Skip to main content
Log in

A New Collocation Scheme Using Non-polynomial Basis Functions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we construct a set of non-polynomial basis functions from a generalised Birkhoff interpolation problem involving the operator: \({\mathscr {L}}_\lambda ={d^2}/{dx^2}-\lambda ^2 \) with constant \(\lambda .\) With a direct inverting the operator, the basis can be pre-computed in a fast and stable manner. This leads to new collocation schemes for general second-order boundary value problems with (i) the matrix corresponding to the operator \({\mathscr {L}}_\lambda \) being identity; (ii) well-conditioned linear systems and (iii) exact imposition of various boundary conditions. This also provides efficient solvers for time-dependent nonlinear problems. Moreover, we can show that the new basis has the approximability to general functions in Sobolev spaces as good as orthogonal polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alpert, B., Greengard, L., Hagstrom, T.: Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal. 37(4), 1138–1164 (2000). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  2. Canuto, C., Gervasio, P., Quarteroni, A.: Finite-element preconditioning of G-NI spectral methods. SIAM J. Sci. Comput 31(6), 4422–4451 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Canuto, C., Quarteroni, A.: Preconditioned minimal residual methods for Chebyshev spectral calculations. J. Comput. Phys. 60(2), 315–337 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clenshaw, C.W.: The numerical solution of linear differential equations in Chebyshev series. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 53, pp. 134–149. Cambridge Univ Press (1957)

  5. Costabile, F.A., Longo, E.: A Birkhoff interpolation problem and application. Calcolo 47(1), 49–63 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coutsias, E., Hagstrom, T., Hesthaven, J.S., Torres, D.: Integration preconditioners for differential operators in spectral \(\tau \)-methods. In: Proceedings of the Third International Conference on Spectral and High Order Methods, Houston, TX, pp. 21–38 (1996)

  7. Coutsias, E.A., Hagstrom, T., Torres, D.: An efficient spectral method for ordinary differential equations with rational function coefficients. Math. Comp. 65(214), 611–635 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davis, P.J.: Interpolation and Approximation. Dover Publications Inc, New York (1975)

    MATH  Google Scholar 

  9. Deville, M.O., Mund, E.H.: Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning. J. Comput. Phys. 60, 517–533 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deville, M.O., Mund, E.H.: Finite element preconditioning for pseudospectral solutions of elliptic problems. SIAM J. Sci. Stat. Comput. 11, 311–342 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. El-Gendi, S.E.: Chebyshev solution of differential, integral and integro-differential equations. Comput. J 12, 282–287 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elbarbary, M.E.: Integration preconditioning matrix for ultraspherical pseudospectral operators. SIAM J. Sci. Comput. 28(3), 1186–1201 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elgindy, K.T., Smith-Miles, K.A.: Solving boundary value problems, integral, and integro-differential equations using Gegenbauer integration matrices. J. Comput. Appl. Math. 237(1), 307–325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghoreishi, F., Hosseini, S.M.: The Tau method and a new preconditioner. J. Comput. Appl. Math. 163(2), 351–379 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Greengard, L.: Spectral integration and two-point boundary value problems. SIAM J. Numer. Anal. 28(4), 1071–1080 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, B.Y., Shen, J., Wang, L.L.: Optimal spectral-Glerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27(1–3), 305–322 (2006)

    Article  MATH  Google Scholar 

  17. Guo, B.Y., Shen, J., Wang, L.L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59(5), 1011–1028 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hesthaven, J.: Integration preconditioning of pseudospectral operators. I. Basic linear operators. SIAM J. Numer. Anal. 35(4), 1571–1593 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, W., Ma, H., Sun, W.: Convergence analysis of spectral collocation methods for a singular differential equation. SIAM J. Numer. Anal. 41(6), 2333–2349 (2003). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, S.D., Parter, S.V.: Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations. SIAM J. Numer. Anal. 33(6), 2375–2400 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, S.D., Parter, S.V.: Preconditioning Chebyshev spectral collocation by finite difference operators. SIAM J. Numer. Anal. 34(3), 939–958 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Livermore, P.W.: Galerkin orthogonal polynomials. J. Comput. Phys. 229(6), 2046–2060 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lorentz, G.G., Jetter, K., Riemenschneider, S.D.: Birkhoff Interpolation, vol. 19 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass (1983)

