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Abstract This paper is devoted to the numerical analysis of a family of finite element approxima-
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1 Introduction

. In addition, a manipulation of the equations permits to eliminate the pressure from the formulation.
However, if pressure profiles are required, they can be recovered via a generalized Poisson problem
with a datum coming from the stream-function solution (in a similar spirit to the decoupled methods
recently proposed in [22[7] for Brinkman equations in Cartesian coordinates).

studies involving different numerical methods for axisymmetric (viscous or non-viscous) flows (see
e.g. [3BL7LRIT0,T4LT6L20,23,33] and the references therein). More precisely, in the recent contribution
[4] the authors propose a spectral method for a stream-function vorticity formulation of the Stokes
equations, where the cylindrical symmetry reduces a three-dimensional problem to a bidimensional
one. the analysis of existence and uniqueness of continuous and discrete solutions is established
using standard arguments for saddle-point problems (see [21I]), and we propose a finite element
discretization based on piecewise polynomials of order k > 1 for all scalar fields, defined on triangular
meshes. This method represents only six degrees of freedom per element, decoupled from a pressure
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solve (approximated in axisymmetric H!—conforming spaces and having three degrees of freedom
per element), thus being a very competitive scheme, for instance, less expensive than the mixed
method recently introduced in [6]. Our optimal order error estimates are derived from the continuous
dependence on the data and an appropriate Céa estimate, Moreover, a duality argument allows us
to improve the order of convergence of the vorticity and the stream-function approximations in
L?-norm.

The remainder of this paper is structured as follows. Section [2] collects the relevant formulations
of the Brinkman problem, for velocity and pressure in Cartesian coordinates, its reduction to the
axisymmetric case, and a stream-function—vorticity form. The weak formulation, along with some
preliminary results are also presented. In Section 3] we prove the unique solvability and stability
properties of the proposed formulation. In Section[d] we introduce the finite element discretization of
our variational formulation, for which we prove a discrete inf-sup condition uniformly with respect
to the fluid viscosity v and the mesh parameter h; moreover, we establish optimal error estimates.
Some illustrative numerical tests are postponed to Section [5} We close with a few remarks and
perspectives in Section @

2 Formulations of the linear Brinkman equations in different coordinates
2.1 Cartesian coordinates

The linear Brinkman equations govern the motion of an incompressible viscous fluid within a porous
medium. The system is

K'a—vAu+Vp=Ff in 2, (2.1a)
divit =0 in {2, (2.1b)

@w-n=0 ondf, (2.1c)

curli x 7 =0 on 912, (2.1d)

where 2 C R?is a given spatial domain. The sought quantities are the local volume-average velocity
@ and the pressure field p. The permeability K is a symmetric and positive definite tensor, and
without loss of generality we can restrict ourselves to the isotropic case where the inverse permeability
distribution can be represented by a scalar function , i.e. K~ = 5I. The inverse permeability has
LOO(Q) regularity, with Fmin < 5(2,y, 2) < Fmax a.€. in 2. For simplicity, we assume a positive fluid
viscosity 0 < v < Vpax- -

2.2 Axisymmetric case

Under axial symmetry of the domain , the forcing term, and the inverse permeability, we can replace

them by (2, f, and o, respectively, with 0 < omin < (7, 2) < Tmax a.e. in §2, and system (2.1a))-(2.1d))
can be recast as a problem

Moreover, if we introduce a vorticity field, scaled with respect to viscosity, w = y/vrotu, we
arrive at the following problem

ou++veurl,w+Vp=f in {2, (2.2a)
w—+vrotu =0 in £, (2.2b)

divau =0 in {2, (2.2¢)

u-n=0 on I, (2.2d)

w=20 on I, (2.2¢)
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where axisymmetric counterparts of the usual differential operators acting on vectors and scalars
employed herein read

divav := 0,0, +r v, + 0v,, rOtw = Opv. — Osvy,

1
curl, ¢ = (9,0, —0pp — ;(p)t.

