cores) and where we partially saturate a compute node (8 cores per

node). The parallel efficiency with respect to 16 cores is shown on the right hand side.

Another metric of interest is the number of solver iterations required for convergence across various

number of MPI processes. Figure 16 depicts the number of KSP solver iterations and TAO solver

iterations across 1024 cores, and we notice that there are significant fluctuations. This trend is largely

attributed to the accumulation of numerical round-offs from the TRON algorithm. One can reduce

these fluctuations by tightening the solver tolerances, but the strong-scaling remains largely unaffected

even for the results shown. This study suggests that the proposed non-negative methodology using

TRON with GAMG preconditioning is suitable for large-scale transient heterogeneious and anisotropic

diffusion equations.

6. CONCLUDING REMARKS

We presented a parallel non-negative computational framework suitable for solving large-scale

steady-state and transient anisotropic diffusion equations. The main contribution is that the proposed

parallel computational framework satisfies the discrete maximum principles for large-scale diffusion-type

equations even on general computational grids. The parallel framework is built upon PETSc’s DMPlex

data structure, which can handle unstructured meshes, and TAO for solving the resulting optimization

problems from the discretization formulation. We have conducted systematic performance modeling

and strong-scaling studies to demonstrate the efficiency, both in the parallel and hardware sense of the
25

16 32 64 128 256 512 1024
500

750

1000

1250

1500

of cores

K
S

P
 S

o
lv

e
r

It
e
ra

ti
o
n
s

16 32 64 128 256 512 1024
20

22.5

25

27.5

30

T
A

O
 S

o
lv

e
r

It
e
ra

ti
o
n
s

KSP iterations

TAO iterations

Figure 16. Chromium plume migration in the subsurface: number of KSP (left hand

side) and TAO (right hand side) solver iterations for the TRON optimization solver

versus number of cores after the first time level.

computational framework. The robustness of the proposed framework has been illustrated by solving a

large-scale realistic problem involving the transport of chromium in the subsurface at Los Alamos, New

Mexico. Future areas of research include: (a) extending the proposed parallel framework to advective-

diffusive and advective-diffusive-reactive systems, and (b) posing the discrete problem as a variational

inequality, which will be valid even for non-self-adjoint operators, and use other PETSc capabilities to

solve such variational inequalities.

ACKNOWLEDGMENTS

The authors thank Matthew G. Knepley (Rice University) for his invaluable advice. The authors

also thank the Los Alamos National Laboratory (LANL) Institutional Computing program. JC and

KBN acknowledge the financial support from the Houston Endowment Fund and from the Department

of Energy through Subsurface Biogeochemical Research Program. SK thanks the LANL LDRD program

and the LANL Environmental Programs Directorate for their support. The opinions expressed in this

paper are those of the authors and do not necessarily reflect that of the sponsors.

References

[1] R. J. Adams and J. J. F. Fournier. Sobolev Spaces, volume 140. Academic press, 2003.

[2] U. Ayachit. The ParaView Guide: A Parallel Visualization Application. Kitware, 2015.

[3] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik,

M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang. PETSc users manual. Technical

Report ANL-95/11 - Revision 3.6, Argonne National Laboratory, 2015.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, UK, 2004.

[5] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller, C. Harrison, G. H.

Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M. Durant, J. M. Favre,

and P. Navrátil. VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data. In High Performance

Visualization–Enabling Extreme-Scale Scientific Insight, pages 357–372. 2012.

26

[6] P. G. Ciarlet and P-A. Raviart. Maximum principle and uniform convergence for the finite element method. Computer

Methods in Applied Methods and Engineering, 2:17–31, 1973.

[7] US EPA. Cleaning up the nation’s waste sites: Markets and technology trends. Technical Report EPA 542-R-04-015,

2004.

[8] L. C. Evans. Partial Differential Equations. American Mathematical Society, Providence, Rhode Island, USA, 1998.

[9] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Toward realistic performance bounds for implicit CFD

codes. In Proceedings of Parallel CFD ‘99, pages 233–240. Elsevier, 1999.

[10] G. E. Hammond and P. C. Lichtner. Field-scale model for the natural attenuation of uranium at the Hanford 300

Area using high-performance computing. Water Resources Research, 46:W09602, 2010.

[11] D. R. Harp and V. V. Vesselinov. Contaminant remediation decision analysis using information gap theory. Stochastic

Environmental Research and Risk Assessment, 27(1):159–168, 2013.

[12] J. M. Heikoop, T. M. Johnson, K. H. Birdsell, P. Longmire, D. D. Hickmott, E. P. Jacobs, D. E. Broxton, D. Katzman,

V. V. Vesselinov, M. Ding, D. T. Vanimana, S. L. Reneaua, T. J. Goering, J. Glessnerb, and A. Basu. Isotopic evidence

for reduction of anthropogenic hexavalent chromium in Los Alamos National Laboratory groundwater. Chemical

Geology, 373:1–9, 2014.

[13] K. D. Hjelmstad. Fundamentals of Structural Mechanics. Springer Science+Business Media, Inc., New York, USA,

second edition, 2005.

[14] J. McCalpin. STREAM: sustainable memory bandwidth in high performance computers, 1995.

https://www.cs.virginia.edu/stream/.

[15] S. Karra, S. L. Painter, and P. C. Lichtner. Three-phase numerical model for subsurface hydrology in permafrost-

affected regions (PFLOTRAN-ICE v1.0). The Cryosphere, 8(5):1935–1950, 2014.

[16] G. Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM Journal

on Scientific Computing, 20:359–392, 1999.