  24. Mihaila, B., Mihaila, I.: Numerical approximations using Chebyshev polynomial expansions: El-Gendi’s method revisited. J. Phys. A 35(3), 731–746 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Muite, B.K.: A numerical comparison of Chebyshev methods for solving fourth order semilinear initial boundary value problems. J. Comput. Appl. Math. 234(2), 317–342 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shen, J.: Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Series in Computational Mathematics, vol. 41. Springer-Verlag, Berlin (2011)

    MATH  Google Scholar 

  28. Shen, J., Wang, L.L.: Fourierization of the Legendre–Galerkin method and a new space-time spectral method. Appl. Numer. Math. 57, 710–720 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shen, J., Wang, L.L.: Spectral approximation of the Helmholtz equation with high wave numbers. SIAM J. Numer. Anal. 43(2), 623–644 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Szegö, G.: Orthogonal Polynomials, 4th edn. AMS Coll. Publ, Providence, RI (1975)

    MATH  Google Scholar 

  31. Wang, K., Wong, Y.S., Deng, J.: Efficient and accurate numerical solutions for Helmholtz equation in polar and spherical coordinates. Commun. Comput. Phys. 17(03), 779–807 (2015)

    Article  MathSciNet  Google Scholar 

  32. Wang, L.L., Samson, M.D., Zhao, X.D.: A well-conditioned collocation method using a pseudospectral integration matrix. SIAM J. Sci. Comput. 36(3), A907–A929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, L.L., Zhang, J., Zhang, Z.: On \(hp\)-convergence of prolate spheroidal wave functions and a new well-conditioned prolate-collocation scheme. J. Comput. Phys. 268, 377–398 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, L.L., Zhao, X.D., Zhang, Z.: Superconvergence of Jacobi–Gauss-type spectral interpolation. J. Sci. Comput. 59(3), 667–687 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Weideman, J.A.C., Trefethen, L.N.: The eigenvalues of second-order spectral differentiation matrices. SIAM J. Numer. Anal. 25(6), 1279–1298 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zebib, A.: A Chebyshev method for the solution of boundary value problems. J. Comput. Phys. 53(3), 443–455 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Z.: Superconvergence points of polynomial spectral interpolation. SIAM J. Numer. Anal. 50(6), 2966–2985 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zheng, X., Dong, S.: An eigen-based high-order expansion basis for structured spectral elements. J. Comput. Phys. 230(23), 8573–8602 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Lian Wang.

Additional information

C. Zhang: This work is supported in part by NSF of China N.11571151 and N.11371123, and Priority Academic Program Development of Jiangsu Higher Education Institutions.

L.-L.Wang: The research of this author is partially supported by Singapore MOE AcRF Tier 1 Grants (RG 15/12 and RG 27/15), Singapore MOE AcRF Tier 2 Grant (MOE 2013-T2-1-095, ARC 44/13).

The first two authors would like to thank the hospitality of the Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, for hosting their visit. The main part of this work is done during their visit.

Appendices

Formulas for \(C_1\) and \(C_2\) in Proposition 2.1

Corresponding to the typical boundary conditions in (2.3), we have the following formulas for the constant \(C_1\) and \(C_2\) in Proposition 2.1:

