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Abstract Extrapolation cascadic multigrid (EXCMG) method is diicéent multigrid method
which has mainly been used for solving the two-dimensioiigitie boundary value prob-
lems with linear finite element discretization in the exigtiliterature. In this paper, we
develop an EXCMG method to solve the three-dimensionaldBoigquation on rectangu-
lar domains by using the compact finiteéfdrence (FD) method with unequal meshsizes in
different coordinate directions. The resulting linear systemmfcompact FD discretization
is solved by the conjugate gradient (CG) method with a redatsidual stopping criterion.
By combining the Richardson extrapolation and tri-quakiagrange interpolation for the
numerical solutions from two-level of grids (current an@\ous grids), we are able to
produce an extremely accurate approximation of the acwralenical solution on the next
finer grid, which can greatly reduce the number of relaxasieeps needed. Additionally,
a simple method based on the midpoint extrapolation forrsulesed for the fourth-order
FD solutions on two-level of grids to achieve sixth-ordecwacy on the entire fine grid
cheaply and directly. The gradient of the numerical sotuttan also be easily obtained
through solving a series of tridiagonal linear systemsltiesufrom the fourth-order com-
pact FD discretizations. Numerical results show that ouCE)G method is much more
efficient than the classical V-cycle and W-cycle multigrid nuets. Moreover, only few CG
iterations are required on the finest grid to achieve fullrfiowwrder accuracy in both the
L2-norm andL>-norm for the solution and its gradient when the exact sofukielongs to
CS. Finally, numerical result shows that our EXCMG method i sffective when the ex-
act solution has a lower regularity, which widens the scdppplicability of our EXCMG
method.
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1 Introduction

Poisson equation is a partialfidgirential equation of elliptic type with broad application i
electrostatics, mechanical engineering, theoreticabjoByand geophysics. The Dirichlet
boundary value problem for the three-dimensional (3D) Swmissquation has the following
form:

1)

Ux + Uy + Uz = f(Xy,2), InQ,
uxy,2 = d(xYy,2, onoL,

whereQ is a 3D rectangle domain a@d@® is its boundary. Here we assume that the forcing
function f(x,y, 2), the boundary functiog(x,y, z2) and the exact solutioa(x, y, 2) are con-
tinuously diferentiable and have the necessary continuous partialadiees up to certain
orders.

The compact finite dierence (FD) method for solving Poisson equations has bekn we
studied since 19841[2,3,4,5,6,7,8,9,10,11,12,13]. Specifically, two-dimensional (2D)
and 3D Poisson equations can be solved by high-order conffiachethods 1,2,3,4,5,

6]. These schemes are called “compact” since they only usirmin grid points to achieve
fourth-order accuracy explicitly in the discretizationrfaulas. Moreover, there has been a
renewed interest in combining high-order compact schentfe mviltigrid method to solve
Poisson equations. The classical multigrid methb4 15,16] combined with compact FD
method for solving 2D and 3D Poisson equations has been cteulin [7,8,9,10,11,12,
13,17]. For example, Wang and Zhan@1] proposed a Richardson extrapolation for the
numerical solutions from the two-level grids together wathoperator based interpolation
iterative strategy to achieve sixth-order accuracy by gisire classical multigrid method
and the fourth-order compact FD scheme. G8 fdeveloped a fourth-order compact FD
method with the classical multigrid method to solve the 3sBan equation using unequal
meshsizes in dierent coordinate directions. Dehghan et &¥] [solved the 1D, 2D and 3D
Poisson equations with both second-order and fourth-ardepact FD methods based on
a new two-grid multigrid method. Besides Poisson equattmclassical multigrid method
has been applied to many problems, including the biharmexpation 18], the convection-
diffusion equation]9,20,21] and so on.

Cascadic multigrid (CMG) method proposed by Deuflhard anch8mann in 22] is a
variant of the multigrid without any coarse grid correctisteps, where instead of starting
from the finest grid, the solution is first computed on the sest grid and the recursively
interpolated and relaxed on finer grids. Bornemann and Deanfl22] showed that it is an
optimal iteration method with respect to the energy normc8ithe 1990s, the method has
been frequently used to solve the elliptic equation withfihiée element (FE) discretization
because of its highfgciency and simplicity24,?,26,?,?,?,?,?,?,2,7]. In 2007, Shi et al.35]
proposed an economical cascadic multigrid method usingdifferent criteria for choosing
the smoothing steps on each level of grid. Later, based omaRiehardson extrapolation
formula for the linear FE solution, an extrapolation cagcawultigrid (EXCMG) method
was first proposed by Chen et aB§[37] to solve 2D Poisson equation with the linear FE
discretization. For the EXCMG method, in order to obtain @idyanitial guess of the iter-
ative solution on the next finer grid, numerical solutionstlo& two-level of grids (current
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and previous grids) are needed (whereas only one-levelrokrigal solution is needed in
the CMG method). The EXCMG algorithm has been successfylpfied to non-smooth
problems B8], linear parabolic problems3p], and the simulation of the electric field with
a point singularity arising in geophysical exploratie®[41]. However, to our best knowl-
edge, the EXCMG algorithm has mainly been used for solvie@t elliptic problems with
the linear FE discretization in existing literature. Buisitof more importance to solve the
3D problems #iciently and accurately arising in many engineering araas) as geophys-
ical exploration #2]. Since the construction process of the higher-order gatl&fth-order)
approximation to the fourth-order compact FD solution amnlext finer grid has to be dif-
ferent from the construction process of the third-orderaximation to the second-order FE
solution, it will be nontrivial to extend the EXCMG methoain 2D problems with second-
order FE discretization to 3D problems with fourth-ordempact FD discretization.

In this paper, we will propose an EXCMG method combined withfourth-order com-
pact diference scheme to solve the Dirichlet boundary value proldethe 3D Poisson
equation 1) in rectangular domains. In our approach, the computatidoenain is dis-
cretized by regular grids, and a 19-point fourth-order cactpltference scheme is used
to discretize the 3D Poisson equation with unequal meshsizéiferent directions. By
combining the Richardson extrapolation and tri-quartigriaage interpolation for the nu-
merical solutions from two-level of grids (current and poas grids), we are able to obtain
a much better initial guess of the iterative solution on tbetfiner grid than one obtained by
using linear interpolation in CMG method. Then, the reggltiarge linear system is solved
by the conjugate gradient (CG) solver using the above obddimtial guess. Additionally, a
tolerance related to relative residual is introduced inGkesolver in order to obtain conve-
niently the numerical solution with the desired accuracgrébver, when the exact solution
is suficiently smooth, a simple method based on the midpoint ealaéipn formula can
be used to obtain cheaply and directly a sixth-order acewmalution on the entire fine grid
from two fourth-order FD solutions on twofrent scale grids (current and previous grids).
And a fourth-order compact FD scheme can be used to compeigraldient of the solution
by solving a series of tridiagonal linear systems. Finally,; method has been used to solve
3D Poisson equations with more than 16 million unknowns iouali0 seconds on a desk-
top with 16GB RAM installed, which is much mordfieient than the classical multigrid
methods.