2.3 Axisymmetric stream-function—vorticity formulation

Next, we realize that the incompressibility condition (2.2¢]) is equivalent to the existence of a scalar
stream-function 1 satisfying u = curl, ¥, with ¢» = 0 on I' (cf. Lemma |l| and [4124]).

2.4 Recurrent notation and auxiliary results

Before stating a weak form to (2.3]), we recall some standard definitions of weighted Sobolev spaces
and involved norms (see further details in e.g. [26]). Let LE (£2) denote the weighted Lebesgue space
of all measurable functions ¢ defined in {2 for which

||50||€g(9) 3:/Q|50‘p7”ad1"dz < 00.

The subspace L ((£2) of L}(£2) contains functions ¢ with zero weighted integral (¢, 1),,o = 0, where

(s,t)r.0 :z/ strdrdz,
7

for all sufficiently regular functions s,¢. The weighted Sobolev space H¥({2) consists of all functions
in L2(£2) whose derivatives up to order k are also in L#(£2). This space is provided with semi-norms
and norms defined in the standard way; in particular,

g = [ (10l + 1067 rara,

is a norm onto the Hilbert space H}(£2)NL? ,(£2). Furthermore, the space H}(£2) := H}(2)NL2 (1)
is endowed with the following norm and semi-norm, respectively (the former being v-dependent):

1/2

2 2 2

lelar o) = elliz ) + Vel o) Fviielie o)
1(£2) 1(£2) 1(£2) 1

1/2

2 2

el o) = elm o) +leliz o) - (2.4)
1(£2) 1(£2) 1

We will also require the following weighted scalar and vectorial functional spaces:

(£2)
() == {e e M(2)ip =0 on I'},
{ ) divav € LI(2)},
= {p € L{(2);curl, p € L}(2)*},
{ )% rotv € LI(12)}.

O
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We observe that as a consequence of [25, Proposition 2.1], the entity in (2.4]) is a norm in ﬁ%O(Q)
In addition, the spaces H(div,, {2) and H(curl,, 2) are endowed respectively by the norms:

. 1/2
[vllcdive.2) = ([0lF200) + 1 divavlEa)
1/2
lelueurta,o) == (H@H%g(m + v curly 90”%%(9)2) J
HQOHH(curla,_Q) = HCUI‘la QPHL%(Q)Z'
Moreover, it holds that
bl ) < Dobugeurtne) < Vel o Ve € HL(R), (2.5)
Il < lelieurne < Valela o Ve € Bl (2). (2.6)

The following result .

Lemma 1 Let (2 be simply connected. For any s > 1, ifv € [ITI%O(.Q) NH;(2))? satisfies div,v = 0,
and v-mn =0 on I, then there exists a unique potential p € HTH(Q) such that v = curl, ¢, and
p=0o0nI.

On the other hand, let Hll/z(]“) be the trace space associated to H}(§2), and notice that the normal
trace operator on I is defined by v — v - n|r, and it is continuous from H(div,, 2) into the dual

space of H, /2 (I'). We next recall the following Green identities ().
Lemma 2 For any v € H(div,, 2) and g € H}(2), the following Green formula holds
(diva v, Q)T,Q + (’U, VQ)T,.Q = <’U 'n, Q>T,F-

Lemma 3 For any v € H(rot, 2) and ¢ € IZI%(Q), we have the following Green formula

(v,curly ©)r 0 — (p,r0t V) 0 = (V- t,0)r .

2.5 The variational formulation

Then, combining Lemmas [2] and [3] with a direct application of the boundary conditions, yields the
following variational problem: Find (4, w) € Hi ,(£2) x Hi ,(£2) such that
a(th, ) +b(p,w)=F(p) Ve € Hi,(92),
b(1),0) —d(w,0)=0 Vo € Hi ,(£2), (2.7)
where the involved bilinear forms and linear functional are
a(¥, ) = (ocurla ¥, curla 9)r0,  bly,w) = (Vveurlyw, curly 9), o,
dw,0) == (w,0)r.0, F(p):=(f,curlyy),n.