  • if \({\mathscr {B}}_\pm [u]=u(\pm 1)=g_\pm ,\) then

    $$\begin{aligned} \begin{aligned}&C_1=\frac{1}{2\sinh (2\lambda )}\big \{g_++ {\mathcal {I}}_\lambda ^- [f](1)\big \} -\frac{e^{-2\lambda }}{2\sinh (2\lambda )}\big \{g_-+ {\mathcal {I}}_\lambda ^+ [f](-1)\big \},\\&C_2=-\frac{1}{2\sinh (2\lambda )}\big \{g_++ {\mathcal {I}}_\lambda ^- [f](1)\big \}+\frac{e^{2\lambda }}{2\sinh (2\lambda )}\big \{g_-+ {\mathcal {I}}_\lambda ^+ [f](-1)\big \}\big \}; \end{aligned} \end{aligned}$$
    (6.1)
  • if \({\mathscr {B}}_\pm [u]=u'(\pm 1)=g_\pm ,\) then

    $$\begin{aligned} \begin{aligned}&C_1=\frac{\lambda ^{-1}}{2\sinh (2\lambda )}\big \{g_+-\lambda {\mathcal {I}}_\lambda ^- [f](1)\big \} -\frac{\lambda ^{-1}e^{-2\lambda }}{2\sinh (2\lambda )}\big \{g_-+\lambda {\mathcal {I}}_\lambda ^+ [f](-1)\big \},\\&C_2=\frac{\lambda ^{-1}}{2\sinh (2\lambda )}\big \{g_+-\lambda {\mathcal {I}}_\lambda ^- [f](1)\big \} -\frac{\lambda ^{-1}e^{2\lambda }}{2\sinh (2\lambda )}\big \{g_-+\lambda {\mathcal {I}}_\lambda ^+ [f](-1)\big \};\\ \end{aligned} \end{aligned}$$
    (6.2)
  • if \({\mathscr {B}}_- [u]=u(-1)=g_-\) and \({\mathscr {B}}_+ [u]=u'(1)+ \eta \, u(1)=g_+,\) then

    $$\begin{aligned} \begin{aligned}&C_1=\frac{ g_++(\eta -\lambda ) {\mathcal {I}}_\lambda ^- [f](1)}{2\big (\lambda \cosh (2\lambda ) +\eta \sinh (2\lambda )\big )}- \frac{(\eta -\lambda ) e^{-2\lambda }\big \{g_- +{\mathcal {I}}_\lambda ^+ [f](-1)\big \}}{2\big (\lambda \cosh (2\lambda ) +\eta \sinh (2\lambda )\big )},\\&C_2=-\frac{g_++(\eta -\lambda ) {\mathcal {I}}_\lambda ^- [f](1)}{2\big (\lambda \cosh (2\lambda ) +\eta \sinh (2\lambda )\big )}+ \frac{(\eta +\lambda ) e^{2\lambda }\big \{g_- +{\mathcal {I}}_\lambda ^+ [f](-1)\big \}}{2\big (\lambda \cosh (2\lambda ) +\eta \sinh (2\lambda )\big )}. \end{aligned} \end{aligned}$$
    (6.3)

Jacobi Polynomials and Jacobi–Gauss–Lobatto Quadrature

Let \(P_n^{(\alpha ,\beta )}(x) \) (\(x\in [-1,1] \) and \(\alpha ,\beta >-1\)) be the Jacobi polynomial of degree n,  as normalized in [30]. We also refer to [30] for the following basic properties.

The Jacobi polynomials are eigenfunctions of the Sturm-Liouville equation

$$\begin{aligned} \begin{aligned} (x^2-1)\partial _x^2 P_n^{(\alpha ,\beta )}(x)+\big \{\alpha -\beta +(\alpha +\beta +2) x\big \}\partial _x P_n^{(\alpha ,\beta )}(x)=\lambda _n^{(\alpha ,\beta )} P_n^{(\alpha ,\beta )}(x), \end{aligned} \end{aligned}$$
(7.1)

where the corresponding eigenvalues are

$$\begin{aligned} \lambda _n^{(\alpha ,\beta )}=n(n+\alpha +\beta +1). \end{aligned}$$
(7.2)