[17] S. Kelkar, K. Lewis, S. Karra, G. Zyvoloski, S. Rapaka, H. Viswanathan, P. K. Mishra, S. Chu, D. Coblentz, and

R. Pawar. A simulator for modeling coupled thermo-hydro-mechanical processes in subsurface geological media. In-

ternational Journal of Rock Mechanics and Mining Sciences, 70:569–580, 2014.

[18] R. C. Kirby. FIAT: Numerical Construction of Finite Element Basis Functions, chapter 13. Springer, 2012.

[19] M. G. Knepley, J. Brown, K. Rupp, and B. F. Smith. Achieving High Performance with Unified Residual Evaluation.

arXiv:1309.1204, September 2013.

[20] M. G. Knepley and D. A. Karpeev. Mesh algorithms for PDE with vieve I: Mesh distribution. Scientific Programming,

17:215–230, 2009.

[21] M. Lange, M. G. Knepley, and G. J. Gorman. Flexible, scalable mesh and data management using PETSc DMPlex.

In Proceedings of the 3rd International Conference on Exascale Applications and Software, EASC ‘15, pages 71–76.

University of Edinburgh, 2015.

[22] P. C. Lichtner, G. E. Hammond, C. Lu, S. Karra, G. Bisht, B. Andre, R. T. Mills, and J. Kumar. PFLOTRAN

user manual: A massively parallel reactive flow and transport model for describing surface and subsurface processes.

Technical Report Report No.: LA-UR-15-20403, Los Alamos National Laboratory, 2015.

[23] P. C. Lichtner and S. Karra. Modeling multiscale-multiphase-multicomponent reactive flows in porous media: Ap-

plication to CO2 sequestration and enhanced geothermal energy using pflotran. In R. Al-Khoury and J. Bundschuh,

editors, Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage, pages 81–136. CRC

Press, http://www.crcnetbase.com/doi/pdfplus/10.1201/b16790-6, 2014.

[24] R. Liska and M. Shashkov. Enforcing the discrete maximum principle for linear finite element solutions of second-order

elliptic problems. Communications in Computational Physics, 3(4):852–877, 2008.

[25] Y. J. Lo, S. Williams, B. V. Straalen, T. J. Ligocki., M. J. Cordery, N. J. Wright, M. W. Hall, and L. Oliker.

Roofline: an insightful visual performance model for multicore architectures. High Performance Computing Systems.

Performance Modeling, Benchmarking, and Simulation, 8966:129–148, 2015.

[26] A. Logg. Efficient Representation of Computational Meshes. International Journal of Computational Science and

Engineering, 4:283–295, 2009.

[27] A. Logg, K. A. Mardal, and G. N. Wells. Automated Solution of Differential Equations by the Finite Element Method.

Springer, 2012.

27

[28] D. A. May, J. Brown, and L. L. Laetitia. pTatin3D: High-performance methods for long-term lithospheric dynamics.

In Proceedings of the International Conference for High Performance Computing, Network, Storage and Analysis, SC

‘14, pages 274–284. IEEE Press, 2014.

[29] M. K. Mudunuru and K. B. Nakshatrala. On enforcing maximum principles and achieving element-wise species

balance for advection-diffusion-reaction equations under the finite element method. Journal of Computational Physics,

305:448–493, 2016.

[30] M. K. Mudunuru and K. B. Nakshatrala. On mesh restrictions to satisfy comparison principles, maximum princi-

ples, and the non-negative constraint: Recent developments and new results. Mechanics of Advanced Materials and

Structures, DOI: 10.1080/15502287.2016.1166160, 2016.

[31] T. Munson, J. Sarich, S. Wild, S. Benson, and L. C. McInnes. TAO 2.0 users manual. Technical Report ANL/MCS-TM-

322, Mathematics and Computer Science Division, Argonne National Laboratory, 2012. http://www.mcs.anl.gov/tao.

[32] H. Nagarajan and K. B. Nakshatrala. Enforcing the non-negativity constraint and maximum principles for diffusion

with decay on general computational grids. International Journal for Numerical Methods in Fluids, 67:820–847, 2011.

[33] K. B. Nakshatrala, M. K. Mudunuru, and A. J. Valocchi. A numerical framework for diffusion-controlled bimolecular-

reactive systems to enforce maximum principles and the non-negative constraint. Journal of Computational Physics,

253:278–307, 2013.

[34] K. B. Nakshatrala, H. Nagarajan, and M. Shabouei. A numerical methodology for enforcing maximum principles and

the non-negative constraint for transient diffusion equations. Communications in Computational Physics, 19:53–93,

2016.

[35] K. B. Nakshatrala and A. J. Valocchi. Non-negative mixed finite element formulations for a tensorial diffusion equation.

Journal of Computational Physics, 228:6726–6752, 2009.

[36] G. S. Payette, K. B. Nakshatrala, and J. N. Reddy. On the performance of high-order finite elements with respect to

maximum principles and the nonnegative constraint for diffusion-type equations. International Journal for Numerical

Methods in Engineering, 91:742–771, 2012.

[37] K. Pruess. The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable

media. Vadose Zone Journal, 3(3):738–746, 2004.

[38] The HDF Group. Hierarchical Data Format, version 5, 1997-2015. http://www.hdfgroup.org/HDF5/.

[39] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual performance model for multicore archi-

tectures. Communications of the ACM, 52:65–76, 2009.

[40] G. Zyvoloski. FEHM: A control volume finite element code for simulating subsurface multi-phase multi-fluid heat and

mass transfer. Los Alamos Unclassified Report LA-UR-07-3359, 2007.

28

	1. INTRODUCTION
	2. GOVERNING EQUATIONS AND ASSOCIATED NON-NEGATIVE NUMERICAL METHODOLOGIES
	3. PARALLEL IMPLEMENTATION
	4. PERFORMANCE MODELING
	5. REPRESENTATIVE NUMERICAL RESULTS
	6. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	References