Remark 1 The discussion about possible shortcomings of the boundary treatment (?7), (?7) and the
associated issues in representing no-slip velocity conditions or other wall laws is not part of the goals
of this paper. We refer the interested reader to [TTLI3l[34.[7]. However, we do stress that imposition
of tangential velocities poses no difficulty in our framework. For instance, if we want to set u -t = u?
with a known u’ on Iy C I', then Lemma, |3 suggests that the adequate test space for the vorticity
field would be

Also from Lemma [3] it follows that a non-homogeneous term
H(0) := (Vvu',0),r, V0 €H], (1),
should appear in the second equation of (2.7).
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3 Well-posedness of the continuous problem

In this section, we prove that the continuous variational formulation ([2.7)) is uniquely solvable. With
this aim, we recall the following abstract result (see e.g. [2I, Theorem 1.3]):

Theorem 1 Let (X, (,-)x) be a Hilbert space. Let A: X x X — R be a bounded symmetric bilinear
form, and let G : X — R be a bounded functional. Assume that there exists B > 0 such that

ALY S Gl Ve . (3.1)
yeXx ”yHX
y#0
Then, there ezists a unique x € X, such that
Az, y) =G(y) VyedX. (3-2)

Moreover, there exists C' > 0, independent of the solution, such that

]l < ClG| 2

Theorem 2 The variational problem (2.7) admits a unique solution (¢¥,w) € ﬁ%o(()) X ﬁ%o(ﬂ)
Moreover, there exists C' > 0 independent of v such that

[l + Iolliz oy < ClF luzcane- (3.3)

Proof First, we define X := ﬁ%o(ﬂ) X ﬁ}o(()) (endowed with the corresponding product norm:
I| - ||ﬁ1( o) and |- |HI~{1( 2); respectively) and the following bilinear form and linear functional:

A((,w), (9,0)) = a(, 0) + be,w) +b(4,0) — d(w,0),  G((¢,0)) := F(p).

To continue, it suffices to verify the hypotheses of Theorem[l} First, we note that the linear functional
G(-) is bounded and as a consequence of the boundedness of a(-,-) b(-,-), and d(-,-), one has that
the bilinear form A(-,-) is also bounded with constants independent of v.

The next step consists in proving that the bilinear form A(:,-) satisfies the inf-sup condition
(3.1). With this aim, we have that for any (¢,w) € X, we define
@ = (Y + &vrw) € INI}O(Q), and 0:=-we ﬁio(ﬁ),

where ¢ is a positive constant which will be specified later. Therefore, from the definition of bilinear
form A(-,-) we obtain

A((Y,w), (¢,0)) = (o curly ¥, curl, @), o + (Vv eurlyw, curl, ¢), o
+ (Vveurl, 0, curly ¢), o — (w,0),.0
> Opmin|| curl, w||i¥(m2 + é(y/vo curl, 9, curly w), o
+ ¢v|| curl, w||i%(m2 + (Vv eurly ¥, curl, w), o

— (Vveurla ¢, curlyw), o + HwH%%(m

22 2
C Omax

20-111111

> Omin|| curl, UJH%&(Q)Q - V|| curlaw”i%(mQ

Omin 2 A 2 2
— T|| curla 9|72 ()2 + vl curla wliz gy + @iz o)

. C 2
_ 0’n1n||curla¢||22 ) +él1— Co—ﬂ y||curlaw||22 2
2 Li(42) 20min Hi(@)

+ [wlZ2 -
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and choosing ¢ = g;—, we can assert that
ax

AW, w), (2,0)) 2 Cll(v, w)lI%,

with C independent of v, where we have used (2.5)) and (2.6) to derive the last inequality. On the
other hand,

Wy oy = Ioliy oy and Bl ) < € (Il + Bl o) (3.4)

and consequently

Al(,), (6,0)
12.0)l1x

AU (6.0))