The rest of the paper is organized as follows: secigives the description of the com-
pact FD discretization for the 3D Poisson equation. SeQimeviews the classical V-cycle
and W-cycle multigrid methods. In sectidnwe first derive some sixth-order extrapolation
formulas, and then develop a new EXCMG method to solve 3DsBaisquation. Sectidh
presents the numerical results to demonstrate the Higtiemcy and accuracy of the pro-
posed method. And conclusions are given in the final section.

2 Compact difference scheme

We consider a cubic domai? = [0,L,] x [0,Ly] x [0,L,], and discretize the do-
main with unequal meshsizés, hy andh; in the x,y andz coordinate directions, respec-
tively. Let Ny = Ly/hy, Ny = Ly/hy, N, = L;/h, be the numbers of uniform intervals
along thex, y andz directions. The grid points are;(y;, z), with x; = ihy,y; = jhy and
7z =kh,i=0,1,--- Ny, j=0,1,--- ,Nyandk = 0,1,-- -, N,. The quantityy; jx represents
the numerical solution ai{, y;, z).
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Then the value on the boundary poinkgk(i = O,Nxorj = O,Nyork = 0,N,) can
be evaluated directly from the Dirichlet boundary conditiéor internal grid pointsi (=
Lo Ny-Lj=21---,N-1k=1--,N;— 1), the 19-point fourth-order compact
difference scheme with unequal-meshsize for 3D Poisson equedie derived in§, 13]:

1 1 1 4 1 1 4 1 1
- 8(— +ti5+ —] Uik+(5 -5 - ) (UrLjk + Uisjn) + (5 — 55 — 3 ) (Ui jsnk + Uijvk)

h§h§,h§ h§h§,h§ h§h§ h2
4 1 1 1(1 1
+ h_§ - h_§< - @ (Ui,j,k+l + Ui,j,k—l) + > h_§ + @ (Ui+l,j+l,k + Uiz j-1k + Ui-1jrak + Ui—l,j—l,k)
1/1 1
+ s\ + 2 (Ui+1,j,k+1 + Uit1,jk-1 + Ui—1 jk+1 + Ui—l,j,k—l)
X Z
1(1 1
+ sl + 2 (Ui,j+1,k+1 + Ui j-1k+1 + Ui j+1k-1 + Ui,j—l,k—l)
Z
1
= E(Gfi,j,k + fienjk + fimgjk + fijeok + fijook + fijker + fijeen)- (2

Let h = maxhy, hy, h;}, throughout this paper, we denaig to be the FD solution of
(2) with mesh sizes,, hy, h,, while useuy,, to denote the FD solution o2f when mesh
sizes aréh,/2, hy/2,h,/2. Then the dierence scheme) can be expressed in the following
matrix form:

Anup = fh, (3)

whereAy, is a sparse positive definite matrix, afyddenotes the right hand-side vector B (
with mesh sizesy, hy andh,.

3 Classical multigrid methods

The multigrid method is based on the idea that classicakaéilan methods strongly damp
the oscillatory error components, but converge slowly foosth error componentsl’,
16]. Hence, after a few relaxation sweeps, we compute the $mestdual of the current
approximationv, (with mesh sizes,, hy, h,) and transfer it to a coarser gib, (with mesh
sizes Ay, 2hy, 2h,) by a restriction operation, where the errors become mocédlatsry.
Solving the residual equation on the coarse g, interpolating the correction back to the
fine grid Qn, and adding it to the fine-grid current approximatignyields to the two-grid
correction method. Since the coarse-grid problem is nothndi€erent from the original
problem, we can perform a few, saytwo-grid iteration steps (see Fif) to the residual
equation on the coarse grid, which means relaxing there laewl oving toQg, (with
mesh sizesH, 4hy, 4h,) for the correction step. We can repeat this process on ssivedy
coarser grids until a direct solution of the residual equrais possible. Then the corrections
are interpolated back to finer grids until the process reatie finest grid2y, (with mesh
sizesh,, hy, h;) and the fine-grid approximate solution is corrected.

Usually, the caseg = 1 andy = 2 are particularly interesting. We refer to the case
v = 1 as V-cycle and tor = 2 as W-cycle. The number is also called cycle index. A V-
cycle multigrid method is obtained when the V-cycle is répdaintil a stopping criterion is
satisfied on the finest grid. We refer to a V-cycle (W-cyclefwi relaxation sweeps before
the correction step ang relaxation sweeps after the correction step as»a ,MG)-cycle
(W(v1, v2)-cycle).
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Grid level

finestgrid i 4

2h 3
aux.
grids 4h 2
8h 1
V-cycle W-cycle
finestgrid i 4 T H
2h 3
aux. I
grids 4h 2 l
8h 1

FMG CMG EXCMG

Fig. 1 The four-level structure of the V-cycle, W-cycle, FMG, CMBEXCMG methods. In the diagram,
e denotes pre-smoothing,denotes post-smoothing,denotes prolongation (usually defined by linear inter-
polation), | denotes restriction) denotes extrapolation and high-order interpolation, mrdenotes direct
solver.

4 Extrapolation cascadic multigrid methods

The CMG method proposed by Deuflhard and Borneman@2hi§ a variant of full multi-
grid (FMG) method without any coarse grid correction stepisviith an a posteriori con-
trol of the number of smoothing iterations (see Fiy. It has been shown that the CMG
method has optimal computational complexity for both comiog and nonconforming el-
ements with CG as a smoother. Since the 1990s, the CMG metmdeleived quite a
bit of attention from researchers because of its hiffitiency and simplicity 23,24, ?,26,
?,2,2,2,2,2,2,2).

In 2008, by using Richardson extrapolation and bilineardgaiéc interpolation for the
FE solutions on two-level of grids (current and previouglgyito obtain an extremely ac-
curate initial guess of the iterative solution on the nextifigrid, Chen et al.36] proposed
an extrapolation cascadic multigrid (EXCMG) method to sdD elliptic boundary value
problems. It has been shown Bi7 that the EXCMG method is much moréieient than the
CMG method, which simply uses the linear interpolation feg EE solution on the current
grid to provide an initial guess of the iterative solutiontbe next finer grid. Recently, we
improved and generalized the EXCMG method to solve largalisystems resulting from
FE discretization of 3D elliptic problems, compared it witle classical multigrid methods,
and further presented the reason why EXCMG algorithms agkehhiefficient [44]. How-
ever, to our best knowledge, CMG and EXCMG are mainly usedifiear FE method in
existing literature, and it will be interesting to extenaé tAXCMG method to the field of
high-order FD method.



6 Kejia Pan et al.

4.1 EXCMG algorithm combined with compacti@rence scheme

The key ingredients of the EXCMG method are extrapolatioh lsigh-order interpolation
(see Fig.1), which can produce a much better initial guess of the iiatolution on the
next finer grid than one obtained by using linear interpotath CMG method.