The Jacobi polynomials are orthogonal with respect to the Jacobi weight function: \(\omega ^{(\alpha ,\beta )}(x) = (1-x)^{\alpha }(1+x)^{\beta },\) namely,

$$\begin{aligned} \int _{-1}^1 {P}_n^{(\alpha ,\beta )}(x) {P}_{n'}^{(\alpha ,\beta )}(x) \omega ^{(\alpha ,\beta )}(x) \, \mathrm{d}x= \gamma _n^{(\alpha ,\beta )} \delta _{nn'}, \end{aligned}$$
(7.3)

where \(\delta _{nn'}\) is the Dirac Delta symbol, and the normalization constant is given by

$$\begin{aligned} \gamma _n^{(\alpha ,\beta )} =\frac{2^{\alpha +\beta +1}\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{(2n+\alpha +\beta +1) n!\,\Gamma (n+\alpha +\beta +1)}. \end{aligned}$$
(7.4)

We have

$$\begin{aligned} P_n^{(\alpha ,\beta )}(x)=(-1)^n P_n^{(\beta ,\alpha )}(-x); \quad P_n^{(\alpha ,\beta )}(1)=\frac{\Gamma (n+\alpha +1)}{n!\,\Gamma (\alpha +1)}. \end{aligned}$$
(7.5)

Moreover, there holds the important derivative formula:

$$\begin{aligned} \partial _xP_n^{(\alpha ,\beta )}(x)=\frac{1}{2}(n+\alpha +\beta +1)P_{n-1}^{(\alpha +1,\beta +1)}(x),\;\;\; n\ge 1. \end{aligned}$$
(7.6)

We also use the following recurrent relation:

$$\begin{aligned} P_n^{(\alpha ,\beta )}(x)=a_n \partial _x P_{n-1}^{(\alpha ,\beta )}(x) +b_n \partial _x P_{n}^{(\alpha ,\beta )}(x)+c_n \partial _x P_{n+1}^{(\alpha ,\beta )}(x), \end{aligned}$$
(7.7)

where \(a_1:=a_1^{(\alpha ,\beta )}=0\), and

$$\begin{aligned} a_n:=a_n^{(\alpha ,\beta )}=-\frac{2(n+\alpha )(n+\beta )}{(n+\alpha +\beta )(2n+\alpha +\beta )(2n+\alpha +\beta +1)},\quad n>1, \end{aligned}$$
(7.8a)
$$\begin{aligned} b_n:= b_n^{(\alpha ,\beta )}=\frac{2(\alpha -\beta )}{(2n+\alpha +\beta )(2n+\alpha +\beta +2)},\quad n\ge 1, \end{aligned}$$
(7.8b)
$$\begin{aligned} c_n:=c_n^{(\alpha ,\beta )}=\frac{2(n+\alpha +\beta +1)}{(2n+\alpha +\beta +1)(2n+\alpha +\beta +2)},\quad n\ge 1. \end{aligned}$$
(7.8c)

The Jacobi–Gauss–Lobatto (JGL) points \(\big \{x_j=\xi _{N,j}^{(\alpha ,\beta )}\big \}_{j=0}^N\) (with \(x_0=-1, x_N=1)\) are zeros of \((1-x^2) \partial _x P_{N}^{(\alpha ,\beta )}(x).\) Let \(\big \{\omega _j=\omega _{N,j}^{(\alpha ,\beta )}\big \}_{j=0}^N\) be the corresponding JGL quadrature weights (cf. [27, Theorem. 3.27]). Then we have

$$\begin{aligned} \int _{-1}^1 \phi (x)\psi (x)\omega ^{(\alpha ,\beta )}(x)\,\mathrm{d}x=\sum _{j=0}^N \phi (x_j)\psi (x_j)\omega _j,\quad \forall \phi \cdot \psi \in {\mathcal {P}}_{2N-1}. \end{aligned}$$
(7.9)

Let \(\big \{h_j:=h_{N,j}^{(\alpha ,\beta )}\big \}\) be the Lagrange interpolating basis polynomials associated with \(\{x_j\}_{j=0}^{N},\) such that \(h_j\in {\mathcal {P}}_{N}\) and \(h_j(x_i)=\delta _{ij}.\) We have the representation

$$\begin{aligned} h_j(x)=\sum _{n=0}^N \frac{\omega _j}{\tilde{\gamma }_n} P_n^{(\alpha ,\beta )}(x_j) P_n^{(\alpha ,\beta )}(x), \end{aligned}$$
(7.10)

where

$$\begin{aligned} \tilde{\gamma }_n =\gamma _n^{(\alpha ,\beta )}, \;\;\; 0\le n\le N-1; \;\;\;\; \tilde{\gamma }_N=\Big ( 2+\frac{\alpha +\beta +1}{N} \Big )\gamma _N^{(\alpha ,\beta )}. \end{aligned}$$

