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Abstract. The level set method commonly requires a reinitialization of the level set function
due to interface motion and deformation. We extend the traditional technique for reinitializing the
level set function to a method that preserves the interface gradient. The gradient of the level set
function represents the stretching of the interface, which is of critical importance in many physical
applications. The proposed locally gradient-preserving reinitialization (LGPR) method involves the
solution of three PDEs of Hamilton-Jacobi type in succession; first the signed distance function
is found using a traditional reinitialization technique, then the interface gradient is extended into
the domain by a transport equation, and finally the new level set function is achieved with the
solution of a generalized reinitialization equation. We prove the well-posedness of the Hamilton-
Jacobi equations, with possibly discontinuous Hamiltonians, and propose numerical schemes for
their solutions. A subcell resolution technique is used in the numerical solution of the transport
equation to extend data away from the interface directly with high accuracy. The reinitialization
technique is computationally inexpensive if the PDEs are solved only in a small band surrounding
the interface. As an important application, the LGPR method will enable the application of the
local level set approach to the Eulerian Immersed boundary method.

Key words. Level set function; Reinitialization; Interface gradient; Eulerian Immersed Bound-
ary Method; Discontinuous Hamiltonian

1. Introduction. The level set method [25, 24] is a classical framework used to
accurately and elegantly evolve Lagrangian interfaces over a fixed Eulerian grid. It
has seen very wide application in numerous fields, from fluid-structure interactions
(e.g., lipid vesicles [30], bubbles [3], two-phase flows [36]) to image processing [22],
computational geometry [32], computer vision [32], and materials science [19, 32]. The
level set method involves the tracking of a level set function φ, a continuous function
with the property that its zero level set Γ = {x : φ(x) = 0} represents the Lagrangian
interface (for instance, the boundary between two fluid phases or an immersed elastic
structure). However, if the interface is deformed by a velocity field, for instance, then
the gradient of the associated level set function, ∇φ, may grow unbounded in the
process. To reduce the associated numerical error the level set function is commonly
reinitialized. Even if the boundary is not highly deformed, when a local level set
method [1, 28] is applied to reduce computational costs, reinitialization is required if
the interface encroaches the boundary of the thin computational tube.

For many applications, only the position and curvature of the interface are
needed, and the level set function φ after each reinitialization may be chosen to
be a signed distance function [36, 3, 22]. For example, in the simulation of elastic
structures immersed in a fluid, if the tension is assumed constant (see [3]) then the
force depends only on the curvature of the interface so that the signed distance func-
tion contains sufficient information. However, in the Eulerian immersed boundary
method [5, 6], |∇φ|Γ represents the stretching of the elastic structure. Consequently,
the elastic forces depend on |∇φ| at the interface and the signed distance function
cannot be used to compute these forces. One solution to this problem, shown by
Cottet & Maitre, is to avoid reinitialization altogether and to instead to renormalize
with a particular approximation of the Dirac delta function used in interface capture
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[6]. However, there are situations in which this strategy is inadequate. For instance,
it would not be effective in the local level set approach to the Eulerian immersed
boundary method.

In this paper we develop a method for reinitializing the level set function that
locally preserves its gradient near the Lagrangian interface. The proposed locally
gradient-preserving reinitialization (LGPR) method involves the solution of three
Hamilton-Jacobi equations in succession; first the signed distance function is found
using the traditional reinitialization technique, then the cost function is obtained by
extending the interface gradient into the domain by a transport equation, and finally
the new level set function is achieved by the solution of a generalized reinitialization
equation with the cost function obtained in the previous step. The steady reinitializa-
tion equation is an Eikonal equation with the cost function discontinuous at the cut
locus of the interface. We show that the ”proper” viscosity solution (to be defined) of
the Eikonal equation exists and is unique. We also prove that the viscosity solution
that vanishes at the interface of the reinitialization equation converges to this proper
viscosity solution and hence it is the level set function desired. We then propose
numerical schemes for their fast and accurate solution. As an important application,
the LGPR method will enable the application of the local level set approach to the
Eulerian Immersed boundary method, which may then be comparable in cost with
the classical immersed boundary method of Peskin [29], but with improved stability.

LGPR consists of some equations that are very similar with some well-studied
equations in literature. Motivated by those results, some theoretic results are new
in this paper. For example, about the Eikonal equation with boundary conditions
imposed on the outer boundary, some results are available for some discontinuous
cost functions. Due to the assumptions imposed in those references, the results can’t
be applied to our case for the proof of the uniqueness. We provide a new proof for
the uniqueness for our special Eikonal equation. The formula for the solution of the
general reinitialization equation, as far as we know, is new, though the generalization
from existing results is not hard. The numerical schemes are combinations of modified
versions of some well-known methods except that we propose a new upwind scheme
for the transport equation for extending quantities out from the interface.

The paper is organized as follows. In §2 we present the sequence of PDEs involved
in locally gradient-preserving reinitialization. In §3 we show the theoretical results,
and give explicit formulas for viscosity solutions. Numerical schemes for solving the
equations are the topic of §4, and a few illustrative examples are provided in §6. We
conclude with a brief summary in §7. Proofs for several claims made throughout the
paper about the cut locus, existence and uniqueness of the proper viscosity solution of
the Eikonal equation with a discontinuous cost function, and other issues are included
in the appendix.

2. Problem setup and reinitialization method. We begin by describing
in more detail the motivation and setup of the problem, and presenting the locally
gradient-preserving reinitialization method. For the sake of presentation, we will
consider as a model problem a closed one-dimensional elastic interface embedded in
R2, though the method could be extended into cases with several closed interfaces or
higher dimensions without conceptual difficulty.

Suppose φ is a level set function such that the zero level set Γ agrees with the
interface X(ξ, t), where ξ is a Lagrange coordinate and t is time. Assume that φ > 0
inside Γ and φ < 0 outside Γ. In [5], it was shown that |∇φ(X(ξ, t), t)|/|Xξ(ξ, t)| =
α(ξ) is independent of t when φ is convected by the velocity field, and thus if φ
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is constructed initially such that α = 1, |∇φ|Γ measures the tangential stretching
(or compression) of the interface. Generically, such an elastic structure responds
energetically to both bending and stretching deformations. The elastic force due to
interface bending depends on the curvature κ = −∇ · n̂, where n̂ = ∇φ/|∇φ| is
the inward-pointing normal vector at the interface, which is unchanged under any
reinitialization scheme that preserves the location of the level set. The elastic force
at a point x due to interface stretching, however, is given by ([5]):

(2.1) F (x) = ∇ (E′(|∇φ|)) |∇φ|δ(φ)−∇ ·
(
E′(|∇φ|) ∇φ|∇φ|

)
∇φ δ(φ)

= κE′(|∇φ|)∇φ δ(φ) + E′′(|∇φ|)n̂ · ∇∇φ · (I − n̂n̂)|∇φ|δ(φ)

where I is the identity operator, n̂n̂ is a dyadic product and E(·) is the elastic energy
due to stretching. The first term in (2.1) is a force due to a curved interface under a
certain tension, while the second term is due to tension gradients along the interface.
We introduce the stretch function

χ(x) = |∇φ|(x), x ∈ Γ(2.2)

defined on the interface (time dependence is ignored). Stretching occurs in regions
where χ > 1, and compression occurs where χ < 1. In the above, we require two
quantities that may be tied to the gradient of the level set function: χ(x) and n̂ ·
∇∇φ · (I − n̂n̂)|Γ = Dsχ(Γ(s))ŝ, where s is the arc length parameter, Ds = d/ds and
ŝ = Γ′(s) is the unit tangent vector along the surface Γ.

In the process of the convection of the interface, ∇φ may have become unbounded
(usually away from the interface), or the zero level set may have drifted towards the
boundary of a tube in the local level set method. In this situation it is necessary
to find a new level set function that is better behaved. So as to leave the elastic
force unchanged during this process, the stretch function χ must be preserved during
reinitialization. In theory preserving χ(Γ(s)) is sufficient, but in numerical application
we must also ensure that its tangential derivative is accurately preserved. We now
formulate the reinitialization problem in a more mathematical way.

2.1. Locally gradient-preserving reinitialization. Suppose that φ0 is a uni-
formly continuous level set function, C1 on Γ = {x : φ0(x) = 0} with x ∈ R2, but
not necessarily C1 elsewhere. φ0 is assumed to be positive inside the interface Γ and
negative outside Γ. In addition we assume that Γ satisfies:

Assumption 1. Γ is a closed, nonintersecting C1 curve which can be decomposed
into several segments, each of which is locally analytical throughout (including at the
segment endpoints).

Consider an arc-length parameterization of the interface on one such segment,
Γ(s) : [a, b] → R2. Γ is locally analytical if for every s0 ∈ [a, b], there is a number
ε > 0, so that the Taylor series of Γ about s0 converges to Γ in (s0− ε, s0 + ε)∩ [a, b].
That the segment endpoints are also assumed to be analytical (one-sided) removes
certain pathological behaviors [4]. The assumption on Γ makes physical sense for
practical interfaces.

We denote by U the open domain enclosed by Γ. The stretch function

χ(x) = |∇φ0|(x), x ∈ Γ(2.3)

is assumed to satisfy: χ(Γ(s)) is continuous and the derivative Dsχ(Γ(s)) is piecewise
continuous. We assume 0 < c1 ≤ χ(Γ(s)) ≤ c2 for two constants c1, c2, which is a
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physically relevant constraint since the stretching deformation is generally bounded
when the material is elastic. We aim to find a new level set function φ which is
Lipschitz continuous (the gradient is bounded), smooth (C1) in a local band around
Γ, and in particular, preserves the interface gradient, |∇φ|(x ∈ Γ) = χ(x ∈ Γ).