In this subsection, we will propose a new EXCMG method comtiwith fourth-order
compact diference scheme for solving the Dirichlet boundary value lprabof the 3D
Poisson equation, which is stated in the following alganith

Algorithm 1 New EXCMG method: ,, tn) < EXCMG(Ay, fr, L, €)

1: uy & DSOLVEAHUy = fy) > uy is FD solution of 8) with mesh size$dy, Hy, Hz.

2: Uy/2 &= DSOLVE(AH/2UH 2 = fH/2) B unj2 is FD solution of 8) with mesh size$dy/2, Hy/2, H,/2.

3: hy = Hy/2,hy = Hy/2,h; = Hy/2

4: fori=1toL do

5. hy=hy/2,hy=hy/2,h, = h,/2

6:  Wh = EXP¥inite(Uzh, Usan) > W, is a fifth-order approximation of the actual numerical solu-
tion u, and it serves as the initial guess for the CG solver on thefimet grid.

7. while [[Apun — fhll2 > € - [ fnll2 do
8: Up < CG(An, Un, fr)
9:  end while
10: O = EXPyue(Un, Ugn) > Optional stepup is a sixth-order approximation solution for
suficiently smoothu.
11: end for

In Algorithm 1, the coarsest grid has the mesh sikgsHy, H,, the positive integeL
is the total number of grids except first two embedded gridsclwindicates that the mesh
sizes of the finest grid aré{'ﬁ, % % DSOLVE is a direct solver used on the first two
coarse grids (see line 1-2 in Algoritht). Procedure EXRhite(Uzn, Usn) denotes a fifth-order
approximation to the actual compact FD solutignobtained by Richardson extrapolation
and tri-quartic Lagrange interpolation from the numergmltionsu,, andug,. And there is
an optional step in the above algorithm (see line 10 in Atganil), where EXR ye(Un, Uzn)
denotes a higher-order approximation solution on entire §rid with mesh sizé from
two fourth-order FD solutions, andus,. This optional step is used to increase the order of
solution accuracy from fourth order to sixth order (see &db10 in section5 for details)
when the exact solution of elliptic equation {) is suficiently smooth.

The detailed procedures of extrapolation and tri-quaréigrange interpolation are de-
scribed in the next two subsectiofs?2 and4.3 The diferences between our new EXCMG
method and existing EXCMG method§, 37] are listed as follows:

(1) In our new EXCMG method, a fourth-order compadietience scheme, rather than the
second-order linear FE method, is employed to discretie Poisson equation.

(2) Instead of performing a fixed number of smoothing iteradi as used in the existing
EXCMG method 86,37, a relative residual toleranceis introduced for the smoother
in our EXCMG method (see line 7 in Algorithrd), which enables us to conveniently
obtain the numerical solution with the desired accuracy.

(3) In the existing EXCMG literature3p,37], a third-order approximation to the second-
order FE solution is constructed to serve as the initial gfmsthe iterative solver on the
next finer grid, and the construction of the third-order agpnation to the second-order
FE solution is done at every single coarse hexahedral elerdemwever, in our new
EXCMG method, a fifth-order approximation to the fourth-erdD solution, obtained
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through the Richardson extrapolation and tri-quartic bage interpolation, is used as
the initial guess for the iterative solver. In addition, thequartic interpolation should
be done for every cell which contains eight neighboring sediexahedral elements as
shown in Fig.3, rather than every single coarse hexahedral element.

4.2 Extrapolation and quartic interpolation: 1D case

The extrapolation method is affieient procedure for increasing the solution accuracy of
many problems in numerical analysis. Marchuk and Shaid[46ysystematically studied
its application in the FD method in 1983. Since then, thiitégue has been well demon-
strated in the framework of the FD and FE metho#847,48,21,49,50,51,52,53,54].

In this and next subsections, we assume that the exact@oluis suficiently smooth,
and we will formally explain how to use extrapolation and iiganterpolation techniques
to obtain the fifth-order approximatiom, of the fourth-order FD solution on the next finer
grid, which can be regarded as another important applicatidhe extrapolation method.
In addition, we will also show how to construct the enhandgthsorder accurate numerical
solutiond, for the problem ).

4.2.1 Extrapolation for the true solution

For simplicity, we first consider the three-levels of emtmdidridsz;(i = 0, 1, 2) with mesh
sizesh; = hg/2' in one dimension. Supposee H8(Q), from theorem 4.1 in43] (taking

m = 2, s = 6) and by using the result thB?(Q) can be continuously embedded ihiS(Q),
we can get that the errgg||., should beO(h*), wheree = u' — uis the error of the fourth-
order compact FD solutiod with mesh sizéy. Now we further assume that the truncation
error at nodex, has the form

€(x) = AN + O(Y), (4)

whereA(X) is a suitably smooth function independenthpfThe truncation error expansion
(4) will be verified by numerical results in sectién

It is well known that the traditional extrapolation is pdssionly at coarse grid points,
where at least two approximations, corresponding fiegnt mesh size, are known. From
eq. @), we easily obtain the Richardson extrapolation formulecatrse grid points
Ly 160 - 6 o
l = —g— = u(x) + O(h)). k=j.j+1, ®)
which is a sixth-order approximation to the true solutioth&tcoarse grid points.

In fact, by using the linear interpolation formula, one cisoabtain a sixth-order ac-
curate approximation at the fine grid poity .. Settingi = 0 andi = 1 in eq. @) and then
subtracting each other, we have

A(X) = —= (W -ul)+Oh3), k=j,j+1 (6)
From the error estimate of the linear interpolation

A(Xjs1/2) = %(A(XJ‘) + A(Xj+1)) + O(hg), @)
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ZO: B = u

x/‘ x/‘+1 x/+2
7Z: & L » ® u
1

X J X jH12 j+l X jH32 X J*2
Z: = A & 2 = £ & A -
i

X J X JH1/4 X JH12 X J+3/4 X JHl X J+5/4 x J4302 X J¥T4 X 2

Fig. 2 Three embedded grids for two neighboring coarse elemeri®.in

and substituting eq6j into eq. ) , we get

AXis1/2) = — (0 = i) + — (0, — ul,) + O(h). ®)

8 8
157 157
Since

1 1 4 6
Ujr1/2 = U(Xjr1/2) + l—GA(XJ+l/2)h0 + O(hp), 9

by using B), we obtain the following midpoint extrapolation formula:
~1 . 1 1 1 0 1 0 6
Ufyq/p 1= U + %(uj = Uj + U,y — U,) = U(Xj41/2) + O(hg), (10)

which is a sixth-order approximation to the true solutiothatfine grid pointx;,1/».

4.2.2 Extrapolation for the FD solution

In this part, we will explain, given the fourth-order FD stidins u’ and u', how to use
the extrapolation and high-order interpolation technigte construct a fifth-order (to be
illustrated in subsectiod.4) approximatiorw? to the FD solutior?.