(p,0)ex H((pve)HX
(,0)#0

which gives (3.3)).
Remark 2 Vorticity and stream-function are available after solving (2.7]). On the other hand, as a

consequence of the Lax-Milgram Theorem, the pressure can be computed as the unique solution of
the following problem: Find p € H{(£2) N L3 ;(£2) such that

>

20wy V(Yw) e,

(Vp, V)0 =G¥(q) = (f —ocurla),Vq)r o Vg € H{(£2) N L7 ((£2). (3.5)
Moreover, the following continuous dependence holds: there exists C' > 0 independent of v such that
IPla1 @)z o (2) < Clifllz )

Notice that, according to Remark [1] if tangential velocity is imposed on [%, or if non-homogeneous
Dirichlet data are set for the vorticity, then G¥(q) should be replaced by G¥**(q) = (f — o curl, ¢ —
Vveurlyw,Vq), o in (3.5). Analogously for the discrete problem (4.4).

4 Mixed finite element approximation

In this section, we construct discrete schemes associated to (2.7) and (3.5)), define explicit finite
element subspaces yielding its unique solvability, derive a priori error estimates and provide the rate
of convergence of the methods.

4.1 Statement of the Galerkin scheme

Let {71 }n>0 be a regular family of triangulations of 2 by triangles 7' with mesh size h. For S C £,
we denote by Pr(S5), k € N, the set of polynomials of degree < k. For any k£ > 1, we adopt the
subspaces

Zn={on € H1 () pulr €PLT) VT € Ta}, (4.1)
Qn = {an €HI(2) : qulr € PR(T) VT € T} N L7 o(£2). (4.2)
Then, the finite element discretization for (2.7)) reads: Find (¢p,wp) € Zp x Zj, such that

a(¥n, n)+b(pn, wn)=F(pn)  Von € Zn,
b(’L/)h, Gh) —d(wh, Oh): 0 V@h € Zy,. (4.3)

In turn, the discrete counterpart of (3.5)) is: Find p, € Qp such that
(Von, Var)r.o = G¥ (qn) :== (f — o curlatn, Van)ro  Yan € Qu. (4.4)
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4.2 Solvability and stability analysis

We now establish discrete counterparts of Theorem [2| and Remark [2| which will yield the solvability
and stability of problems (4.3) and (4.4). First we state a discrete version of Theorem

Theorem 3 Let (X,(-,-)x) be a Hilbert space and let {X}r>0 be a sequence of finite-dimensional
subspaces of X. Let A+ X x X — R be a bounded symmetric bilinear form, and G : X — R a bounded
functional. Assume that there exists By, > 0 such that

sup A(xh, yn)

wnexn  Nynllx
y#0

> Bullznllx Yan € Xn. (4.5)

Then, there exists a unique xp € X}, such that

A(@n,yn) =G(yn) Yyn € Xn. (4.6)
Moreover, there exist C1,Cy > 0, independent of the solution, such that

lznllx < CillGlx,llay,  and |z —anllx < Co inf [l —ynllx,
YnhEXp
where © € X is the unique solution of continuous problem (3.2).
Proof The proof follows from Theorem [l and from the discrete inf-sup condition for A(-, ).

The unique solvability and convergence of the discrete problem (4.3)) are stated next.

Theorem 4 Let k > 1 be an integer and let Zy, be given by (4.1)). Then, there exists a unique
(Vn,wn) € Zp X Zyp, solution of discrete problem (4.3)). Moreover, there exist constants Cq, Cy > 0
independent of h and v, such that

[¥nllg @) + lwnllg o) < Cull Iz (2 (4.7)
and

19 = ¥nllgr o) + lw — wallg o)

<G it (= enliaye + I~ Ol )

where (1, w) € HL(2) x HL(2) is the unique solution to variational problem ([2.7).