We are then led to the Eikonal equation,

H(x,∇φ) = sgn(φ0)(|∇φ| − f(x)) = 0 x ∈ R2,
φ(x) = 0, x ∈ Γ,

(2.4)

for some suitable f that has the boundary condition f(x) = χ(x) for x ∈ Γ. Here
H(x, p) = sgn(φ0(x))(|p| − f(x)) is the Hamiltonian. The sign function sgn(φ0) con-
nects the level set function to the so-called viscosity solution, as will be discussed in
the next section. While f is known on Γ, part of the reinitialization process will be
first to extend f away from the interface and into the larger domain.

In the traditional reinitialization procedure, the new level set function ϕ is the
signed distance function which is recovered by solving numerically a Hamilton-Jacobi
(H-J) equation [36],

∂ϕ

∂τ
+ sgn(φ0)(|∇ϕ| − 1) = 0,

ϕ(x, 0) = φ0(x),
(2.5)

which is inadequate in our effort to preserve the interface stretch information.
Instead, we propose continuing the process by two extra steps to find a new

function φ that shares its gradient with φ0 locally near Γ. First, we extend f(x ∈
Γ) = χ(x ∈ Γ) from the interface out into the whole domain along the characteristic
lines of the signed distance function by a transport equation,

∂f

∂τ
+ sgn(ϕ)∇ϕ · ∇f = 0,

f(x ∈ Γ, τ) = χ(x).
(2.6)

The desired level set function is then obtained by solving a generalized reinitialization
equation,

∂φ

∂τ
+ sgn(φ0)(|∇φ| − f(x)) = 0,

φ(x, 0) = φ0(x),
(2.7)

For the remainder of the paper, references to the “reinitialization equation” are to
(2.7); the earlier equation, (2.5), a special case of (2.7), will be referred to as the
traditional reinitialization equation. For convenience we have abused the notation for
f(x, τ) and the steady cost function f(x), and similarly φ(x, τ) and φ. Whether we
mean the steady solution or the pseudo-time dependent solution should be clear by
the context. We refer to (2.5)-(2.7) as the locally gradient-preserving reinitialization
(LGPR) method.

The LGPR method proposed above is straight-forward and there are no immedi-
ately apparent complications, but it is not obvious that the solution of (2.7) converges
to the solution of the Eikonal equation, (2.4), or even if it exists since the cost function
f developed with the transport equation in (2.6) may be discontinuous. However, as
we will show in the following section, the solutions so obtained are well-defined so that
the reinitialization method presented here may become a basis for fast, accurate local
level set methods. We will also numerically determine how to preserve the interface
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gradient χ so that Dsχ(Γ(s)) can be recovered accurately.

Remark 1. When f(x) is known in the whole domain, the Eikonal equation,
Eq (2.4) can be solved using, for instance, the Fast Marching Method (FMM) [31] or
the Fast Sweeping Method (FSM) [37]. This is one approach for initializing an origi-
nal level set function, and could also be used as an alternative basis for reinitialization.

3. Theoretical results. In this section we will show that the LGPR equations
described in the previous section are well-posed. Specifically, we will show that the
cost function f(x) is continuous outside of a closed set consisting of arcs and vertices
and that the Eikonal equation has a unique “proper” solution (to be clarified later)
given the function f(x) produced using the transport equation, (2.6). A formula for
φ(x, τ) is derived, which is found to converge to the “proper” solution of the Eikonal
equation (2.4) in finite time. Thus, (2.7) is shown to be equivalent to (2.4).

Note that there are some results about the Eikonal equation or some Hamilton-
Jacobi equations with discontinuous Hamiltonians, which can’t applied to our case,
as we will see later. For the Eikonal equation, one can find some results in [27, 34,
35, 9, 11]. In these references, one can check that their assumptions don’t apply to
the cost function generated by (2.6). In [2], the equation ut + sgn(u0)H(∇u) = 0
has been studied but (2.7) doesn’t belong to this class. In our theoretical results, the
proof for the uniqueness of the Eikonal equation is new and the formula for φ(x, τ)
as far as we know, is derived for the first time, though it is not hard to obtain this
formula from existing results.

3.1. The Eikonal equation. The Eikonal equation, (2.4), is a Hamilton-Jacobi
equation with Hamiltonian H(x, p) = sgn(φ0(x))(|p| − f(x)), and f is called the cost
function. We first introduce the definition of viscosity solutions (see [7, 13]), then we
study the continuity (and regions of discontinuity) of f from its development by (2.6),
and finally explore the associated solutions of the Eikonal equation.

3.1.1. Viscosity solutions of the Eikonal equation. In the general setting
of the Eikonal equation, solutions need not exist in the classical sense. Instead, so-
lutions are developed in a weaker sense; specifically, a viscosity solution is defined as
follows.

Definition 3.1. A viscosity sub-solution (super-solution) of H(x,∇φ) = 0 is
an upper semi-continuous function (a lower semi-continuous function), if for any C∞

function ζ, when φ − ζ has a local maximum (minimum) at x0 which is an interior
point, then H∗(x,∇ζ(x0)) ≤ 0 (H∗(x,∇ζ(x0)) ≥ 0). A viscosity solution is a contin-
uous function that is both a sub- and super-solution.

In this definition, H∗(x, p) = limr→0 esssup{H(y, q)| ‖(y, q) − (x, p)‖L2 ≤ r} is
the sup-envelope, and H∗ is similarly defined to be the inf-envelope.

For example, consider |u′| = 1, x ∈ (−1, 1) with Γ = {−1, 1} (see exercises in
[10]) whose viscosity solution is u = 1 − |x| for x ∈ [−1, 1]. The viscosity solution
of −|u′| = −1, x ∈ (−1, 1) with Γ = {−1, 1} is u = |x| − 1 for x ∈ [−1, 1]. From
this definition, we see why sgn(φ0) appears in the Eikonal equation: the viscosity
solution of |∇φ| − f = 0 can only have kinks pointing up while the viscosity solution
of f − |∇φ| = 0 can only have kinks pointing down. If we write the Eikonal equation
as |∇φ| = f , for Γ that is not convex, φ that is negative outside Γ may have kinks
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pointing down and this φ is not a viscosity solution to |∇φ| = f . A common error in
the numerical literature is that the signed distance function associated with a non-
convex curve is treated as a viscosity solution of |∇φ| = 1.

It is natural to decompose the Eikonal equation, (2.4), into interior (x ∈ U)
and exterior (x ∈ R2 \ Ū) problems, and to piece the two solutions together. If f is
continuous at Γ, which it is as we will show, then the interior and exterior solutions
together form a viscosity solution over the entire domain (since the equation is also
then satisfied on the interface Γ). We therefore focus on the interior and exterior
problems separately.

The interior problem has been solved by other authors for continuous f with
inf f > 0, and existence and uniqueness have been established [7, 15, 18]. An integral
representation of φ is given by:

φ(x) = inf
γ∈C

{∫ L

0

f(γ(s))ds
∣∣∣γ(0) = x, γ(L) ∈ Γ

}
,(3.1)

(see [21, 27]), where C is the space of absolutely continuous self-avoiding curves, s is
the arc-length parameter, and L is the total arc-length (which depends on γ).

In the exterior problem, however, even if f is continuous and inf f > 0, uniqueness
is not guaranteed. For example, both φ1(x) = ||x| − 1| and φ2(x) = 1 − |x| where
x ∈ R are viscosity solutions for sgn(1 − |x|)(|φ′(x)| − 1) = 0. This motivates the
following definition:

Definition 3.2. The “proper” viscosity solution of the Eikonal equation, (2.4),
is defined to be the pointwise limit of φn as n→∞, where φn is the viscosity solution
satisfying (2.4) in the sense of Definition 3.1 in {|x| < n} with φn(|x| = n) = 0 for
n ∈ Z and n > maxy∈Γ d(0, y).

Here d(E1, E2) = infx∈E1,y∈E2
‖x − y‖ is the distance between two sets E1 and

E2. Under this definition, for continuous f > 0, φ is the limit of a sequence of interior
problems and is therefore uniquely determined (see the previous discussion). Such
a φ is also a viscosity solution in the general sense of Definition 3.1. A limit of the
integral representation of φn as n → ∞ reveals the viscosity solution for all x ∈ R2

with continuous f > 0, so that a representation of φ(x) for all x is given by

φ(x) = sgn(φ0) inf
γ∈C

{∫ L

0

f(γ(s))ds
∣∣∣γ(0) = x, γ(L) ∈ Γ

}
.(3.2)

Unfortunately, while continuous on Γ, it is not guaranteed that f obtained by
the transport equation, (2.6), is continuous in the whole domain. Before proceeding
any further, we must therefore understand the nature of f obtained using (2.6).

3.1.2. The cost function. Due to the method for extending f into the whole
domain using (2.6), the behavior of the cost function f is intimately linked to the
behavior of ϕ. Aujol & Aubert [2] have shown that the viscosity solution of (2.5)
that satisfies ϕ(x ∈ Γ, τ) = 0 converges to the steady solution, which is the proper
viscosity solution (see Definition 3.2) of sgn(φ0)(|∇ϕ| − 1) = 0. By (3.2), since the
cost function in this case is 1, ϕ is the signed distance function:

ϕ(x) =

{
d(x,Γ) x ∈ Ū ,
−d(x,Γ) x ∈ R2 \ Ū .(3.3)
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ϕ is therefore 1-Lipschitz continuous, and hence differentiable almost everywhere
(a.e.). Of particular importance is the singular set of ϕ, which is most conveniently
uncovered by studying a projection to the interface:

Definition 3.3. Px = {y ∈ Γ|d(x,Γ) = d(x, y)} is the nonempty projection of x
onto Γ. Let A = {x|#Px ≥ 2} be the set of points for which the distance is achieved
at multiple boundary points. The part of A inside of Γ is called the medial axis, and
its closure Ā is called the cut locus. The skeleton S is the set of centers of maximal
circles (with order defined by inclusion) inside Γ.