Adding one midpoint and two four equal division points, theaxse mesh element
(%}, Xj+1) is uniformly refined into four elements of fine me&has shown in Fig2. Assume
there exists a constaatsuch that

cut + (1 - Qu® = u? + O(hY). (11)

Here, we aim to use a linear combinationudfandu® to approximate the FD solutiai? up
to sixth-order accuracy. Substituting the asymptoticregxpansion4) into (11), we obtain
¢ =17/16 and an extrapolation formula

1 0
B 17, —ug

wﬁ:_T:uﬁ+O(hg), k=j,j+1, (12)

at nodest; andxj.1. To derive the extrapolation formula at midpoi1,», eq. @) leads to

15
Foajz = Uaajo = 5oA0a/2)1G + O(FG). (13)
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Fig. 3 Three embedded grids on one interpolation cell which coataight neighboring coarse hexahedral
elements.

Substituting eq.g) into eq. (L3), we have the following sixth-order extrapolation formala
the midpointx,12,

1
sz+1/2 = Ujl+1/2 + 3—2(uj1 - U(j) + Ujl+1 - U?+1) = U12+1/2 + O(h8)~ (14)
Sixth-order extrapolation formulad?) and (L4) can be @iciently applied to each coarse-
grid elementXj, Xj1).

On_ce the_five approximated vaIuw%, \/\/12+1/2,\/\/J2+1,\/\/f+3/_2 andWJ?+2 far_e_obtair?ed on the
two neighboring coarse elements, we can get the following égjual division point extrap-

olation formulas by using the quartic interpolation

1

Wi1jg = 128(35‘"’1'2 + 14007, 1, — 70N,y + 2807, 5 — SW. ). (15)
Wioays 0= %8( — BW? + 60WS 1 5 + 9OWS,y — 2007, 5, + 30 ), (16)
Wl'2+5/4 = %8( - 5Wj2 + 28Wj2+1/2 - 70sz+1 + 140"’]2+3/2 +35W7,,). (17)
W1'2+7/4 = %3(3""12 - 20""]2+1/2 + 90Nj2+l + 60‘"’]2+3/2 - 5sz+2)- (18)

Until now, we have obtained a high-order approximatwhto the FD solutioru?, which
can be used as the initial guess of the iterative solutiorerfibe mestz,.

4.3 Extrapolation and quartic interpolation: 3D case

In this subsection, we explain how to obtain a fifth-orderusate approximatiow? to
the fourth-order FD solution?, and a sixth-order accurate approximate solutibio the
problem () for embedded hexahedral grids as shown in Big.

Taking every interpolation cell which consists of eightgidioring coarse hexahedral
elements (see Fi@) into account, the construction processes of the apprdaioma? are
as follows:

Corner Nodes (such as 1, 3, 51, 53): The approximate val@scatrner nodess’ on such
interpolation cell can be obtained by using the extrapoteformula (2).
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Midpoints of edges (such as 2, 6, 26, 28): The approximataegaht these 54 midpoints
‘@’ on such interpolation cell can be obtained by using the wiitlpextrapolation for-
mula (14) in x-direction,y-direction orz-direction.

Centers of faces (such as 27, 31, 107, 109): Since the cengaich face on such interpo-
lation cell can be viewed as the midpoint of two face diagenasing the midpoint ex-
trapolation formula14) we can obtain two approximate values, and take the ariiomet
mean as the approximation at these 36 midpoiets *

Centers of coarse hexahedral elements (such as 32, 42,)8%5@2e the center of each coarse
hexahedral element on such interpolation cell can be vieagethe midpoint of four
space diagonals, again using the midpoint extrapolationdta (L4) we can obtain four
approximate values, and take the arithmetic mean as thexipmtion at these 8 mid-
points ‘@’ .

Other fine grid points: The approximate values of remaini@g(& — 5°) fine grid points
on such the interpolation cell can be obtained by usinguartic Lagrange interpolation
with the known 125-node (27 corner nodes, 54 midpoints oesd86 centers of faces
and 8 centers of coarse hexahedral elements) values.

The tri-quartic Lagrange interpolation function in ternfsnatural coordinatesé(n, ¢)

125

WA .0) = Z‘i Nmé. 7. Wy, (19)
=
where the shape functiom, can be written as follows
Nm(€.7.£) = FEI K@) (20)
wherel?(x) (0 < i < 4) is the Lagrange fundamental polynomials of degree 4, eefis
o - [ L (21)
I koo &1 7 &

and &, n;, &) is the natural coordinate of node(1 < m < 125).

When constructing the sixth-order accurate solutibbdsed on two fourth-order accu-
rate solutiona® andu!, the Richardson extrapolation formuls) can be directly used for
coarse grid points, while the sixth-order midpoint extiagon formula (L0) can be directly
used for all other fine grid points, which is similar to the gges (excluding the tri-quartic
interpolation) of constructing the approximatiad described as above.

Remark 1 Since the compact FD solutiap, of (2) is a fourth-order approximation of the
exact solutioru, in order to get a quite good initial guesg for the CG solver, a tri-quartic
Lagrange interpolation method is employed in this papehabd fifth-order approximation
of wy, to uy, is achieved. Moreover, the relativeect of howw;, approximatesi, becomes
better when mesh is refined, thus, the number of iteratiotisbeireduced most signifi-
cantly on the finest grid, which is particularly important folving large linear systems
and can greatly reduce the computational cost. We note libatitquadratic interpolation
used in #4] produces a third-order approximation to the second-of#esolution, and the
tri-quadratic interpolation is accurate enough in thatec&towever, whenu, is obtained
from the fourth-order compact FD method as shown in this pape tri-quadratic interpo-
lation can not provide a $ficiently accurate initial guess;, the relative &ect of howw,
approximatesi, will become worse when mesh is refined.
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Remark 2 Tri-quartic Lagrange interpolation defined by et9)is a local operation defin-
ing on each interpolation cell containing eight neighbogrcoarse elements. In fact, eq.
(19) defines a same (604125) interpolation matrix on every interpolation cell, $ithe ap-
proximate values of remaining 604(9 5°) fine-grid points on every interpolation cell can
be obtained by multiplying the (604125) interpolation matrix with the vector consisting of
125 known values on such interpolation cell. Thereforefiftreorder approximation of FD
solutionw;, on the entire domain can be obtained veffgetively by applying the extrapo-
lation formulas 12) and (L4) to the 125 nodes mentioned above, and running the tridguart
Lagrange interpolationl@) based on such 125 known values for every interpolationicell
the entire domain.

