Skip to main content
Log in

Unconditionally Strong Stability Preserving Extensions of the TR-BDF2 Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We analyze monotonicity, strong stability and positivity of the TR-BDF2 method, interpreting these properties in the framework of absolute monotonicity. The radius of absolute monotonicity is computed and it is shown that the parameter value which makes the method L-stable is also the value which maximizes the radius of monotonicity. In order to achieve unconditional monotonicity, hybrid variants of TR-BDF2 are proposed, that reduce the formal order of accuracy, while keeping the native L-stability property, which is useful for the application to stiff problems. Numerical experiments compare these different hybridization strategies to other methods used in stiff and mildly stiff problems. The results show that the proposed strategies provide a good compromise between accuracy and robustness at high CFL numbers, without suffering from the limitations of alternative approaches already available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bank, R., Coughran, W., Fichtner, W., Grosse, E., Rose, D., Smith, R.: Transient simulation of silicon devices and circuits. IEEE Trans. Electron Devices 32, 1992–2007 (1985)

    Article  Google Scholar 

  2. Bellen, A., Jackiewicz, Z., Zennaro, M.: Contractivity of waveform relaxation Runge–Kutta iterations and related limit methods for dissipative systems in the maximum norm. SIAM J. Numer. Anal. 31(2), 499–523 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellen, A., Torelli, L.: Unconditional contractivity in the maximum norm of diagonally split Runge–Kutta methods. SIAM J. Numer. Anal. 34(2), 528–543 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertolazzi, E.: Positive and conservative schemes for mass action kinetics. Comput. & Math. Appl. 32(6), 29–43 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burchard, H., Deleersnijder, E., Meister, A.: A high-order conservative Patankar-type discretisation for stiff systems of production–destruction equations. Appl. Numer. Math. 47, 1–30 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butcher, J., Chen, D.: A new type of singly-implicit Runge–Kutta method. Appl. Numer. Math. 34, 179–188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calvo, M., de Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection-diffusion-reaction equations. Appl. Numer. Math. 37, 535–549 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantinescu, E., Sandu, A.: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33, 239–278 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dekker, K., Verwer, J.: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations. Elsevier, North Holland (1984)

    MATH  Google Scholar 

  10. Duraisamy, K., Baeder, J.: Implicit scheme for hyperbolic conservation laws using nonoscillatory reconstruction in space and time. SIAM J. Sci. Comput. 29(6), 2607–2620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duraisamy, K., Baeder, J., Liu, J.G.: Concepts and application of time-limiters to high resolution schemes. J. Sci. Comput. 19, 139–162 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferracina, L., Spijker, M.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42(3), 1073–1093 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferracina, L., Spijker, M.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 74(249), 201–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferracina, L., Spijker, M.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Formaggia, L., Scotti, A.: Positivity and conservation properties of some integration schemes for mass action kinetics. SIAM J. Numer. Anal. 49(3), 1267–1288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giraldo, F., Kelly, J., Constantinescu, E.: Implicit–explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comput. 35(5), 1162–1194 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gottlieb, S., Ketcheson, D., Shu, C.W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  18. Gottlieb, S., Shu, C.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gottlieb, S., Shu, C., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hairer, E., Lubich, C., Wanner, G. (eds.): Geometric Numerical Integration, 2nd edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  21. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 3 corr. edn. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  22. Hairer, E.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2 rev. edn. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  23. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43(3), 924–948 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Higueras, I.: Strong stability for Runge–Kutta schemes on a class of nonlinear problems. J. Sci. Comput. 57(3), 518–535 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Higueras, I.: Strong stability for additive Runge–Kutta methods. SIAM J. Numer. Anal. 44(4), 1735–1758 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Higueras, I., Roldán, T.: Stage value predictors for additive and partitioned Runge–Kutta methods. Appl. Numer. Math. 56, 1–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hosea, M., Shampine, L.: Analysis and implementation of TR-BDF2. Appl. Numer. Math. 20, 21–37 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hundsdorfer, W., Mozartova, A., Spijker, M.: Special boundedness properties in numerical initial value problems. BIT 51(4), 909–936 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hundsdorfer, W., Ruuth, S., Spiteri, R.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41(2), 605–623 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hundsdorfer, W., Spijker, M.: Boundedness and strong stability of Runge–Kutta methods. Math. Comput. 80(274), 863–886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  33. Ketcheson, D.: Step sizes for strong stability preservation with downwind-biased operators. SIAM J. Numer. Anal. 49(4), 1649–1660 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ketcheson, D., Gottlieb, S., Macdonald, C.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49(9), 2618–2639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ketcheson, D., Macdonald, C., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59, 373–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ketcheson, D., Macdonald, C., Ruuth, S.: Spatially partitioned embedded Runge–Kutta methods. SIAM J. Numer. Anal. 51(5), 2887–2910 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kraaijevanger, J.: Contractivity of Runge–Kutta methods. BIT 31, 482–528 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lefever, R., Nicolis, G.: Chemical instabilities and sustained oscillations. J. Theor. Biol. 30, 267–284 (1971)