First note that by the C1 assumption on Γ we have that the distance between
the cut locus and the interface is always positive, d(Ā,Γ) > 0. For x /∈ Ā∪Γ, we have
that

∇d(x, Px) =
x− Px
|x− Px| ,(3.4)

since Px and d(x, Px) are both differentiable at such a point, and since P (tx+ (1−
t)Px) = Px for 0 < t < 1. Therefore, ∇ϕ = sgn(φ0)∇d(x, Px) is continuously
extended to Γ, and thus ϕ is C1 at Γ. Moreover, the line x − Px is a characteristic
line of ϕ due to its alignment with ∇d. Therefore, f is constant along the line x−Px
by (2.6); in addition, f(x, τ) is steady when τ > d(x,Γ) and f(x) = χ(Px). f is
continuous at x since Px is. f is thus continuous for all x /∈ Ā and is given by
f(x) = χ(Px).

Having shown f to be continuous everywhere outside of the cut locus, we are
left now to explore x ∈ Ā. It is well known that ϕ(x) = sgn(φ0)d(x, Px) is not
differentiable at any point in A. Due to the importance of the result for studying
our method, we provided an alternative proof in the appendix for the reference. Also
note that A ∩ U ⊂ S ⊂ Ā ∩ U [20]. By the assumptions on Γ, the curvature κ of
Γ exists except at possibly a finite number of points, and even at these points the
left and right limits of the curvature exist; thus sup |κ| < ∞. When U is convex,
this provides an estimate for the distance between the cut locus and the interface:
d(Ā,Γ) ≥ inf{1/κ} (the proof can be found in the Appendix A; the chosen convention
is that the curvature of a circle is positive). In general, however, there is no estimate
for d(Ā,Γ). To proceed, we must further investigate the structure of the cut locus Ā.
To this end, we observe the following:

Lemma 3.4. Let x ∈ R2. For any y ∈ Px, let z(t) = ty + (1 − t)x, 0 < t ≤ 1.
Then, Pz(t) = {y} and z(t) /∈ Ā.

Proof. The only nontrivial part of this claim is that z(t) /∈ Ā \ A. Suppose
z(t) ∈ Ā \ A for some t. Then z(t) is the center of the osculating circle of Γ at y,
and the circle centered at x with radius d(x, y) contains strictly a part of Γ inside,
contradicting the fact that y ∈ Px.

Remark 2. Based on this lemma and the assumptions on the boundary curve,
we are able to get another interesting geometric property of the set Ā: there are no
cusps in Ā with zero angles. The proof is provided in the Appendix A.

From Lemma 3.4, we have that the points in Ā are the terminal points of prop-
agation along the characteristic lines of ϕ. Since the characteristics of ϕ meet at the
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cut locus, f may not be well defined there, so we define

f(x) = inf
y∈Px

χ(y), x ∈ Ā.(3.5)

Here notice f is extended to both the interior and exterior of the interface, which
means we need to discuss the points both inside and outside of Γ.

Let’s first concentrate on the part inside of Γ. One may notice that from Theorem
6.2 and Corollary 7.1 of [4], we have S̄ = Ā∩U is simply connected and the union of
finitely many points and finitely many open locally analytical curves. Moreover, for
every point on these open locally analytical curves, it has projection of size exactly 2.

Then, let us consider the point outside of Γ. Suppose U is convex, then Ā∩U c = ∅.
Otherwise, Ā ∩ U c may contain curves extending to infinity in general. Let’s call
Un = Bn ∩ Ū c with Bn = {|x| < n}. Then the Domain Decomposition Lemma in [4]
tells us the closure of the skeleton Sn of Un agrees with the skeleton of Ā∩U c inside,
for instance, Bn/3. This means for the points outside of Γ but inside of any bounded
domain, by the result in [4] we can also get the similar characterization as the points
inside of Γ. In summarize, we have

Lemma 3.5. The set Ā∩U is simply connected, consisting of finitely many points
and open curves that are locally analytical, in addition, every point on those curves
has a projection of size 2. Meanwhile, in any bounded domain the set Ā∩U c consists
of finitely many points and open curves that are locally analytical as well.

For a point in Ā with a projection of size 2, function f , defined by (3.5), has
limiting values from both sides of the curve (for a proof see the Appendix B). We now
have the following theorem, which will be important in investigating existence and
uniqueness of the viscosity solutions to the Eikonal equation and the reinitialization
equation:

Theorem 3.6. The function f in (3.5) is bounded by c1 and c2 and is continuous
outside the cut locus (in R2\Ā), and the cut locus is well-separated from the interface,
d(Ā,Γ) > 0. Except at finitely many points, f has a limit when x approaches Ā from
one side of Ā.

3.1.3. Viscosity solutions with a discontinuous cost function. We may
now investigate the solution of the Eikonal equation when the cost function f is
discontinuous with properties described in Theorem 3.6. The solution is the steady
solution of the reinitialization equation and is hence the desired level set function.
Existence has been proven in fact for a much broader class of cost functions [9].
Uniqueness, however, is more challenging. Uniqueness of the Eikonal equation has
been shown for cost functions f satisfying certain conditions not applicable to the
present case [27, 34, 35, 9, ?], so we must develop uniqueness of the solution particular
to the cost function f of the form in Theorem 3.6.

To begin, since f is continuous on Γ, we can split (2.4) into interior and exterior
problems, as discussed in §3.1.1. We first consider the interior problem,

|∇φ| − f(x) = 0, if x ∈ U,
φ(x ∈ Γ) = 0.

(3.6)

We have here that H∗(x, p) = (|p| − f)∗ = |p| − f∗ and H∗(x, p) = (|p| − f)∗ =
|p| − f∗, where the sup- and inf- envelopes were defined in §3.1.1. By Theorem 3.6,
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0 < c1 ≤ f∗, f∗ ≤ c2. f∗ is upper semi-continuous (USC) and f∗ is lower semi-
continuous (LSC). If f is continuous at x, f∗(x) = f∗(x) and both f∗, f∗ are continuous
at x. By the way we define f in (3.5), we have f = f∗. It is simple to show if φ is
differentiable at x0, that f∗(x0) ≤ |∇φ|(x0) ≤ f∗(x0) (see [10]). This implies that if
φ is Lipschitz (thus differentiable a.e.), then |∇φ| = f outside a set of measure zero.

By approximating f by its sup- and inf-convolutions (see [9]):

fε(x) = esssupy{f(y)− |y − x|2/ε}, fε(x) = essinfy{f(y) + |y − x|2/ε},(3.7)

two viscosity solutions of the Eikonal equation (2.4) are found:

φM (x) = inf
γ∈C

{∫ L

0

f∗(γ(s))ds
∣∣∣γ(0) = x, γ(L) ∈ Γ

}
,(3.8)

φm(x) = inf
γ∈C

{∫ L

0

f∗(γ(s))ds
∣∣∣γ(0) = x, γ(L) ∈ Γ

}
.(3.9)

The proof for the existence is quite routine [9]. For the convenience of the readers,
we provided a detailed proof in the appendix. Note that f∗ and f∗ are integrable on
every curve γ ∈ C . Also in the appendix, it is shown that φM and φm are Lipschitz
continuous with the Lipschitz constant c2. These two solutions are the maximal and
minimal viscosity solutions of the Eikonal equation [34, 35]. The viscosity solution is
unique if φM = φm. It is clear that φM = φm if and only if for every point x ∈ U ,
there’s a sequence of curves γn ∈ C with total length Ln (where γn(0) = x and
γn(Ln) ∈ Γ) such that

φm(x) = lim
n→∞

∫ Ln

0

f∗(γn(s))ds and lim
n→∞

∫ Ln

0

(f∗ − f∗)(γn(s))ds = 0.(3.10)

The condition implies that φM (x) ≤ φm(x); hence the two are equal. Conversely, if
φM (x) = φm(x), the condition is a straightforward corollary of the definition.

The proof of the uniqueness in the literature can’t be applied to the discontinuous
cost function f of Theorem 3.6. However, we are able to check (3.10) directly. The
proof is provided in the appendix B. This proof for uniqueness is new and it might be
modified to prove the uniqueness of the Eikonal equation with a class of discontinuous
cost functions. In the exterior problem, uniqueness of the proper viscosity solution
may be proved by first considering the finite domain Ū c ∩ Bn with Bn = {|x| < n},
where φn satisfying φn(x) = 0, at |x| = n using a similar proof as in the interior prob-
lem and then taking n→∞. Recalling that f = f∗, we finally have the desired result:

Theorem 3.7. The proper viscosity solution to (2.4) with the cost function ob-
tained from (2.6) is unique and is given by (3.2). It is hence c2-Lipschitz continuous
and C1 in R2 \ Ā.

3.2. The reinitialization equation. Finally, we show that the reinitialization
equation has viscosity solutions, and the solution that is zero on Γ is unique and
converges to the proper viscosity solution of the Eikonal equation (2.4). Recall the
reinitialization equation, written more generally as

∂u

∂τ
+ sgn(u0)(|∇u| − g(x)) = 0,

u(x, 0) = u0(x),

(3.11)
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where u0 ∈ UC(R2), with UC the class of uniformly continuous functions. Here u
could be ϕ or φ and g could be 1 or f , and the Hamiltonian is written as H(x, p) =
sgn(u0(x))(|p| − g(x)). We assume that 0 < c1 ≤ g ≤ c2 and that Γ is the zero level
set of u0.

For time-dependent Hamilton-Jacobi equations, the classical solutions are not
well-defined beyond the intersection of characteristics. For some applications, the
multi-valued solutions are important [16]; for our purpose, we need the viscosity
solution, whose definition is similar to the one for the Eikonal equation in (3.1), with
the only difference being the addition of a time derivative.