4.4 The error analysis of initial guesg

Let e = w? — u? be the diference between the initial guesd and the FD solutions?.
Assume thae has continuous derivatives up to order 5 on interxalX;.»]. From (12) and
(14) we obtain the equation

e(xk)—O(h) k=J,j+1/2,j+1,j+3/2,j+2 (22)

From polynomial interpolation theory, the error of quaititerpolationlsf can be repre-
sented as

Ri(X) =e—lse= ée@(g)(x = X)X = Xjr12)(X = Xj11)(X = Xjiz2)(X = Xjy2),  (23)

where¢ € (X;, Xj.2) depends orx. Especially at four equal division points we have

5
Ra(Xj+1/4) = 8 215 () = 81929(5)()(”1) +o(hy), (24)
RuX0) =~ 8 ) = 8 ) o). (25)
j+3/4) — 8% 2) = 8192 j+1 0/>
and

Ra(Xjs5/4) = (5)(5) 3 —2e®(Xj41) + 0(hG) ~ —Ra(Xj+3/4) (26)

j+5/4 8 3 8192 j+1 j+3/4)
Ri(Xj+7/4) = ~ g 45 6(5)(§ )= 81929(5)(XJ+1) +0(hg) ~ —Ru(Xj+1/4)- (27)

It follows from egs. 22) and @4)-(27) that
(%) = 1a8(X) + Ra(x) = O(h3), k= j+1/4 [ +3/4,j+5/4]+7/4  (28)

which means that the initial gues& obtained by extrapolation and quartic interpolation is
a fifth-order accurate approximation to the FD solutidn

The above error analysis can be directly extended to 3D sagenumerical verification
in Section5: the last columns in Tablg-11). In addition, eqs46) and @7) imply that the
initial error g(x) forms a high-frequency oscillation in the entire domaiowbver, it can be
smoothed out after a few CG iterations (see Bitpr details).
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5 Numerical experiments

In this section, in order to illustrate thé&ieiency of the new EXCMG method comparing to
the classical V-cycle and W-cycle multigrid methods witke tRauss-Seidel relaxation and
the CG relaxation, we present the numerical results forswples with smooth and finite
regular solutions using the proposed method. Our code itanrin Fortran 90 with double
precision arithmetic, and compiled with Intel Visual FarirCompiler XE 12.1 under 64-
bit Windows 7. All programs are carried out on a personal tigskquipped with Intel(R)
Core(TM) i7-4790K CPU (4.00 GHz) and 16GB RAM.
The order of convergence of the method is computed by

llup — ul|

order= Ing m ,

(29)

where||-|| denotes some norm (for instant€;norm orL*-norm) andu is the true solution.

5.1 Numerical accuracy

Example 1 The test Problemi can be written as

u  d*u  du _ 5 . 3
W + a—yz + ﬁ = eZSIn(Xy)(l— X —yz), In Q = [O, l] N (30)

where the boundary conditions are
u@,y,2) =u(x,0,2) =0, u(l,y,2) =€ sinfy), u(x 1,2 = € sin(x),
and

u(xy,0) = sin(xy), u(x,y,1) = esin(xy).

The analytic solution of eq30) is

u(x,y, 2) = € sin(xy),
which is a stiiciently smooth function.

Using 7 embedded grids with the coarsest grig 4 x 4, we present the numerical
results for Problemi obtained by the new EXCMG method with= 10-* in Table 1-2.
Table1 lists theL?-error of the compact FD solutiam, the L?-error of the gradient of the
FD solutionVuy, the L?-error of the extrapolated solutiam, the L2-norm of the diference
between the initial guess, and the FD solutiomi,, and corresponding convergence rates.
Table?2 gives all errors and convergence rates frnorm. Since a direct solver is used for
the first two coarse levels of grids, we only list the resulgsting from the third level of
grid 16x 16 x 16.

Here we explain how to numerically compute the gradleat after we obtain the FD
solutionuy. First, we use the following fourth-order, one-sided, Fpragimation of the
partial derivativeu, on the boundary grid points,

25 4 3

4 1 .
— 5 Uojk t Uik — =Wz jk + 5—Usjk — -—Uajk, for j=0,--- Ny, k=0,---, Ny,
12h,

(Udojx = h h, 3h, ah,
25 4 3 4

1 .
(Udng.jk = T, UNeik ~ 1 UN-Ljk o+ P UNe-2.jk — U3k e Un- i forj=0,---,Ny,k=0,---
X X X X

4hy

Nz



An EXCMG method combined with a fourth-order compact sché&an&D Poisson equation 13

Table 1 Errors and convergence rates with: 10714 in L2-norm for Examplel.

mesh llun — ull2 order  |[V(unh—u)llo  order  |[Un — ull2 order  |wh—upllz  order
16x 16x 16 167(-08) 108(_06) 138(09) 436(-07)

32x 32x 32 109(-09)  3.93  474(-08) 451 240(-11) 584  129(-08) 5.08
64x 64x 64 700(-11)  3.97  212(-09) 448 391(-13) 594  394(-10) 5.04
128x 128x 128  442(-12)  3.98  970(-11) 445 622(-15) 598  122(-11) 5.02
256x 256x 256  282(-13)  3.97  462(-12) 439 568(-15)  0.13  379(-13) 5.01

Table 2 Errors and convergence rates with: 10714 in L*-norm for ExampleL.

mesh [lup = Ulleo order  ||V(Uh — U)[le order  ||Un — Ulleo order  ||Wh — Uplleo order

16x 16x 16 547(-08) 825(—06) 912(-09) 385(-06)

32x32x 32 343(-09)  4.00 518(-07) 3.99 177(-10)  5.68  131(-07) 4.88

64 x 64x 64 215(-10)  4.00  324(-08) 400 320(-12) 579  419(-09) 4.96

128x 128x 128  134(-11)  4.00  203(-09) 400 542(-14) 5.88 132(-10) 4.99

256x 256x 256  849(-13)  4.00  127(-10) 4.00 400(-14)  0.44  415(-12) 4.99
Then we can obtainu()i jx, (i = 1,---, Ny — 1) on the internal grid points by solving the

following linear system resulting from the fourth-ordemgoact FD schemebp],

Ui+1,jk — Ui-1,jk
2hy

The above 1D tridiagonal system can be solved fast by the @kaigorithm. Clearly, we
can getuy, andu, from similar procedures. ThefWu, can be obtainedficiently.

As we can see from tablte2 that initial guesawv, is a fifth-order approximation to the
FD solutionuy, which validates our theoretical analysis in sectiofy and the FD solution
up achieves the full fourth-order accuracy. The numericatlignat Vuy, is also a fourth-order
approximation to the exact gradieWiti in both theL?-norm andL*-norm, while the extrap-
olated solutioruy converges with sixth-order accuracy on all grids excepffitest grid.
This is due to the fact that the extrapolated solutigrisTobtained from two fourth-order
FD solutionsu, andug,, these two solutions must be extremely accurate in ordebta@iro
a sixth-order accurate solutiaf. As the grid becomes finer, the relative residual tolerance
needs to be smaller. Thus, the extrapolated soluti@tdrts to lose convergence order when
the grid is fine enough since a uniform tolerance is used IEEXEMG algorithm. And in
this example, on the finest mesh 26@56 x 256, the maximum error between the extrap-
olated solutioru; and the exact solution already reache®(1074), which is almost the
machine accuracy, although the method does not achieveailir&xth-order on the finest

grid. Additionally, we can see that the numerical resultsficm with the asymptotic error
expansion4).