    Article  MATH  Google Scholar 

  39. LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  40. Liu, H., Zou, J.: Some new additive Runge–Kutta methods and their applications. J. Comput. Appl. Math. 190, 74–98 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Macdonald, C., Gottlieb, S., Ruuth, S.: A numerical study of diagonally split Runge–Kutta methods for PDEs with discontinuities. J. Sci. Comput. 35, 89–112 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sandu, A.: Positive numerical integration methods for chemical kinetic systems. J. Comput. Phys. 170, 589–602 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shu, C.: Total-variation-diminishing time discretization. SIAM J. Sci. Stat. Comput. 9(6), 1073–1084 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shu, C., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  Google Scholar 

  45. Spijker, M.: Contractivity in the numerical solution of initial value problems. Numerische Mathematik 42(3), 271–290 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  46. Spijker, M.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45(3), 1226–1245 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161, 140–168 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tumolo, G., Bonaventura, L.: A semi-implicit, semi-Lagrangian discontinuous Galerkin framework for adaptive numerical weather prediction. Q. J. R. Meteorol. Soc. 141, 2582–2601 (2015)

    Article  Google Scholar 

  49. van Veldhuizen, S., Vuik, C., Klein, C.: A note on the numerical simulation of Kleijn’s benchmark problem. Report 06–15, Delft University of Technology, Dept. of Applied Mathematical Analysis (2006)

  50. van Veldhuizen, S., Vuik, C., Klein, C.: Comparison of ODE methods for laminar reacting gas flow simulations. Numer. Methods Partial Differ. Equ. 24(3), 1037–1054 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Verwer, J., Spee, E., Blom, J., Hundsdorfer, W.: A second-order Rosenbrock method applied to photochemical dispersion problems. SIAM J. Sci. Comput. 20(4), 1456–1480 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank two anonymous reviewers for their constructive criticism, which has greatly helped to improve the original version of this paper. A.D.R. would like to thank Tenova S.p.A. for sponsoring his Executive Ph.D. at Politecnico di Milano and all the faculty members at the Department of Mathematics for their continuous support. L.B. acknowledges financial support from the INDAM - GNCS project ’Metodi numerici semi-impliciti e semi-Lagrangiani per sistemi iperbolici di leggi di bilancio’. Useful discussions with L. Formaggia and A. Scotti at MOX on the topics studied in this paper are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bonaventura.

Additional information

Partially supported by the INDAM - GNCS project ’Metodi numerici semi-impliciti e semi-Lagrangiani per sistemi iperbolici di leggi di bilancio’.

Appendices

Appendix 1: Additional Results on Monotonicity

Discrete maximum principle. The discrete maximum principle is closely related to the property of monotonicity.