Generally, if g is not continuous, we can again approximate g by gε and gε and
take the limit ε→ 0 as we did for the Eikonal equation. Therefore, we first consider
the case where g is continuous. Motivated by the solutions of the Eikonal equation
and the solution provided in [2] for g = 1, we construct the formula of the solution,

u(x, τ) =

sgn(u0) infγ∈C {|u0(γ(τ))|+
∫ τ

0
g(s)ds | γ(0) = x} τ ≤ τx,

sgn(u0) infγ∈C {
∫ L

0
g(s)ds | γ(0) = x, γ(L) ∈ Γ} τ > τx,

(3.12)

where τx is given by

(3.13) τx = inf

{
τ̄ ≥ d(x,Γ)

∣∣∣∀τ > τ̄ : inf
γ∈C

{
|u0(γ(τ))|+

∫ τ

0

g(s)ds | γ(0) = x
}

> inf
γ∈C

{∫ L

0

g(s)ds | γ(0) = x, γ(L) ∈ Γ
}}

.

It is evident that τx is continuous on x and τx ≤ c2 d(x,Γ)/c1. This formula is closely
related to the Lax-Hopf formula and u here has the interpretation of the value function
with cost g (see [10]). At τx, we must have the two expressions in (3.12) being equal, for
otherwise, the first is always strictly larger than the second for all τ ≥ d(x,Γ) but this
can’t be true at τ = Lopt ≥ d(x,Γ), where Lopt = lim infn→∞ Ln and Ln is a sequence

such that ∃γn, γn(0) = x, γn(Ln) ∈ Γ, limn→∞
∫ Ln

0
g(γn(s))ds = infγ∈C

∫ L
0
g(γ(s))ds.

In addition, we find that d(x,Γ) ≤ Lopt ≤ τx ≤ c2d(x,Γ)/c1.

Remark 3. If one were to define a simpler time,

(3.14) τx = inf

{
τ
∣∣∣ inf
γ∈C

{
|u0(γ(τ))|+

∫ τ

0

g(s)ds | γ(0) = x
}
>

inf
γ∈C

{∫ L

0

g(s)ds | γ(0) = x, γ(L) ∈ Γ
}}

,

then τx might be smaller than Lopt. When u(x, τ) is given by the second formula, there
could be no paths with lengths less than τ + εn, εn → 0 to approximate the infimum.
For τ bigger than so-defined τx, the first expression might be smaller than the second
one. The dynamic programming principle in the appendix then cannot be shown.

The two expressions given in (3.12) are continuous in both x and τ and they give
the same value at τ = τx. u is then continuous in both x and τ . We can also see
that it satisfies the initial and boundary conditions of the reinitialization equation.
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In the appendix, we verify that u is a viscosity solution. From the formula, since τx
is bounded by c2d(x,Γ)/c1, we see that the solution on any compact set converges to
the proper viscosity solution of the Eikonal equation (3.2) in finite time.

Uniqueness of the solution may be shown under the assumption that u(x ∈
Γ, τ) = 0, which can be ensured numerically. Following [2], consider

∂u

∂τ
+ (|∇u| − g) = 0 x ∈ U,(3.15)

u(x, 0) = u0(x) x ∈ Ū
u(x ∈ Γ, τ) = 0,

and

∂u

∂τ
− (|∇u| − g) = 0 x ∈ R2 \ Ū ,(3.16)

u(x, 0) = u0(x) x ∈ R2 \ U
u(x ∈ Γ, τ) = 0.

The uniqueness of the solutions for these two problems have been established if g is
continuous and bounded below by a positive number [14]. This is enough to say that
there is at most one viscosity solution satisfying u(x ∈ Γ, τ) = 0. One common mistake
in the literature is to assume that, since sgn(u0(x ∈ Γ)) = 0, that uτ (x ∈ Γ) = 0 by
(3.11). However, this argument is inadequate in the viscosity sense, since the set of
viscosity solutions are unchanged by a redefinition of the sign function to a value
sgn(0) ∈ [−1, 1]. It is sensible, however, that all viscosity solutions should have
u(x ∈ Γ, τ) = 0 as the characteristics flow out of Γ, and fortunately we can develop
numerical schemes to ensure u(x ∈ Γ, τ) = 0.

Finally, for g equal to the cost function f obtained from (2.6), it may be discon-
tinuous as previously discussed. As was done for the Eikonal equation, approximating
f with fε and fε, and taking ε→ 0, we have the maximal and minimal solutions with
g replaced by f∗ and f∗. And as for the Eikonal equation, these two are equal and
the solution that is zero on the interface Γ is unique:

Theorem 3.8. Assume in (3.11) that either g = 1 or g = f (the cost function
obtained using (2.6)). The viscosity solution that satisfies u(x ∈ Γ) = 0 is unique and
is provided in (3.12). This solution converges to the proper viscosity solution of (2.4).

4. Numerical schemes. We have shown in theory that the LGPR method
yields the desired level set function. We now proceed to describe numerical schemes
for solving the PDEs introduced in §2, with a few modifications from classical methods
[28, 23]. We also show how subcell resolution may be used to extend the interface
gradient away from the surface with high accuracy. First we present a numerical
scheme for solving the transport equation which involves a second-order accurate
upwind Essentially Non-Oscillatory (ENO) scheme with subcell resolution in space
and Gauss-Seidel iteration in time, and then we describe a method for solving the
reinitialization equation which involves a Godunov numerical Hamiltonian scheme in
space and again Gauss-Seidel iteration in time.

4.1. Numerical setup. Consider an Eulerian grid with uniform grid size h
upon which the interface Γ is overlaid. Gridpoints (xi, yj) are defined by xi = ih and
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xj = jh, with i and j taking integer values. (Unlike in the theoretical part of the
paper above, in which x and y correspond to two points in R2, in the remainder of
the paper x and y are coordinates, (x, y) ∈ R2).

In order to approximate derivatives of possibly non-smooth functions we will rely
on ENO finite differences (see [26]). In addition, in the solution of Hamilton-Jacobi
equations, one-sided (upwind) derivatives are commonly used to retain causality (i.e.
information follows the characteristics). In this paper, the following one-sided second
order ENO finite differences will be used to approximate first derivatives,

D−x φi,j =
φi,j − φi−1,j

h
+
h

2
minmod(Dxxφi,j , Dxxφi−1,j),

D+
x φi,j =

φi+1,j − φi,j
h

− h

2
minmod(Dxxφi,j , Dxxφi+1,j),

minmod{a, b} =

{
0 if ab < 0,

sgn(a) min{|a|, |b|} else,

(4.1)

where the second derivative is given by the centered difference formula

Dxxφi,j =
1

h2
(φi+1,j − 2φi,j + φi−1,j) .(4.2)

4.2. The transport equation. Recall the definitions of the stretch function
χ(x) = |∇φ|(x) on x ∈ Γ and the inward pointing unit normal vector n̂ = ∇φ/|∇φ|.
In solving the transport equation, we aim to accurately preserve the stretch function
as well as its tangential derivative along the interface,

n̂ · ∇∇φ · (I − n̂n̂)|Γ = Dsχ(Γ(s))ŝ,(4.3)

where s is the arc-length and ŝ(s) = Γ′(s) is the unit vector tangent to the surface Γ.
Our strategy will be to preserve the zero level set of φ (the location of the surface Γ)
and the stretch function χ with at least second order accuracy, and thus Dsχ(Γ(s))ŝ
is formally preserved with first order accuracy.

In the solution of the transport equation we will use a subcell resolution (SR)
technique to obtain the cost function f (see Eq. (2.4)). In SR, the interface is deter-
mined by interpolating the obtained signed distance function ϕ, computing the the
gradient there, and modifying the one-sided ENO derivatives according to the inter-
face [12, 23]. To illustrate the subcell resolution technique, consider as an example
the case ϕijϕi−1,j ≤ 0. Letting

aij = h2minmod(Dxxϕij , Dxxϕi−1,j),(4.4)

and assuming (xΓ, yj) ∈ Γ, xΓ is found by quadratic interpolation at ϕi−1,j , ϕij using
the second order derivative aij/h

2. The approximations of the first derivatives are
then given by

∂xφ0(xΓ, yj) ≈
δx−ij
h
D0
xφ0,i−1,j +

h− δx−ij
h

D0
xφ0,ij ,

∂yφ0(xΓ, yj) ≈
δx−ij
h
D0
yφ0,i−1,j +

h− δx−ij
h

D0
yφ0,ij ,

(4.5)
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where D0
x, D

0
y are the centered differences and

δx−ij = xi − xΓ = h

(
1

2
+

(ϕij + ϕi−1,j)− aij/4
(ϕij − ϕi−1,j) + sgn(ϕij − ϕi−1,j)

√
Dij

)
,(4.6)

where

Dij = (aij/2− ϕij − ϕi−1,j)
2 − 4ϕijϕi−1,j .(4.7)

Having now obtained the cost function on the interface, f(xΓ, yj) =
√
∂xφ2

0 + ∂yφ2
0,

the left ENO derivative of f at (i, j) is modified as

D−x fij =
fij − f(xΓ, yj)

δx−ij
+
δx−ij
2

minmod(Dxxfi−1,j , Dxxfij),

while D+
x at (i− 1, j) is similarly modified.