Proof We define X}, := Zj, x Zp and we consider A(-,-) and G(-) as in the proof of Theorem [2} The
next step consists in proving that the bilinear form A(:,-) satisfies the discrete inf-sup condition
(4.5). In fact, given (¢p,wyp) € X, we define

3 ~ Omin
0 .= —wp, € Zy, and  @p = (Yp + o2 ﬁwh) € Zy,.

max

We now establish the stability and approximation property for the discrete pressure.

Theorem 5 Let k > 1 be an integer and let Qp be given by (4.2). Then, there exists a unique
solution pp, € Qy, to discrete problem (4.4) and there exists a constant C' > 0 such that:

[Pl (2)n1z o (2) < CllF Iz (o)
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Moreover, there exists a constant C > 0 such that

1P = Pl (2)nrz (o) < C( inf |[p = qnllur@)nez (2
’ G E€EQR ’ (4 9)

ot U = enlay o) + v - 9h||ﬁ%<m)>’

where C and C are independent of v and h, and p € Hi(2) N L3 ((£2) is the unique solution of
problem (3.5)).

Proof On the one hand, the well posedness of problem (4.4)) follows from the Lax-Milgram Theorem.
On the other hand, from the well-known first Strang Lemma, we have that

lp — ph”H%(Q)ﬁLiO(Q) <C {qhiggh lp — Qh”H%(Q)ﬂL%O(Q)

G¥r —_GY
o GMan) =GP |
an€Qn HQhHH}(Q)ﬁL';’)O(Q)

To estimate the second term on the right-hand side above, we use the definition of G¥ (cf. (3.5)))
and G¥* (cf. ([£.4)) to obtain

G’ (qn) — G¥(an)
sup < C|lcurla(v — Yn)llrz oz < Cllv — Ynllgi o,
an€Qn ||Qh||H}(Q)mLiO(Q) L) Hi(2)

where in the last inequality we have used (2.6). Therefore, the proof follows from (4.8]).

4.3 Convergence analysis

According to Theorems [ and [f] it only remains to prove that ¢,w and p can be conveniently
approximated by functions in Z; and Qp, respectively. With this purpose, we introduce the Lagrange
interpolation operator ITy, : H1(£2) N H3(2) — Zy,.
Lemma 4 There exists C > 0, independent of h, such that for all p € HlfH(Q) :

le = Dhllg ) < CRE llllgrs gy -

We now turn to the statement of convergence properties of the discrete problem (4.3).

Theorem 6 Let k > 1 be an integer and let Zy and Qp be given by (4.1) and (4.2)), respectively.
Let (¢, w) € H] ,(2) x Hi ,(£2) and p € H}(2) N L] 1(£2) be the unique solutions to the continuous

problems (2.7) and (3.5)), and (Yn,wn) € Zp X Zy, and py, € Qp, be the unique solutions to the discrete
problems ([&.3) and ([@.4), respectively. Assume that 1 € H¥TH(2), w € H¥TH(Q), and p € H¥T1(12).
Then, the following error estimates hold

16 = ¥nligin + e — wnliyiey < ot (IWlgos oy + Wl o )
Ip = pullui o)z (0) < C’Qhk<P||H’;+1(Q) F [Pl o) + ||w||H’;+1(Q)>'
where C1 and Cy are positive constants independent of v and h.

Proof The proof follows from estimates (4.8)), (4.9) and error estimates from Lemma
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A natural consequence of this result is that the vorticity and stream-function approximations also
converge in the L?(2)—norm with an order O(h*):

lw = wnllLz(a) = O(A*), and ¢ = ¥nllLz(a) = O(A®).

Such an estimate can be improved by one order of convergence, as show by the following theorem.