1 4 1 .
6(ux)i—l,j,k + 6(ux)i,j,k + é(ux)i+1,j,k = , forj=0,--- ,Ny,k=0,--- ,N,.

Example 2 The test Probler2 can be written as

%+%+%:O, inQ=10,13, (31)
where the boundary conditions are

u0,y,2) = &'sin(V22), u(x,0,2) = e‘sin(V22), u(xy,0)=0,
and

u(ly,2) = e"Vsin(v22), u(x 1,2 =e**sin(V22), u(xy, 1) = e sin(vV2).
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Table 3 Errors and convergence rates with: 10714 in L2-norm for Example2.

mesh llun — ull2 order  |[V(unh—u)llo  order  |[Un — ull2 order  |wh—upllz  order
16x 16x 16 426(-08) 150(05) 228(-09) 621(-06)

32x 32x 32 279(-09)  3.94  663(07) 450  388(-11) 5.88  195(-07) 5.00
64x 64x 64 178(-10)  3.97  295(08) 449 628(-13) 595  610(-09) 5.00
128x 128x 128 113(-11)  3.98  132{09) 448  102(-14) 5.94  191(-10) 5.00
256x 256x 256  732(-13)  3.94  596(11) 447 311(-14) -1.60 597(-12) 5.00

Table 4 Errors and convergence rates with: 10714 in L*-norm for Example2.

mesh [lUh = Ulloo order  |[V(up — U)|leo order  [|Uh — Ulleo order  [[Wh — Upleo order
16x 16x 16 116(-07) 126(-4) 101(-08) 339(_05)

32x 32x 32 722(-09)  4.00  795(-6) 3.99 186(-10) 576  111(-06) 4.94
64x 64x 64 452(-10)  4.00  498(-7) 400 317(-12) 5.87  354(-08) 4.96
128x 128x 128  283(-11)  4.00  311(-8) 400 595(-14) 574  112(-09) 4.99
256x 256x 256  181(-12)  3.96  195(-9) 400 107(-13) -0.85 351(-11) 4.99

The analytic solution of eq3() is

which is a harmonic function and has arbitrary order smoetivdtives.

u=e"sin(v22),

Again, we use 7 embedded grids with the coarsest grid 4« 4, and the corresponding
numerical results obtained by the EXCMG method with= 10714 are listed in table3
and4. Once again, initial guess, is a fifth-order approximation of the FD solutier, the
FD solutionuy, is fourth-order accurate, and the numerical gradiantis also a fourth-order
approximation to the exact gradievis, while the extrapolated solutiap Converges to exact
solutionu with sixth-order but starts to lose accuracy on the finest gE6x 256 x 256.
Additionally, the maximum error between the extrapolat@dtson U, and the exact solution

uis less than ® x 10714, which means that the solutiap is already accurate enough, and

we don't need to further reduce the error tolerance.

Example 3 The test Probler can be written as

u
Ox2

0y?

u

072
u= g(X, yv Z)v

= f(xy.2),

inQ=1[0,1]%,

onoQ,

wheref andg are determined from the exact solution

U= e—3((x—0.5)2+(y—0.5)2+(z—045)2)’

which is a 3D Gaussian function. It varies rapidly near thiap@®.5, 0.5, 0.5).

32

Table5 andé6 list the numerical results obtained by the EXCMG method with107L.
One more time, one can see that initial guegss a fifth-order approximation of the FD

solutionuy, the FD solutionu, is fourth-order accurate (although the convergent order is

slightly reduced on the finest grid), and the numerical gnatVuy, is also a fourth-order
approximation to the exact gradie¥u, while the extrapolated solutiom, is sixth-order
accurate. Therefore, our EXCMG method is still vefieetive for the problem with very

rapid variations.
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Table 5 Errors and convergence rates with: 10711 in L2-norm for Example.

mesh llun — ull2 order  |[V(unh—u)llo  order  |[Un — ull2 order  |wh—upllz  order
16x 16x 16 122(-06) 408(-04) 6.68(-08) 229(-04)
32x32x32 7.90(-08) 3.95 129(-05) 499  115(-09) 5.86  580(-06) 5.30
64x 64 x 64 504(-09) 3.97  442(-07) 4.86  187(-11) 5.94  186(-07) 4.96
128x 128x 128  319(-10) 3.98  173(-08) 4.67  305(-13) 5.94  586(-09) 4.99
256x 256x 256 ~ 240(-11) 3.73  750(-10) 453  452(-12) -3.89  184(-10) 4.99
Table 6 Errors and convergence rates wite: 10711 in L*-norm for Examples.
mesh [lup = Ulleo order  |[V(Uh — U)[lo order  ||Un — Ulleo order  ||Wh — Uplleo order
16x 16x 16 4.80(-06) 103(-03) 214(-07) 113(-03)
32x32x32 297(-07) 4.01  435(-05) 456  407(-09) 5.71  250(-05) 5.50
64x 64x 64 185(-08) 4.00 201(-06) 443  663(-11) 5.94  998(-07) 4.65
128x128x 128  116(-09) 4.00 103(-07) 428  104(-12) 5.99  302(-08) 5.05
256x 256x 256  895(-11) 3.69  555(-09) 422  185(-11) -4.15 927(-10) 5.03
Table 7 Errors and convergence rates witk: 109 in L2-norm for Examplet.

mesh llup — ull2 order |[V(u,—U)[z  order [T - ul}2 order  |wh—unllz  order
32x16x%x8 358(-06) 285(-4) 4.55(-07) 7.86(-05)

64x32x 16 235(-07) 3.93  137(-5) 438  836(-09) 5.76  258(-06) 4.93
128x 64 % 32 151(-08) 3.96  634(-7) 4.43  139(-10) 5.92  819(-08) 4.98
256 128x 64 951(-10) 3.98  296(-8) 442  324(-12) 5.42  258(-09) 4.99
512x 256x 128  573(-11) 405 167(-9) 415 912(-12) -1.49  799(-11) 5.01

Example 4 The test Probler can be written as

du  6’u  du 5 . : . . 3

e + 6_y2 + 57 —5.257° sin(2rx) sin(ry) S|n(§z), inQ=1[0,1]°, (33)
where the boundary conditions are

u0,y,2) = u(l,y,2 = u(x,0,2) = u(x, 1,2 = u(x,y,0) = 0 andu(x,y, 1) = sin(2rx) sin(ry).

The analytic solution of eq3@) is
u(x,y, 2) = sin(2rx) sinry) sin(7—2rz),

which changes fastest in thxedirection, faster in theg direction and slowest in thedirec-
tion.