Next, the cost function f is extended into space by solving the transport equation,

∂f

∂τ
+∇d · ∇f = 0,(4.8)

where ∇d = sgn(ϕ)∇ϕ. We will denote sgn(ϕij)D
±
x ϕij by D±x dij (where D±x are

acting on ϕ not |ϕ| and D±x are modified with subcell resolution near the interface)
and we define

Dxdij = maxabs{max{D−x dij , 0}, min{0, D+
x dij}},(4.9)

where maxabs{a, b} = (a− b)1{|a|≥|b|} + b. For the numerical gradient we then take

ηxij =
Dxdij√

(Dxdij)2 + (Dydij)2 + ε2
, ηyij =

Dydij√
(Dxdij)2 + (Dydij)2 + ε2

,(4.10)

where ε is a small parameter (chosen here to be 10−7) to avoid the case that both Dx

and Dy are close to zero at potentially irregular points. Dxdij is so chosen to ensure
that the information propagating to (i, j) is coming points closer to the interface,
which follows the correct characteristic directions, and also that any oscillation in f
on the the cut locus Ā (see Def. 3.3), is suppressed. Using the definitions above, a
complete spatial discretization for the transport equation is given by

LT (fij) = −
(
(ηxij)

+D−x fij − (ηxij)
−D+

x fij + (ηyij)
+D−y fij − (ηyij)

−D+
y fij

)
,(4.11)

where a+ = max{a, 0} and a− = −min{a, 0}.
We now turn to the discretization of time, τ , which is not real time but merely

a parameter used to relax the system to its steady state. Different timesteps kij
are chosen for different points to ensure stability. Since δx±ij or δy±ij can be small, a
Courant-Friedrichs-Lewy (CFL) condition for convergence requires that the time step
be small near the interface. We use the same convention as in [23],

kij = C min{h, δx±ij , δy±ij },(4.12)

where C is a constant taken small enough to ensure convergence. The largest possible
value of C depends on the cost function, and C < 1 is sufficient when f = 1. We
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choose C = 1/2 for the numerical examples to come, which is sufficient for the cases
studied. Further, a Gauss-Seidel iteration is employed (values are updated using the
newest data along the chosen sweeping directions) to allow information to propagate
long distances in some directions with one iteration. The Gauss-Seidel iteration is
given by

fij ← fij + kijLT (fij)(4.13)

along the four sweeping directions (i, j) = (1 : N, 1 : N), (i, j) = (1 : N,N : −1 : 1),
(i, j) = (N : −1 : 1, 1 : N), and (i, j) = (N : −1 : 1, N : −1 : 1), repeatedly.

Remark 4. For the application of a local level set method, it may be preferable
to use a direct time-stepping method. One possibility is the second-order TVD Runge-
Kutta method,

f̃n+1
ij = fnij + kijLT (fnij),

fn+1
ij =

1

2

(
fnij + f̃n+1

ij

)
+
kij
2
LT (f̃n+1

ij )
(4.14)

Remark 5. For the transport equation (2.6), in many references ∇ϕ is dis-
cretized by centered difference. Near the interface, the signed distance function is C1

so that this simple treatment is convenient and sufficient. However, once f is ex-
tended into the domain where the signed distance function is not smooth, the scheme
developed in this section is expected to be more accurate.

4.3. The reinitialization equation. We now introduce the Godunov Hamilto-
nian scheme used to solve the reinitialization equation. By a similar consideration of
causality, we use the Godunov Hamiltonian Ĥij(D

−
x uij , D

+
x uij , D

−
y uij , D

+
y uij), where

sij = sgn(u0(xi, yj)), and

Ĥij(a, b, c, d) =


sij

(√
max{a+, b−}2 + max{c+, d−}2 − gij

)
if sij ≥ 0,

sij

(√
max{a−, b+}2 + max{c−, d+}2 − gij

)
if sij < 0,

(4.15)

for spatial discretization [28, 23]. (Recall u may be ϕ or φ while u0 = φ0.)
It would seem to be the case that the subcell resolution (SR) technique is not

required in order to achieve second-order accuracy with the Godunov Hamiltonian
scheme. Without SR, the absolute error ||∇u| − g| does indeed scale as O(h2) (recall
that g can be either 1 or f , see §3.2), but the interface location is generally not
determined at the same level of accuracy, especially when the interface gradients of u
and u0 are different. This is particularly important for (2.5) because the information
comes from the zero set of ϕ in (2.6). The interface gradient would be determined
only with first order accuracy and the variation in the stretch function Dsχ(Γ(s))ŝ is
then poorly captured. Thus, subcell resolution is still required to achieve second order
accuracy for the Godunov Hamiltonian scheme. For example, when u0,iju0,i−1,j ≤ 0,
we modify D−x for (xi, yj) to

D−x uij =
uij

δx−ij
+
δx−ij
2

minmod(Dxxui−1,j , Dxxuij).

and D+
x for (xi−1, yj) is similarly modified. For time discretization we again use

Gauss-Seidel iteration using the same spatially varying timestep as in (4.12).
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The numerical Hamiltonian ensures that information propagating to (xi, yj) comes
from values of u closer to zero. The direction of the characteristics is preserved and
u(x ∈ Γ, τ) = 0 is ensured. The scheme with this numerical Hamiltonian is monotone.
While not identical to the case of present interest, that monotone schemes of the form
ut+H(∇u) = 0, where H is continuous, have been shown to converge to the viscosity
solution [8] is suggestive. In practice we do observe the expected convergence.

5. Application to Eulerian Immersed boundary method. As we have
mentioned above, our method allows the application of local level set method to
Eulerian immersed boundary method. We’ll basically use the local level set method
proposed in [28]. The skeleton of the algorithm is given as following:

0. Given the immersed interface Γ(ξ), we construct the signed distance function
ϕ(x). Pick three positive numbers α < β < γ.

1. Let T = {x : |ϕ(x)| < γ}. In the initialization step, we set χ(x ∈ Γ) = |Xξ|.
Then, use LGPR to obtain φ in T . In the reinitialization step, how LGPR is used to
get a new level set function has been explained in detail in the above sections.

2. Solve the fluid equations (We use Navier-Stokes equations in the computation
example later) where the fluid body force is computed by (2.1). Evolve φ inside T with
c(φ)u used to convect the level set functions. We use the cutoff function introduced
in [28]

c(y) =

 1 if |y| ≤ β
(|y| − γ)2(2|y|+ γ − 3β)/(γ − β)3 if β < |y| ≤ γ

0 if |y| > γ
.

4. When the interface stays far enough from the boundary of the computation
tube or |∇φ| at the interfaces stays in [1 − c, 1 + c] for a given c, go to step 3; Else
let T0 be the (β − α) neighborhood of T . We reinitialize the level set function to the
signed distance function in T0 and move to Step 1.

For this algorithm, a lot of practical issues have been omitted since they are
standard or straightforward but tedious to explain. However, we would like to point
out how to use LGPR to initialize the level set function φ. The method is as following:

In a thin tube containing the interface, for every grid point (xi, yj), supposing
z = P (xi, yj) = X(ξz) is the projection, we determine the distance by computing
d = |(xi, yj)−z| and the sign of of the signed distance function ϕ by checking ((xi, yj)−
z) ×Xξ(ξz). We record |Xξ(ξz)| at the point (xi, yj), which is the value of |∇φ0,ij |.
The distance function d(x) is obtained by the Fast Sweeping Method ([37]) and the
sign is extended in a similar manner. ϕ is then determined, and we evolve (2.5) to
improve ϕ. The values of the cost function f at the interface are interpolated from
|∇φ0,ij |. Our method may then be applied to recover φ.

6. Numerical experiments. In this section we test the LPGR method with
a few illustrative examples. First we show that the method achieves the expected
accuracy in a setting in which the initial level set function and interface stretching are
specified, and we show that the elastic force is preserved through the reinitialization
process. Next, we simulate the behavior of a stretched membrane in a fluid using
a local level set method, and show that reinitialization is necessary and effective
when the membrane encroaches the boundary of the computational tube. Finally, we
show how the method could also be used to initialize level set functions from a given
parametric curve.
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Fig. 1. Example 1. (a) The discontinuous cost function f constructed from the specified stretch
χ = exp(0.5y) on the interface r(θ) = 1 + 0.25 cos(3θ). (b) The same as (a) from above. The
cut locus (where f is discontinuous) is more readily apparent. (c) The level set function φ after
reinitialization. (d) Contour plots of the level set function after reinitialization. The bold line is the
zero set corresponding to Γ while symbols are sample positions on the interface computed analytically.

6.1. Example 1. We first present a typical example in which the cost function
is discontinuous in order to show that the transport equation is successfully solved
and that the interface gradient is preserved with the desired accuracy. Let the surface
Γ be parameterized in polar coordinates by r(θ) = 1 + 0.25 cos(3θ). We take as the
initial level set function φ0(x, y) = ϕ(x, y) exp(0.5y) where ϕ is the signed distance
function relative to Γ. Since the interface is non-convex, characteristics of ϕ from the
interface intersect both inside and outside of Γ.

Using the computational domain [−1.5, 1.5]2 and grid size h = 3/256, we show
in Figs. 1(a,b) two views of the cost function f produced by solving the transport
equation. The set where f is discontinuous (the cut locus, where characteristics
intersect) is well captured. The cost function does not oscillate near the cut locus
using our scheme for solving the transport equation. Figs. 1(c,d) show the numerical
solution of the reinitialized level set function φ and its contours, which converges
rapidly even though f is discontinuous.

To test the accuracy of the numerical method, we find all the interface points
p0 = (x0

Γ, yj) or p0 = (xi, y
0
Γ) by the interpolation formula (4.6) using the data φ0

and correspondingly points p = (xΓ, yj) or p = (xi, yΓ) using φ. The gradients ∇φ0

and ∇φ are computed using (4.5) except that δx±ij and δy±ij are computed using the
level set functions themselves instead of ϕ. We define the interface location error by
EL = max{|x0

Γ−xΓ|, |y0
Γ−yΓ|}, error in the interface gradient by EG = max{|∇φ0(p0)−

∇φ(p)|} and the stretching error by ES = max{||∇φ(p)| − exp(0.5yp)|}. Fig. 2(a-c)
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Fig. 2. Convergence results for Example 1. (a) The error in the interface location decreases
roughly as O(h3). (b) The error in the interface gradient decays as O(h2). (c) The error in the
interface stretching computed using the reinitialized level set function decays as O(h2).

show the decay rate of these errors with the spatial step size h. The error in the com-
puted interface position decays roughly as O(h3), while ∇φ (both the direction and
norm) is accurate to O(h2) as expected. Elastic forces computed using the reinitial-
ized level set function are therefore expected to carry over with first order accuracy,
which we now probe.

