Skip to main content
Log in

Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose an efficient algorithm based on the Legendre–Galerkin approximations for the direct solution of the biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn–Hilliard type. The key point to the efficiency of our algorithm is to construct appropriate basis functions which satisfying the corresponding boundary condition automatically and leading to linear systems with sparse matrices for the discrete variational formulations. In addition, the error estimate was driven by the minimax principle. Finally, the numerical results demonstrate the accuracy and the efficiency of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. An, J., Luo, Z.D.: A high accuracy spectral method based on min/max principle for biharmonic eigenvalue problems on a spherical domain. J. Math. Anal. Appl. 439(1), 385–395 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardi, C., Maday, Y.: Spectral methods. Handb. Numer. Anal. 5, 209–485 (1997)

    Google Scholar 

  3. Bhrawyb, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algorithm 73(1), 1–23 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bhrawyb, A.H., Zaky, M.A., Van Gorder, R.A.: A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation. Numer. Algorithms 71(1), 151–180 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S., Monk, P., Sun, J.Q.: \(\text{C}^0\text{ IPG }\) Method for Biharmonic Eigenvalue Problems. Lecture Notes in Computational Science and Engineering (to appear) (2014)

  6. Canuto, C.: Eigenvalue approximations by mixed methods. RAIRO Anal. Numér. 12(1), 27–50 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Thomas, J.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)

    MATH  Google Scholar 

  8. Chen, W., Lin, Q.: Approximation of an eigenvalue problem associated with the stokes problem by the stream function-vorticity-pressure method. Appl. Math. 51(1), 73–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Funaro, D., Heinrichs, W.: Some results about the pseudospectral approximation of one-dimensional fourth-order problems. Numer. Math. 58(1), 399–418 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods, vol. 2. SIAM, Philadelphia (1977)

    Book  MATH  Google Scholar 

  11. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  12. Ishihara, K.: A mixed finite element method for the biharmonic eigenvalue problems of plate bending. Publ. Res. Inst. Math. Sci. Kyoto Univ. 14(2), 399–414 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ishihara, K.: On the mixed finite element approximation for the buckling of plates. Numer. Math. 33(2), 195–210 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, Z.D.: A high accuracy numerical method based on spectral theory of compact operator for biharmonic eigenvalue equations. J. Inequal. Appl. 2016(1), 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  15. Malek, A., Phillips, T.N.: Pseudospectral collocation methods for fourth-order differential equations. IMA J. Numer. Anal. 15(4), 399–418, 523–553 (1994)

  16. Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36(154), 427–453 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33(1), 23–42 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen, J.: Efficient spectral-Galerkin method. I: direct solvers of second-and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shen, J.: Efficient spectral-Galerkin method II. Direct solvers of second- and fourth-order equations using Chebyshev polynomials. SIAM J. Sci. Comput. 16(1), 74–87 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, J.Q.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49(5), 1860–1874 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, Y.D., Jiang, W.: Upper spectral bounds and a posteriori error analysis of several mixed finite element approximations for the stokes eigenvalue problem. Sci. China Math. 56(6), 1313–1330 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhuang, Q.Q.: A Legendre spectral-element method for the one-dimensional fourth-order equations. Appl. Math. Comput. 218(7), 3587–3595 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

LZC would like to acknowledge the support from National Science Foundation of China (NSFC) through Grant 11301438 and 11671166, Postdoctoral Science Foundation of China through Grant 2015M580038 and President Foundation of Chinese Academy of Engineering Physics through Grant 201501043 and NSFC under Grant U1530401. QQZ would like to acknowledge the support from National Natural Science Foundation of China under Grant No. 11501224 and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University under Grant No. ZQN-PY201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., An, J. & Zhuang, Q. Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials. J Sci Comput 70, 1030–1041 (2017). https://doi.org/10.1007/s10915-016-0277-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0277-7

Keywords

Navigation