Theorem 7 Under the assumptions of Theorem[6, there exists C > 0 independent of h and v such
that

lw = whllrz(2) < ChrH! <|¢||H’;‘+1(Q) + ||w||H’;'+1(n)>7 (4.10)

1 = tnluzior < O (Wollon i + el ) (@11)

Proof The core of the proof is based on a duality argument. We first establish (4.10)). Let us consider
the following well-posed problem: Given g € L(£2), find (p, &) € Hi (£2) x H} ,(£2) such that

alp, p)+b(p, )= 0 Vo € H] ,(£2),
b(p,0) —d(0,6)=G(0) VO € H] (), (4.12)

where G(0) := (g,0), . we will require the following regularity: p € H3(£2), £ € H3({2). Moreover,
we also assume that there exists a constant C' > 0, independent of v and g such that

lpllaz(0) + €llm2(0) < CllgllLz(o)- (4.13)

Next, choosing (¢,0) = (¢ — ¥y, w — wy) in (4.12)), we obtain
G(w —wp) =b(p,w —wp) — d(w — wp, §), (4.14)
Moreover, from ([2.7) and (4.3) we have that:
b(w - ’(/}hmgh) - d(w - wh7§h) = 07
a(t) = ¢, pn) + b(pn,w — wp) = 0.
Thus, subtracting the above equations and (4.15) from (4.14)), we obtain
G(w —wp) =b(p,w —wp) — d(w — wh, §) — b(Y — Pn, &) + d(w — wh, &n)

—a() = Yn, pn) — b(pn,w — wi) + a(yp — n, p) + b — Pp, &)
=b(p — pn,w —wp) — d(w —wp, & = &p) +0(Y — U, & — &n) + alth — Yn, p — pr),

for all (pn,&n) € Zp, X Zy. Hence,
|G(w —wn)| < C(llp = pullzy o) lw = wrllgy o) + lw = whlliz (o) 1€ = €nllz )
10 = nlligy o) 1€ = Enlli o) + 1Y = Ynllay o) llo = Prlliy )
< Chk(”@[’HH’f“(Q) + ||W||H’f+1(9)) (”P - Ph”ﬁi(n) + ng - €h|||ﬁ}(9)),

for all (pp, &n) € Zp X Zp, where in the last inequality we have utilized Theorem@ Taking in particular
(pns &n) as the Lagrange interpolants of (p,£) (see Lemma[d), and then using the additional regularity
result (4.13]) in the above estimate, we obtain:

|G(w —wn)| <CRFH (T/)HH’f“(n) + |WH’;+1(Q)> gl ()-
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14.24
Py (T‘,Z)
475

T

Fig. 1 Example 1: approximated stream-function, vorticity, and pressure distribution for the accuracy assessment
test on the axisymmetric domain 2.

Thus, from the estimate above and the definition by duality of || - [|L2((), we arrive at
(gaw _wh)TQ k+1
||w — wh||L2 oy = sup ————=<Ch ||1/)|| E+1 + ||w|| k1 ,
1) gerz(2) 9z H™ () HH@)

where the constant C' is independent of h and v.

Finally, (4.11) follows from the same arguments given before for (4.10), but instead of dual

problem (4.12)), we consider the following one:
a(. p)+b(p. )= Glp) Vo € H (9),
b(p,0) —d(8,£)=0 v6 € Hi ,(12),
where in this case G(¢) := (g,¢)r.0-
Remark 3 We observe that since u = curl, ¢, the velocity can be readily recovered from the main
unknowns of the underlying problem. More precisely, if (¢, wp) € Zp, X Zy, is the unique solution of

(4.3)), then wj := curl, ¢, approximates the velocity with the same order of the proposed method.
This result is summarized as follows.

Corollary 1 Assume that the hypotheses of Theorem@ hold. Then, , there exists C > 0 (independent
of both h and v) such that

= wnlcaear < O (It + ol )

Proof We have that
| — uh”H(diva,Q) = |lu— uh||L§(Q)2
where in the last inequality we have used (2.6)). Thus, the result follows from Theorem @

5 Numerical results

In our first example we test the convergence of the proposed scheme when applied to the axisymmetric
version of the classical colliding flow problem (see e.g. [19, Sect. 5.1] for the Cartesian case). The
analytic solution is given as follows