Since the solution has the fastest change inxiaérection and the slowest change in
the z-direction, we use the coarsest grick& x 2 in the EXCMG algorithm. Tabl& and8
list the numerical data obtained by EXCMG method using a#éoleee = 10°°. Again, the
initial guesswy, is a fifth-order approximation of the FD solutieR, the FD solutioru, is
fourth-order accurate, and the numerical gradluy is also a fourth-order approximation
to the exact gradieriu, while the extrapolated solutiom, achieves sixth-order accuracy
but starts to lose accuracy on the finest grid since a unifoterances = 107° is used on
each level of grid. The maximum error between the extrapdlablutionur and the exact
solutionu already reache®(101') on the finest grid which is again quite accurate.

Previous examples are results for the 3D Poisson equati@nenthe exact solution is
infinitely many times continuously fierentiable. In the following examples, we will show
the results using the new EXCMG method for the cases wherextet solutions have finite
regularities.
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Table 8 Errors and convergence rates with: 10~° in L*-norm for Examplet.

mesh [lup = Ulleo order  ||V(Uh — U)[le order  ||Un — Ulleo order  ||Wh — Uplleo order

32x16x8 110(-05) 178(3) 274(-06) 358(_04)

64x 32x 16 697(-07)  3.98  116(-4) 3.93 623(-08) 546  997(-06) 5.17

128x 64x 32 435(-08) 4.00 736(-6) 398 118(-09) 572  320(-07) 4.96

256x 128x 64  271(-09)  4.01  461(-7) 400 192(-11) 594  959(-09) 5.06

512x 256x 128  182(-10)  3.90  374(-8) 3.63 458(-11) -1.26 282(-10) 5.09
Table 9 Errors and convergence rates with: 10712 in L2-norm for Exampleb.

mesh llup — ull2 order  |[V(unh—u)llo  order  |[Un —ull2 order  |wh—upllz  order

16x 16x 16 544(-08) 122(-05) 335(-09) 232(_06)

32x32x 32 356(-09)  3.94  684(-07) 415 537(-11) 596 129(-07)  4.18

64x 64 x 64 227(-10)  3.97  325(-08) 439 87(-13) 597  419(-09)  4.94

128x 128x 128 144(-11)  3.98  147(-09) 446  134(-14) 6.00 132(-10) 4.99

256x 256x 256 957(-13)  3.91  659(-11) 448  118(-13) -314 412(-12) 5.00
Table 10 Errors and convergence rates witk: 10712 in L®-norm for Exampléb.

mesh [lup = Ulleo order  ||V(Uh — U)lleo order  ||Un — Ulleo order  ||Wh — Uplleo order

16x 16x 16 113007 826(5) 118(08) 253(-05)

32x 32x 32 716(-09)  3.98  533(-6) 3.82 208(-10) 5.83  696(-07) 5.18

64x 64 x 64 448(-10)  4.00  376(-7) 3.96 332(-12) 597  248(-08) 4.81

128x 128x 128 280(-11) 4.00 236(-8) 3.99 525(-14) 5.98 802(-10) 4.95

256x 256x 256  181(-12)  3.95  150(-9) 3.97 258(-13) -2.30  253(-11) 4.99

Example 5 The test Problerd can be written as

Fu_Fu i - 3
W-i_a_yz-i_ﬁ_f(x’y’Z)’ |I’].Q—[0,l] ’ (34)

u=g(xy,2, ondQ,
wheref(x,y, Z) andg(x, y, z) are determined from the exact solution

3P

u e —
(@ +y2 + 2)15°

which has singularity at the origin and belongst6°— (¢ is an arbitrary positive constant).
It follows from the Sobolev embedding theorem that C5.

In the numerical computation, we also use 7 embedded gritls thve coarsest grid
4 x 4 x 4, and the corresponding numerical results by the EXCMG aukthith € = 1022
are listed in tabl® and10. From tabled and 10, one can easily find that the results are the
same as previous examples, i.e., in bbfhand L®-norms, the initial gueses, is a fifth-
order approximation of the FD solutiap, the FD solutioru is fourth-order accurate, and
the numerical gradieriu, is also a fourth-order approximation to the exact gradéunt

while the extrapolated solution, Achieves sixth-order accuracy but starts to lose accuracy

on the finest grid since a uniform tolerance: 1012 is used on each level of grid.

We further carry out the computations for other cases wherettact solutioru has
lower regularities, we find that if the exact solutiore H® (s < 7.5), then the extrapolated
solutionu, will not reach sixth-order accuracy itf°-norm. In addition, we find that only
when the exact solution satisfies thati € H® (s > 5.5), then the numerical solutiom,
can reach fourth-order accuracy li°-norm. This is not surprising since”>*€(Q) can
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Table 11 Errors and convergence rates witk: 10713 in L2-norm for Examples.
mesh llun — ull2 order  |[V(unh—u)llo  order  |[Un — ull2 order  |wh—upllz  order
16x 16x 16 239(-08) 711(-06) 268(-09) 154(_06)
32x 32x 32 155(-09)  3.94  445(-07) 400 635(-11)  5.40  671(-08) 452
64x 64x 64 990(-11)  3.97  246(-08) 418  145(-12) 545  239(-09) 4.81
128x 128x 128  626(-12)  3.98  128(-09) 427  326(-14) 548  790(-11) 4.92
256x 256x 256  384(-13)  4.03  629(-11) 434  103(-13) -1.66  254(-12) 4.96

Table 12 Errors and convergence rates witk: 10-13 in L®-norm for Example6.
mesh [lup = Ulleo order  ||V(Uh — U)[le order  ||Un — Ulleo order  ||Wh — Uplleo order
16x 16x 16 125(07) 326(5) 109(07) 705(_06)
32x32x 32 781(-09)  4.00  408(-6) 3.00 682(-09) 3.50  440(-07) 4.00
64x 64x 64 488(-10) 4.00 510(-7) 3.00 426(-10) 3.50  275(-08) 4.00
128x 128x 128  305(-11)  4.00  638(-8) 3.00 267(-11) 350  172(-09) 4.00
256x 256x 256  204(-12)  3.90  792(-9) 301 371(-12) 3.61 108(-10) 4.00

be continuously embedding in@¥(Q) andH>%*¢(Q) can be continuously embedding into

C*(Q) from the Sobolev embedding theorem.

In the final part of this section, we will show the results foe@xample where the exact

solutionu € H357¢ (g is an arbitrary small positive constant).

Example 6 The test Problend can be written as

0%u  du

d°u

8xyz

WJra_szrﬁ T 0@+y+ )05’

where eq.85) has singularity at the origin arg{x, y, z) is determined from the exact solution

which belongs toH>5¢ (¢ is an arbitrary small positive constant). It follows frometh

u=g(xYy,2,

u = xyz(x2 + y? + 2)°°,

Sobolev embedding theorem that C*<.