Let \({\mathbb {I}}_N\) be the corresponding Lagrange interpolation operator, namely, \({\mathbb {I}}_N: C(\bar{\Lambda })\rightarrow {\mathcal {P}}_N\) such that for any \(u\in C(\bar{\Lambda }),\)

$$\begin{aligned} {\mathbb {I}}_N u(x_j)=u(x_j),\quad 0\le j\le N. \end{aligned}$$
(7.11)

Proof of Proposition 3.3

By the orthogonality (7.3) and (7.9),

$$\begin{aligned} \begin{aligned} \mu _{j}^n&=\frac{1}{\gamma _n^{(\alpha ,\beta )}}\int _{-1}^1 l_j(x) P_n^{(\alpha ,\beta )}(x)\,\omega ^{(\alpha ,\beta )}(x)\,\mathrm{d}x \\&=\frac{1}{\gamma _n^{(\alpha ,\beta )}}\Big \{l_j(-1)P_n^{(\alpha ,\beta )}(-1)\omega _0+ P_{n}^{(\alpha ,\beta )}(x_j)\omega _j + l_j(1) P_n^{(\alpha ,\beta )}(1)\omega _N \Big \}, \end{aligned} \end{aligned}$$
(8.1)

where we used the property: \(l_j(x_i)=\delta _{ij}\) for \(1\le i,j\le N-1\) (cf. (2.7)). Thus, it remains to derive the explicit formulas for \(l_j(\pm 1).\) As the interior JGL points \(\{x_j\}_{j=1}^{N-1}\) are zeros of \(\partial _xP_N^{(\alpha ,\beta )}(x),\) we have

$$\begin{aligned} l_j(\pm 1)=\frac{\partial _xP_N^{(\alpha ,\beta )}(x)}{(x-x_j)\, \partial _x^2P_N^{(\alpha ,\beta )}(x_j)}\Bigg |_{x=\pm 1}. \end{aligned}$$
(8.2)

By (7.1),

$$\begin{aligned} \begin{aligned}&2(\beta +1) \partial _x P_N^{(\alpha ,\beta )}(-1)=-\lambda ^{(\alpha ,\beta )}_N P_N^{(\alpha ,\beta )}(-1), \;\; 2(\alpha +1) \partial _x P_N^{(\alpha ,\beta )}(1)=\lambda ^{(\alpha ,\beta )}_N P_N^{(\alpha ,\beta )}(1), \\&-(1-x^2_j)\partial _x^2 P^{(\alpha ,\beta )}_{N}(x_j)=\lambda ^{(\alpha ,\beta )}_N P^{(\alpha ,\beta )}_{N}(x_j),\quad 1\le j\le N-1. \end{aligned} \end{aligned}$$
(8.3)

A direct calculation from (8.2) and (8.3) leads to

$$\begin{aligned} l_j(-1)=-\frac{1-x_j}{2(\beta +1)}\frac{P_N^{(\alpha ,\beta )}(-1)}{P_N^{(\alpha ,\beta )}(x_j)},\quad l_j(1)=-\frac{1+x_j}{2(\alpha +1)}\frac{P_N^{(\alpha ,\beta )}(1)}{P_N^{(\alpha ,\beta )}(x_j)}. \end{aligned}$$
(8.4)

Thus, we obtain the desired formulas of \(l_j(\pm 1)\) in (3.6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Liu, W. & Wang, LL. A New Collocation Scheme Using Non-polynomial Basis Functions. J Sci Comput 70, 793–818 (2017). https://doi.org/10.1007/s10915-016-0269-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0269-7

Keywords

Mathematics Subject Classification

Navigation