U(r,z) = 5rzt =%, w(r, 2) = 12vw(2r® — 5r2%),  p(r, z) = 6012z — 2423,
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Table 1 Example 1: errors and convergence rates associated to the piecewise polynomial approximation of stream-
function, vorticity and pressure,

Table 2

and it is defined on the meridional domain {2 having four sides defined by the symmetry axis (left
wall r = 0), bottom and top lids (z = 0 and z = 1, respectively), and the curve characterized by the
parametrization s € [0,1], 7 = 1 —s/2+0.15 cos(ms) sin(nws), and z = s —0.15 cos(ns) sin(ws). We set
the model parameters to ¢ = 10 and v = 0.1. The boundary conditions are non-homogeneous and
set according to the interpolant of the exact stream-function and vorticity (and the pressure solve
is modified according to Remark , whereas the forcing term f has been manufactured using the
momentum equation (??). Errors for vorticity and stream-function were measured in the H!(£2) and
L2(£2)—norms (denoted hereafter with subscripts 1 and 0, respectively), while those for the pressure
correspond to the H}(2) N L} (2)—norm (denoted with subscript 1). The convergence history
(obtained on a family of successively refined unstructured partitions of §2) is collected in Table
confirming the expected behavior predicted by Theorems [6] and The approximate solutions
obtained using the lowest-order method (k = 1) on a coarse mesh are displayed in Figure [I} We
recall that, by construction, the divergence of the computed velocity is exactly zero.

Our next example addresses the well-known lid driven cavity flow. The domain under consid-
eration is the unit square £2 = (0,1)2, discretized with an unstructured mesh of 80K triangular
elements. Following Remark a tangential velocity u! = —1 is imposed on the top lid of the domain
(I C I'), we set homogeneous Dirichlet data for the stream-function. No boundary conditions are
explicitly set for the vorticity. The forcing term is f = 0, the viscosity is constant v = le — 2, and
the inverse permeability is, in a first round, constant ¢ = 0.1. We also test the case where o is
discontinuous across the line r = 0.4, going from oy = 0.01 to o; = 100. Stream-function, vorticity
and pressure profiles for both cases are displayed in Figure [2, where the bottom row shows a clear
change of regime between the regions of high and low permeability.

Finally, we perform a simulation of axisymmetric laminar flow past a sphere. The meridional
domain configuration is given in panel of Figure[3] The boundary of the meridional {2 is decomposed
into an inlet boundary (located at z = 0), an outlet (at z = 10), a “far-field” border (on r = 2),
the surface of the obstacle (centered at r = 0,z = 5 and with radius 1), and the symmetry axis is
located at r = 0. The domain is discretized into 80K triangular elements and the model parameters
are v = be — 3, 0 = 0.1. The boundary conditions are set as follows: on I}, we set ¥ = r, on I,
we set ¢ = %rz and w = 0, and on I,ps we put ¥ = 0. The numerical results are depicted on
the reflected domain in Figure [3] where we observe flow patterns qualitatively agreeing with the
expected results (see e.g. [12]).

6 Concluding remarks

In the present paper, we have analyzed a mixed finite element method to approximate a stream-
function—vorticity variational formulation for the Brinkman problem in axisymmetric domains, which
has been shown to be well-posed using standard arguments for mixed problems. The formulation
was discretized by means of continuous piecewise polynomials of degree k > 1 for all the unknowns.
We proved an O(h¥) convergence with respect to the mesh size in the natural H!'-norm, as well as an
O(h¥+1) order in L?-norm by a duality argument, and all estimates are uniform with respect to the
fluid viscosity v. Finally, we reported numerical results that confirm the numerical analysis of the
proposed method. A distinctive feature of this method is that it allows discrete velocities which are
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Fig. 2 Example 2: approximated stream-function, vorticity, and pressure distribution for the lid-driven cavity problem
for constant (top row) and discontinuous permeability (bottom panels).

automatically divergence-free. Extensions of this work include the nonlinear Navier-Stokes equations
and coupling with transport problems arising from multiphase flow descriptions.
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