(a) (b)

�50

50

0

Before reinitialization After reinitialization

Fx

Fig. 3. The x-component of the elastic force Fx in Example 1 due to the complex initial
stretching, using grid size h = 3/128, before reinitialization (a) and after reinitialization (b). The
force computed has different relations with the curvature for y > 0 and y < 0. The traditional
reinitialization method would naturally lose information about interface stretching, but here we see
that the elastic force is preserved through the reinitialization process.

Figures 3(a-b) show the x-component of the force associated with the prescribed
stretching in the first example, before reinitialization using φ0 (a) and after reini-
tialization using φ (b). For y > 0, |∇φ| > 1 (the interface is in tension) while
for y < 0, |∇φ| < 1 (the interface is in compression). The force is computed on
[−1.5, 1.5]2 with h = 3/128, using a Hookean elastic energy E(χ) = (K/2)(χ − 1)2

(with K = 5). Following Peskin [29], in the description of the force (2.1) that
might be used in an immersed boundary context we use a smoothed δ function,
δh = 1{|φ|≤3h}(1 + cos(πφ/(3h)))/(6h). The traditional reinitialization method would
naturally lose information about interface stretching, but here we see that the elastic
force is preserved through the reinitialization process.

We now test the accuracy in computing both the tangent gradient of the cost
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Fig. 4. (a) The error in the computed cost function gradient. (b) The error in the stretching
derivative (the tension gradient in the case of Hookean elastic energy). Both are first order accurate
as expected.

function and the stretching derivative (the tension gradient in the case of Hookean
elastic energy). We define Tf(p0) = ∇f · (I − n̂n̂)(p0) where n̂(p0) = ∇φ0/|∇φ0|
and correspondingly Tχ(p0) = ∇ exp(0.5y) · (I − n̂n̂)(p0). The cost function gradient
error Ef = max{|Tf(p0)−Tχ(p0)|} and the stretching derivative error ES′ = max{|n̂ ·
∇∇φ · (I− n̂n̂)(p)− n̂ ·∇∇φ0 · (I− n̂n̂)(p0)|}, where n̂(p) = ∇φ/|∇φ| are then defined.
The gradients (∇f , ∇φ etc) are computed using (4.5), and ∇∇φ(p) is computed by
interpolating the corresponding Hessians at the two nearby points. As shown in Fig. 4,
the quantities are computed with roughly first order accuracy as expected.

6.2. Example 2. As a second example, we look at the application of LGPR in
the Eulerian immersed boundary method by simulating the dynamics of a relaxing
membrane in a fluid, where reinitialization becomes necessary since a local level set
method is used: the fluid is described by the Navier-Stokes equations with Reynolds
number Re = 1, which are solved using projection method of Kim and Moin [17] on
a two-dimensional rectangular grid with no-slip boundary conditions, while the level
set function is only constructed and updated in a tube that contains the interface. In
its undeformed state the membrane has an arc length parameter ξ, where 0 ≤ ξ < 2π.
To begin the simulation the membrane is initially stretched to an ellipse given by
X(ξ) = (2 cos(ξ), sin(ξ)). The system evolves under the tension generated by the curve
and the stretching energy is given again by linear elasticity, E(χ) = (K/2)(χ − 1)2

with K = 5.

Figs. 5(a,d) show the initial level set function and its contours, with the interface
shown as a dark black line, on the domain [−4, 4]2 with grid size h = 8/100. As
the membrane relaxes over time, the level set function evolves to the one shown in
Figs. 5 (b,e). The level set function is no longer adequate: the interface is close to
the boundary of the tube where the local level set method is applied, and the level
set function has a large gradient in the computational domain (though not yet at
the interface). At this point we perform the LGPR algorithm in another tube that
contains the new interface. The resulting level set is shown in Figs. 5(c,f). The
new level set function is better behaved and the sources of possible numerical error
associated with membrane encroachment of the boundary have vanished. The x-
component of the force before and after reinitialization is shown in Fig. 6. The force
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Fig. 5. Example 2. An initially stretched elastic membrane relaxes in a Navier-Stokes fluid.
The fluid-structure interaction is computed in a small region surrounding the membrane (a local
level set method). (a,d) The initial level set function, and its contours, with the interface shows as a
dark black line. (b,e) The level set function and contours after the membrane has partially relaxed;
the membrane encroaches the boundary of the computational tube containing the interface, leading
to the development of errors. (c,f) The level set function after reinitialization; the interface is again
well separated from the computational boundary, and the stretching information has been preserved.

is preserved with the expected error.

(a) (b) (c)

0

�10

10

Fig. 6. The x-component of the force from Example 2. (a) The initial force distribution. (b)
The force after partial relaxation but before level set reinitialization (c) The force after reinitialization
is preserved through the LGPR process.

6.3. Example 3: Constructing the level set function. As explained in
Section 5, LGPR is used to initialize the level set function from a given parametric
curve and we have done this in example 2. We now focus on the behavior of LGPR in
initializing a level set function. We take the interface in the previous example (Recall
that we require that the level set function satisfies |∇φ|(X(ξ)) = |Xξ(ξ)|).

Fig. 7 shows the numerical results on the domain [−2.5, 2.5]2 with spatial grid
size h = 5/128. The characteristic lines intersect on the medial axis of the ellipse
and our extension scheme gives good results at the medial axis. The interface is well
captured by our constructed level set function (Fig. 7(c)). To test the accuracy of
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Fig. 7. (a) The cost function constructed from the initial parametrized curve from Example 2.
(b) The constructed level set function. (c) Contours of the level set function; the bold line is the
zero level set, or membrane interface.

the location and the interface gradient, we plot in Fig. 8 the location error EL =

maxp{|x2
p/4 + y2

p − 1|} and the gradient error EG = maxp{||∇φ|(p)−
√

4y2
p + x2

p/4|},
where p is a point on the interface, p = (xi, yΓ) or p = (xΓ, yj). The interface location
is retained with roughly third order accuracy while the interface gradient is retained
with second order accuracy, as desired.

h h

(a) (b)

2-10 2-9 2-8 2-7 2-6
2-24

2-21

2-18

2-15

2-12

2-10 2-9 2-8 2-7 2-6
2-16

2-14

2-12

2-10

2-8
Location error Gradient error

EL EG

Fig. 8. (a) The interface location error for the constructed level set function in Example 3
decays as O(h3). (b) The interface gradient error for the constructed level set function decays as
O(h2).

7. Conclusion. We have extended the traditional reinitialization process of a
level set function to a locally gradient-preserving reinitialization method, which pre-
serves not only the interface location, but also information about tangential interface
stretching. We have shown in theory that the proposed method can correctly yield a
desired level set function. In particular, we have shown that the viscosity solutions
of the reinitialization equation converges to the unique “proper” viscosity solution of
the Eikonal equation, which is the desired level set function. Numerical schemes are
proposed to solve these PDEs. The subcell resolution method for the transport equa-
tion is easy to implement and can extend the interface gradient to the whole domain
with high accuracy. Numerical examples show that our method is successful, even for
discontinuous cost functions. In applications (Eulerian immersed boundary method,
for example), a local level set method is desirable for computational cost reductions,
and the LGPR method can be applied in a small region containing the interface Γ.
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This reinitialization process will make possible the Eulerian formulation based on a
local level set method for simulating physical problems where the force depends on
stretching in addition to bending. Further details on this particular application will
be the topic of a separate paper.
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Appendix A. Cut locus of the interface.
We first show that the signed distance function ϕ is not differentiable at any

point in A.
Lemma A.1. Under the assumption we stated in §3, ϕ is not differentiable at

any point in A.
Proof. Since Ā∩Γ = ∅, to show that ϕ is not differentiable we show that d(x,Γ) is

not differentiable at x ∈ A∩U . (The treatment of A∩U c is similar.) By the definition
of A, we can find y1, y2 ∈ Γ, y1 6= y2 so that d(x, y1) = d(x, y2) = ϕ(x). Suppose
that ϕ is differentiable at x. We must have |∇ϕ(x)| = 1. Let n̂ = ∇ϕ(x). We have
x+ εn̂ ∈ U for small enough ε > 0. The inequality d(x+ εn̂, y1) ≥ ϕ(x+ εn̂) > ϕ(x)
then gives

d(x+ εn̂, y1)− d(x, y1) ≥ ε+ o(ε),(A.1)

and the law of cosines tells us that ∠(n̂, x−y1) = 0. But the same argument indicates
that ∠(n̂, x− y2) = 0, leading to a contradiction. We now show that if U is convex,
d(Ā,Γ) = d(A,Γ) ≥ inf{1/κ} > 0. This follows from the following lemma about the
local structure of the curve satisfying Assumption 1.

Lemma A.2. For any a ∈ A and any two points y, z ∈ P (a), if the portion of
Γ between y and z is the graph of a function over the segment yz, then ∃w on the
portion such that κ(w)µ(a) ≥ 1/d(a,Γ) where µ(a) = 1 if a is inside Γ and µ(a) = −1
otherwise.

Proof. We take the straight line yz to be the x1-axis, and assume at point z that
the tangent line of Γ has a positive slope with angle θ. The projections of y and z
to the x1-axis are denoted by y1 and z1. As the portion of Γ between y and z is the
graph of a function of x1, then so is κ: κ = κ(x1). By integrating κ between y1 and
z1 (κ is integrable by the assumption on the interface), we have

µ(a)

∫ z1

y1

κ(x1)dx1 = 2 sin(θ).(A.2)

By basic trigonometry, z1 − y1 = 2d(a,Γ) sin(θ). Hence, we can find x̃1 ∈ [y1, z1] so
that

µ(a)κ(x̃1) ≥ 2 sin(θ)

2d(a,Γ) sin(θ)
=

1

d(a,Γ)
.(A.3)

Although we will not use the following “no cusp” property in this paper, this is
still an interesting property of the geometry of cut locus. This property is especially in-
teresting when we discuss uniqueness of the viscosity solution to the Eikonal equation.