Once again, we use 7 embedded grids with the coarsestxg#id4, and the correspond-

inQ=1[0,1]%,

onoQ,

(35)

ing numerical results by the EXCMG method with= 10712 are listed in tablel1 and12.
Since in this case, the exact solutiois only has a finite regularitid>>¢ (¢ is any positive
constant). From tabl#1 and12, we can see that the numerical solutigyis a fourth-order

approximation to the exact solution in bdtA and L*-norms. However, due to the lack of
regularity of the exact solution, we can see from tdldlend12 that the numerical gradient

Vu, converges with fourth-order accuracylif-norm but only third-order in.*-norm, the
extrapolated solutiony’is 5.5th-order accurate ih?-norm but only 35th-order accurate in

L*-norm, while the initial guess, is only a fourth-order approximation to the FD solution

up in L*-norm. Nonetheless, the initial guess is still a fifth-order approximation to the
FD solutionuy, in L2-norm. Since the relative residual in the CG solver in our EXCMG
method is calculated based on ttfenorm (see line 7 of the algorithd), thus, our EXCMG
method is still &ective for such low regularity problems ¢ H>5-%), and extrapolation can
also help us to increase the accuracy of initial gwgss L2-norm, which would widen the

scope of applicability of our method.
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Table 13 Comparison of the number of iterations, CPU times (in sespadd errors between the EXCMG
method and classical multigrid methods with the Gaussebsitioother. Here CR), denotes the computa-
tional time for constructing of the initial guess,.

V(1,1) W(2,1) EXCMG
lterss CPU |lup — Ul lters CPU |jup — Ul lterS CPU |luh—Uls CPU,,
Examl 10 16 46.1 861(-13) 12 47.6 89(-13) 8 129 #&9(-13) 0.6
Exam2 101 16 464 191(-12) 12 476 T71(-12) 9 126 181(-12) 0.6
Exam3 10 13 415 783(-11) 9 394 R2(-11) 8 11.8 240(-11) 0.6
Exam4 109 72 2043 &7(-10) 47 1829 2Z6(-10) 8 10.8 182(-10) 0.6
Exam5 10712 14 4238 177(-12) 10 413 175(-12) 9 138 181(-12) 0.6
Exam6 1071 15 459 191(-12) 11 461 D1(-12) 9 133 4(-12) 0.6

1 Iters denotes the number of V-cycles required to reach toe ererancee.
2 Iters denotes the number of W-cycles required to reach tioe eerancer.
3 Iters denotes the number of CG iterations on the finest gri XCMG method.

Table 14 Comparison of the number of iterations, CPU times (in sespadd errors between the EXCMG
method and classical multigrid methods with the CG smoother

V(1,1) W(2,1) EXCMG

€ Iters CPU |uh — Ulleo lters CPU |up — Ule Iters CPU |up — Ul
Examl 10 15 439 838(-13) 13 49.7 &2(-13) 8 129 &9(-13)
Exam2 101 15 433 176(-12) 13 49.0 173(-12) 9 126 181(-12)
Exam3 1011 11 322 709(-11) 10 38.0 722(-11) 9 118 240(-11)
Exam4 109 101 2953 174(-10) 30 1158 T1(-10) 8 10.8 182(-10)
Exam5 1012 13 391 175(-12) 11 427 175(-12) 9 138 181(-12)
Exam6 1013 14 409 197(-12) 11 424 195(-12) 9 133 M4(-12)

5.2 Computationalféciency

In this subsection, we compare th@&ency of the our new EXCMG method with the ef-
ficiency of the classical V-cycle and W-cycle multigrid meds for above six examples.
Results with Gauss-Seidel smoother are listed in taBlevhile results with CG smoother
are listed in table4. In both tables, the number of iterations, computatiormaktithelL>-
norm of the diference between the FD solutiop and the exact solution are provided.
Moreover, the computational time for constructing of thiéiah guessw;, (line 6 in algo-
rithm 1) is also listed in the last column of table, this step contains the extrapolation
and quartic interpolation as described in sectdidh By comparing the total computational
time of the new EXCMG method with the classical V-cycle anatyle multigrid methods
for all above six examples as listed in both tahi®and 14, one can easily find that the
new EXCMG method needs the smallest time for all examplestfais is particularly true
when using the unequal meshsizes iffietent directions, see exampleThus, the EXCMG
method is much morefigcient than the classical V-cycle and W-cycle multigrid noetk.
And from the last column in tabl&3, one can find that the computational time for construct-
ing the initial guessw, described in sectiod.3is 0.6 seconds for every example, which is
very cheap, comparing to the total computational time.

Moreover, one can see from taldl@ and14 that there is only a few number of iterations
are needed on the finest grid for every example in our EXCMGhaotgtbecause that the
initial guesswy, is already an extremely accurate approximation to the FDtisol u,. For
example, from the last column of tatffewe see that the maximum error of the initial guess
on the finest grid for exampleis 415x 10712, which implies that the number of significant
figures of the approximation exceeds 10. Indeed, from telii2we see that the extrapolated
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valuew, served as an initial guess of the CG solver is a fifth-order@pmation to the FD
solutionuy, in L?-norm, which is one order higher than the convergence oridiedourth-
order diference solution,. Thus, the relative féect of howw;, approximatesi, becomes
better when mesh is refined, and the number of iterationgdliscexl most significantly on
the finest grid, see a more detailed discussiod#. [

Finally, we present the curve of the relative residual orfitlest grid versus the number
of iterations for the above six examples in Fig.As we can see that the initial relative
residual on the finest grid for each example is very small. Aune to the high oscillations
of the initial error as shown in secti@gh4, the relative residual decreases by several orders
of magnitude after only a few iterations, and then reachesmber that is less than the
required tolerance.

6 Conclusions

In this work, we developed a new extrapolation cascadicigridt(EXCMG) method com-
bined with 19-point fourth-order compactfidirence scheme for solving the 3D Poisson
equation on rectangular domains. The major advantage ohétleod is to use the Richard-
son extrapolation and tri-quartic Lagrange interpolatechniques for two numerical solu-
tions on two-level of grids (current and previous grids) irbain a fifth-order approximation
Wh to the fourth-order FD solutiony, as the initial guess of the iterative solution on the next
finer grid, which greatly reduces the iteration numbers. iVt exact solutiow is sufi-
ciently smooth, a sixth-order extrapolated solutignoh the fine grid can be obtained by
using two fourth-order numerical solutions on two scalegrMoreover, the gradient of so-
lution Vu, can also be computed easily arfi@ently through solving a series of tridiagonal
linear systems resulting from the fourth-order compact FHoretization of the derivatives.
Finally, numerical results show that our new extrapolatiascadic multigrid method is
much more #icient comparing to the classical V-cycle and W-cycle multignethod and
it is particularly suitable for solving large scale probkem

The work presented in this paper is an extension of our pusweork, which is based
on the EXCMG method for the 3D elliptic problem with the lindZE discretization44).
In the near future, we will extend our method to convectidifitdion equations, Helmholtz
equations, biharmonic equations, and other related emsati
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