Definition 7

Discrete Maximum Principle. The RK method (2) respects the discrete maximum principle if \(\forall u \,{\in }\, \mathbb {R}^m\) it guarantees that

$$\begin{aligned} \min _{1 \le j \le m} u_{j}^{0} \le u_{i}^{n+1} \le \max _{1 \le j \le m} u_{j}^{0} \quad (1 \le i \le m) \end{aligned}$$

under the assumption that for \(0 \,{<}\, h \,{\le }\, \tau _{0}\) and \(\forall u \,{\in }\, \mathbb {R}^m\) with components \(u_p\)

$$\begin{aligned} \min _{1 \le q \le m} u_q \le u_p + \tau _0 f_p(t,u(t)) \le \max _{1 \le q \le m} u_q, \quad (1 \le p \le m). \end{aligned}$$
(47)

Similarly to the other properties, range boundedness may be verified under a step size restriction analogous to (5). Again following [29] and [46], we introduce two relevant sublinear functionals, denoted as max and min functional

$$\begin{aligned} \Vert u \Vert _>&= \max _j u_j \end{aligned}$$
(48a)
$$\begin{aligned} \Vert u \Vert _<&= -\min _j u_j \end{aligned}$$
(48b)

which allow us to write the assumption (47) in the form (3). By assuming the monotonicity property 1 under the functionals (48) the discrete maximum principle 7 directly follows.

Contractivity. Contractivity of numerical approximations has been extensively studied. Relevant conclusions on step size conditions for contractivity have been given in [45], while contractivity of RK for nonlinear problems was thoroughly examined in [37].

Definition 8

Contractivity. The RK method (2) is contractive if \(\Vert \tilde{u}^{n} - u^{n}\Vert \,{\le }\, \Vert \tilde{u}^{n-1} - u^{n-1}\Vert \) under the assumption that

$$\begin{aligned} \Vert \tilde{u} - u + h (f(t,\tilde{u}) - f(t,u))\Vert \le \Vert \tilde{u} - u\Vert \quad \text {for}\quad 0 < h \le \tau _{0}. \end{aligned}$$
(49)

Usually, Definition 8 is verified under a step size restriction in the form of (5). For conditional contractivity, the circle condition that was originally assumed in [37] is

$$\begin{aligned} \Vert f(t,\tilde{u}) - f(t,u) + \rho (\tilde{u} - u) \Vert \le \rho \Vert \tilde{u} - u\Vert \end{aligned}$$
(50)

It was shown later in [24] that this condition can be considered as a special form of (3). By introducing the auxiliary space \(\mathbb {V} \,{=}\, \mathbb {R}^m\times \mathbb {R}^m\) and considering \(\Vert G_i\Vert \,{=}\,\Vert \tilde{g}^i - g^i\Vert \) and \(\Vert U_i\Vert \,{=}\,\Vert \tilde{u}_i^{n} - u_i^{n}\Vert \) the circle condition (49) can be reformulated as (3) in the space of perturbations. See also [46] for additional considerations on these issues.

Appendix 2: Tables of Errors and Workload in Numerical Experiments

Here we report the Tables 8, 9, 10, 11, and 12 of the errors and workload as measured during the numerical experiments to show the typical error magnitude and workload to be expected from the different methods. We dot not claim that the error-workload tables reported here are immediately relevant for the selection of step sizes or numerical methods, but we consider them as representative of the relative workload to be expected from the methods assessed.

Table 8 Error and workload in CPU time (s) for the Brusselator problem
Table 9 Error and workload in CPU time (s) for the advection problem with non smooth initial condition
Table 10 Error and workload in CPU time (s) for the advection diffusion reaction problem with non smooth initial condition
Table 11 Error and workload in CPU time (s) for the Burgers equation with van Leer limiter and non smooth initial condition
Table 12 Error and workload in CPU time (s) for the Buckley–Leverett equation with Koren limiter and non smooth initial condition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonaventura, L., Rocca, A.D. Unconditionally Strong Stability Preserving Extensions of the TR-BDF2 Method. J Sci Comput 70, 859–895 (2017). https://doi.org/10.1007/s10915-016-0267-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0267-9

Keywords

Navigation