Theorem A.3. For locally analytical boundary Γ, there is no cusp with zero
angle in Ā.

Proof. We will sketch the proof without details. Let us take Ā∩U as the example.
Suppose that there are two edges making a zero angle at x ∈ Ā∩U . Parametrize them
with arc lengths: γ1(s) and γ2(s), such that γ1(0) = γ2(0) = x,γ′1(0) = γ′2(0) =: n̂
and that ∀ε > 0, ∃sε ∈ (0, ε), γ1(sε) 6= γ2(sε). By Lemma 3.4, there is an opening
region between γ1 and γ2. Choose a sequence xk approaching x inside the region such
that the projection of Pxk (which is one point) approaches y. Then y ∈ P (x). By
Lemma 3.4, xk-Pxk doesn’t intersect with Ā. As a limit line segment, x-y doesn’t
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cross γ1, γ2 and thus is tangent to the two curves, namely n̂ = (y−x)/|y−x|. γ1 and
γ2 must be on the two sides of the line xy. Consider γ1 and the portion of Γ on that
side, parametrized as Γ0(u) with Γ0(0) = y. Then there exists a δ > 0 such that the
curvature is a smooth function on [0, δ] (if necessary, redefine κ(0) = limu→0+ κ(u)).
Choose sk → 0+ such that #Pγ1(sk) ≥ 2. From the fact that x−y is the tangent line
of γ1 at x, x− γ1(sk) and γ1(sk)− y are almost parallel for sufficiently large k. Then,
for k large enough, wk ∈ Pγ1(sk), d(x,wk) ≥ d(x, y) implies that wk must fall onto
Γ0(s) for 0 ≤ s ≤ δ. Using γ1(sk) = x + skn̂ + O(s2

k) and P (x + skn̂) = y, we know
∀wk ∈ Pγ1(sk) that |wk − y| = O(s2

k). By Lemma A.2 and since δ is small, there is a
uk such that Γ0(uk) is between two points in Pγ1(sk) and κ(uk) ≥ 1/d(γ1(sk),Γ). It is
clear that uk = O(s2

k). The contradiction is obtained by noticing that κ(0) ≤ 1/d(x, y)
and O(s2

k) = |κ(uk)− κ(0)| ≥ |1/d(γ1(sk),Γ)− 1/d(x, y)| ≥ Csk for some C > 0.

Appendix B. Solutions of Eikonal equation with discontinuous cost
function.

In this section, we will prove the existence and uniqueness of the viscosity solution
to (2.4) (a.k.a., Theorem 3.7).

The existence part of the proof is quite standard. However, the proof of the
uniqueness is different from the standard argument. One may find that there is one
essential difference in our problem: in our case, the cut locus may have bifurcation
points. Which means, there could exist point x in the singular set of cost function,
such that for any disc B centering at x, B will be divided by the singular set into
more than two parts. This makes the arguments in [27, 34, 35, 9] invalid.
On the other hand, there is another subtle difference in our proof. Although from
Theorem A.3, there is no cusp in the singular set of the cost function, we will not use
this. In other words, our proof doesn’t need the classical “no cusp” assumption for
the singular set of cost function.

B.1. Existence. We take x ∈ U as an example case. We show that φM is a
viscosity solution; a similar argument applies to φm. We have the following relation-
ships:

(B.1) c1 ≤ essinf{f(y)|y ∈ B(x,
√

(c2 − c1)ε)} ≤ fε(x) ≤ f∗(x)

≤ f∗(x) ≤ fε(x) ≤ esssup{f(y)|y ∈ B(x,
√

(c2 − c1)ε)} ≤ c2.

fε increases to f∗ while fε decreases to f∗, and fε(fε) is continuous. The corre-
sponding solution φε is given as in (3.2). One then could verify the following dynamic
programming principle: for x ∈ U and 0 ≤ s1 ≤ d(x,Γ),

φε(x) = inf
γ∈C

{∫ s1

0

fε(γ(s))ds+ φε(γ(s1))|γ(0) = x

}
.(B.2)

The proof of this principle is omitted here. For similar arguments, one could refer to
Chapter 10 of [10]. A direct conclusion from this principle is that

0 ≤ φε ≤ c2d(x,Γ)
|φε(x)− φε(y)| ≤ c2|x− y|(B.3)

By the Arzela-Ascoli theorem, since Ū is compact, there is a subsequence φεk that
converges uniformly to φ̄.

Now suppose that φ̄ − ζ has a local maximum at x0 ∈ U . For small δ > 0,
φ̄ − ζ − δ|x − x0|2 has a strict local maximum at x0. There is a sequence of local
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maxima xk for φεk − ζ − δ|x− x0|2 that converges to x0 by the uniform convergence
of the function sequence. Fixing K > 0, for k > K, we have

|∇ζ(xk) + 2δ(xk − x0)| ≤ fεk(xk) ≤ fεK (xk).(B.4)

Letting k → ∞, since fεK is continuous, |∇ζ(x0)| ≤ fεK (x0). Sending K → ∞, we
obtain |∇ζ(x0)| ≤ f∗(x0). For a local minimum at x0, the argument is similar. Here,
we just use the modified function φ̄− ζ + δ|x− x0|2 and the inequalities

|∇ζ(xk)− 2δ(xk − x0)| ≥ fεk(xk) ≥ fεk(xk) ≥ fεK (xk)(B.5)

for k > K. Thus, |∇ζ(x0)| ≥ f∗(x0) and φ̄ is a viscosity solution.
Now, fixing any δ > 0, we can find K > 0 so that φ̄(x) + δ > φεk(x) when k > K

for any x ∈ U . However, ∃ γ with γ(0) = x such that φεk + δ >
∫ L

0
fε(γ(s))ds ≥∫ L

0
f∗(γ(s))ds. (f∗(γ(·)) is the infimum of continuous functions and thus Lebesgue

measurable on [0, T ].) Meanwhile, φ̄(x) − δ ≤ φεk(x) ≤
∫ L

0
fεk(γ(s))ds for k large

enough and any γ ∈ C with γ(0) = x and γ(L) ∈ Γ. Now fixing γ and taking k →∞,

the dominant convergence theorem tells us that φ̄(x)− δ ≤
∫ L

0
f∗(γ(s))ds. Hence:

φ̄(x) = inf
γ∈C

{∫ L

0

f∗(γ(s))ds|γ(0) = x, γ(L) ∈ Γ

}
= φM (x).(B.6)

The dynamic programming principle for φM is still true and φM is also bounded
and Lipschitz continuous with the same constants.

B.2. Uniqueness. We again fix x ∈ U , and we now show that φm(x) = φM (x).

For any ε > 0, we can find γ ∈ C with γ(0) = x and γ(L) ∈ Γ so that
∫ L

0
f∗(γ(s))ds <

φm(x) + ε. γ has no self-intersection by the definition of C .
By Lemma 3.5, except at finitely many points, all the points in Ā belong to some

locally analytical curves and have a projection with size 2. Noticing that γ is an
injection, we pick a set E that covers the finite irregular points such that the total
length of γ falling into E is less than ε/c2, where c2 is the upper bound of f∗. Then
the remaining part Ā \ E has the following properties: it is the disjoint union of N
edge portions en, 1 ≤ n ≤ N ; for any x ∈ en, we can find a ball B(x, rx) (rx > 0)
so that every point in Ā ∩B(x, rx) has a projection of size 2 and Ā ∩B(x, rx) is real
analytic.

Step 1. We first show that the cost function f has limits on both sides of the edge en.

For any x ∈ en, B(x, rx) is divided into two subdomains B1 and B2 by Ā. Let
xk ∈ B1 ∩ U , xk → x. The sequence wk = Pxk has a limit point z ∈ Px. Further in-
spection reveals that z is the only limit point of wk since #Px = 2 and the sequences
in B2 give another. This means that for every sequence in B1 converging to x, the
projections converge to z. Hence, limy→x,y∈B1 f(y) = χ(z). If the limit function is
f1, by the continuity of projection on one side, f1 is continuous on en. f2 may be
similarly defined.

Step 2. We now decompose Ā into several parts so that on each part
∫

(f∗−f∗)(γ(s))ds
can be dealt with appropriately.

25



Let en be equipped with the 1D Lebesgue measure m induced by the arc length,
and let Fn = {x ∈ en : f1(x) = f2(x)}. Clearly, f∗ = f∗ on Fn and Fn is closed. The
set en\Fn = {x ∈ en : f1−f2 > 0, or f1−f2 < 0} is open, thus is the disjoint union of
countable subintervals in en. Since the sum of lengths of these subintervals is finite,
we can find finitely many of them, say Mn of them, such that the measure of the
remaining is small. For these Mn intervals, we can cover the endpoints and get Mn

new subintervals denoted as Ii, 1 ≤ i ≤Mn. Hence, we can decompose en into Gn with
m(Gn) < ε/Nc2, Fn and ∪Mn

i=1Ii. Let’s consider all the M =
∑
nMn subintervals.

∃δ1, δ > 0 that depend on E, Fn, Gn, 1 ≤ n ≤ N , such that each subinterval Ii
satisfies: Ui = {x : d(x, Ii) ≤ δ1} is divided into two domains Vi1, Vi2, f∗ ∈ C(V̄i2),
f∗ ∈ C(V̄i1), and infx∈Vi2,y∈Vi1 f

∗(x) − f∗(y) ≥ δ. We have thus decomposed Ā into
the union of following sets: M =

∑
nMn subintervals; a closed set on which f∗ = f∗;

and a set (union of Gn and E) with measure less than 2ε/c2.
Let Ci = {s : γ(s) ∈ Ii} be a subset of [0, L] and C = ∪Mi=1Ci. It is clear that∫

[0,L]\C(f∗ − f∗)(γ(s))ds < 2ε. Hence, we only need to study the integral on Ci.

Step 3. We now obtain a local property of the portion of γ on Ci.

By the local smoothness of the edges, ∃α > 0, δ3 < δ1/2, such that if s1, s2 ∈
Ci, with s2 − s1 ≤ δ3, then the length of Ii between γ(s1) and γ(s2) is at most
(s2 − s1) +α(s2 − s1)2. If ∃s ∈ (s1, s2) so that γ(s) /∈ V̄i1, then there’s an subinterval
[s3, s4] ⊂ [s1, s2] such that s ∈ [s3, s4] and γ((s3, s4)) ∩ V̄i1 = ∅. Since δ3 < δ1/2,
γ([s3, s4]) can’t leave V̄i2. Noticing f∗ = f = f∗ on γ((s3, s4)),∫

γ[s3,s4]

f∗ds =

∫
γ[s3,s4]

f∗ds >

∫
J

f∗ds+ (s4 − s3)δ − α(s4 − s3)2c2

where J is the part of Ii between γ(s3) and γ(s4). If we pick δ3 small enough, we
could have (s4− s3)δ−α(s4− s3)2c2 > 0. We replace γ([s3, s4]) with J and get a new
curve γ̃, and we see that

∫
γ̃
f∗ds <

∫
γ
f∗ds. γ̃ may be self-intersecting. We can modify

it as following: If J intersects with γ(0, s3). we find the infimum of smin on [0, s3] so
that γ(smin) ∈ J . Then we piece γ[0, smin] and the part of J starting from γ(smin)
together. Then, by the same method we can deal with the case when J intersects
with γ((s4, L)). Such s3, s4 pairs correspond to disjoint open intervals, so we can do
this modification at most countable many times and get another curve γ1 ∈ C , so
that

∫
γ1
f∗ds <

∫
γ
f∗ds. Hence, without loss of generality we can assume γ satisfies

this property:
If s1, s2 ∈ Ci, |s2 − s1| < δ3, then γ([s1, s2]) ⊂ V̄i1.

Step 4. With the property obtained, we perturb the curve defined on Ci so that the
integral on Ci can be treated.

Ci is closed and consists of countable closed intervals (they are subintervals of
[0, L], different from the intervals on the edge portion) and a nowhere dense set G′i
(G′i may have positive measure). Moreover Gi = Ḡ′i is still nowhere dense since the
extra possible points are the endpoints of the intervals. By the assumption above, we
may write Gi = ∪N1

j=1Gij for some N1 ∈ N. [inf Gij , supGij ] \ Gij does not contain

any interval of length ≥ δ3 for any j, so that γ([inf Gij , supGij ]) ⊂ V̄i1, and

inf
v1∈Gij1

,v2∈Gij2

|v1 − v2| ≥ δ3
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Now, assume K is Gij or one of the intervals in Ci, and let sl = inf K, sr = supK
and ε1 > 0 be fixed. We can find finitely many points sk in K and the difference
between two consecutive points is less than δ3. We shift γ([sk, sk+1]) along the normal
of Ii at γ(sk) toward Vi1 with distance δ4. Now, we add line segments to connect the
endpoints. The shifted curve portions and line segments are all in Vi1 if δ4 is small
enough. Denote the curve so obtained by γ′. By the uniform continuity of f∗ in V̄i1,
we have

∫
γ′ f∗ds <

∫
γ
f∗ds+ε1. However, γ′ may be self-intersecting. We now modify

it following an essentially similar procedure as before: γ′ consists of γ[0, sl], γ[sr, L]
and the shifted curves together with line segments, denoted as P̃ . Consider the first
shifted curve portion with the line segment P̃1. Suppose k ≥ 2 is the largest number
such that P̃k intersects with P̃1. We find the first point on P̃1 that is on P̃k, then
discard the part on P̃1 after this point and all curve portions P̃l with 1 < l < k and
the part on P̃k that is before this point. Since the portions are finite, this process
can be terminated, resulting in P ⊂ P̃ , P ∈ C that connects γ(sl) and γ(sr). The
remaining work is the same as how J was modified before. Then, we find a new
curve γ2.

∫
γ2
f∗ds ≤

∫
γ′ f∗ds. By the construction, we have removed K \ {sl, sr}

from Ci without adding new points. Such sets are countable, we can finish this pro-
cess and obtain a curve γ3, so that Ci(γ3) consists of countably many points and∫
γ3
f∗ds−

∫
γ
f∗ds < ε/M since ε1 is arbitrary.

Hence, we are able to construct a curve γ4 with γ4(0) = x and γ4(L) ∈ Γ (since
it has the same endpoints as γ) such that

∫
γ4
f∗ds ≤

∫
γ4
f∗ds + 2ε <

∫
γ
f∗ds + 3ε <

φm(x) + 4ε, which verifies the condition so that φm(x) = φM (x).

Appendix C. The solution of the reinitialization equation.

In this section we show that the formula given in (3.12) is a viscosity sub-solution
of the level-set reinitialization equation. Similar argument shows that it is also a
super-solution is similar.

Consider that u−ζ, where ζ is C∞, has a local maximum at (x0, τ0) for τ0 > 0. We
show that the sub-solution condition is satisfied. If τ0 > τx0

, then in a neighborhood
of (x0, τ0), we have τ > τx since as τx is continuous on x. The solution does not
depend on τ , and we also must have ζτ (x0, τ0) = 0. The sub-solution condition is
satisfied for x0 /∈ Γ as the condition has already been verified for the Eikonal equation.
If x0 ∈ Γ, [sgn(u0)(|p| − g)]∗|p=∇ζ(x0),x=x0

≤ 0 is assured.

Consider 0 < τ0 ≤ τx0 . Then u0(x0) 6= 0 since for any x ∈ Γ, we have τx = 0 < τ0.
Take u0(x0) > 0 (the result for u0(x0) < 0 is similar). Let h1 = min{τ0, d(x0,Γ)} > 0.
There exists 0 < h2 ≤ h1, such that the dynamical programming principle holds for
h < h2:

u(x0, τ0) = inf
γ

{
u(γ(h), τ0 − h) +

∫ h

0

g(γ(s))ds|γ(0) = x0

}
.(C.1)

We now show this principle. Since τ0 ≤ τx0
, for any ε > 0, we can find γ with

γ(0) = x0 such that u(x0, τ0) + ε > u0(γ(τ0)) +
∫ τ0

0
g(γ(s))ds. By the definition,∫ τ0

h
g(γ(s))ds+ u0(γ(τ0)) ≥ u(γ(h), τ0 − h) whether or not τ0 − h > τγ(h). ‘≥’ is thus

shown.

We now show the other direction. Let B = infγ{
∫ L

0
g(γ(s))ds|γ(0) = x0, γ(L) ∈

Γ}, and fix an arbitrary γ ∈ C , γ(0) = x0. We will discuss both cases where either
τ0 < τx0 or not.
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Consider τ0 < τx0
. Take h2 ≤ h1 small enough so that |x−x0| < h2, |τ −τ0| < h2

implies τ < τx due to the continuity of τx. Let h < h2. We can find γ1, γ1(0) = γ(h)

such that u(γ(h), τ0−h)+ε >
∫ τ0−h

0
g(γ1(s))ds+ |u0|(γ1(τ0−h)) since τγ(h) > τ0−h.

Connecting γ(s) : 0 ≤ s ≤ h and γ1, we find γ2. γ2(τ0) = γ1(τ0 − h). Then,

u(x0, τ0) ≤
∫ τ0

0
g(γ2(s))ds+ |u0(γ2(τ0))| <

∫ h
0
g(γ(h)) + u(γ(h), τ0 − h) + ε.

We now assume that τ0 = τx0
(recall that we are discussing the case where

τ0 ≤ τx0). We must have that u(x0, τ0) = B. Let h < h1. If τ0 − h ≥ τγ(h), then
∃γ1, γ1(0) = γ(h), γ1(L) ∈ Γ where L ≤ τ0 − h such that u(γ(h), τ0 − h) + ε >∫ L

0
g(γ1(s))ds. Then, connecting γ(s) : 0 ≤ s ≤ h and γ1, we get a new curve γ3

with total length h + L ≤ τ0. We then have u(x0, τ0) = B ≤
∫ L+h

0
g(γ3(s))ds <∫ h

0
g(γ(s))ds+u(γ(h), τ0−h) + ε. If τ0−h < τγ(h), we can find γ1, γ1(0) = γ(h) such

that u(γ(h), τ0 − h) + ε >
∫ τ0−h

0
g(γ1(s))ds+ |u0|(γ1(τ0 − h)). Connecting γ(s) : 0 ≤

s ≤ h and γ1, we get γ2. Since τ0 = τx0 , B ≤
∫ τ0

0
g(γ2(s))ds + |u0(γ2(τ0))| by the

definition of u(x0, τ0). The same argument as in the previous paragraph follows.
Combining what we have, the dynamic programming principle is true. With this

principle the sub-solution condition is easily verified: since u(x0, τ0) − ζ(x0, τ0) ≥
u(γ(h), τ0 − h)− ζ(γ(h), τ0 − h), we see that

ζ(x0, τ0) ≤ inf
γ

{
ζ(γ(h), τ0 − h) +

∫ h

0

g(γ(s))ds|γ(0) = x0

}
,(C.2)

which implies that

ζτ (x0, τ0) + |∇ζ|(x0, τ0) ≤ g(x0).(C.3)
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