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Abstract

In this paper, we consider a finite difference grid-based semi-Lagrangian approach in

solving the Vlasov-Poisson (VP) system. Many of existing methods are based on dimen-

sional splitting, which decouples the problem into solving linear advection problems, see

Cheng and Knorr, Journal of Computational Physics, 22(1976). However, such splitting is

subject to the splitting error. If we consider multi-dimensional problems without splitting,

difficulty arises in tracing characteristics with high order accuracy. Specifically, the evolu-

tion of characteristics is subject to the electric field which is determined globally from the

distribution of particle densities via the Poisson’s equation. In this paper, we propose a

novel strategy of tracing characteristics high order in time via a two-stage multi-derivative

prediction-correction approach and by using moment equations of the VP system. With

the foot of characteristics being accurately located, we proposed to use weighted essentially

non-oscillatory (WENO) interpolation to recover function values between grid points, there-

fore to update solutions at the next time level. The proposed algorithm does not have time

step restriction as Eulerian approach and enjoys high order spatial and temporal accuracy.

However, such finite difference algorithm does not enjoy mass conservation; we discuss one

possible way of resolving such issue and its potential challenge in numerical stability. The

performance of the proposed schemes are numerically demonstrated via classical test prob-

lems such as Landau damping and two stream instabilities.
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1 Introduction

This paper focuses on a high order truly multi-dimensional semi-Lagrangian (SL) approach

for the Vlasov-Poisson (VP) simulations. Arising from collisionless plasma applications, the

VP system,
∂f

∂t
+ v · ∇xf + E(x, t) · ∇vf = 0, (1.1)

and

E(x, t) = −∇xφ(x, t), −∆xφ(x, t) = ρ(x, t)− 1, (1.2)

describes the temporal evolution of the particle distribution function in six dimensional

phase space. f(x,v, t) is probability distribution function which describes the probability of

finding a particle with velocity v at position x at time t, E is the electric field, and φ is the

self-consistent electrostatic potential. The probability distribution function couples to the

long range fields via the charge density, ρ(t, x) =
∫
R3 f(x, v, t)dv, where we take the limit of

uniformly distributed infinitely massive ions in the background. In this paper, we consider

the VP system with 1-D in x and 1-D in v.

Many different approaches have been proposed for the VP simulations. There are the

Lagrangian particle-in-cell (PIC) methods, which have been very popular in practical high

dimensional simulations due to its relatively low computational cost [17, 22, 20]. However,

the Lagrangian particle approach is known to suffer the statistical noise which is of order

1/
√
N , where N is the number of particles in a simulation. There are very high order Eu-

lerian finite difference [33], finite volume [1], finite element discontinuous Galerkin method

[19, 8]. Eulerian methods can be designed to be highly accurate in both space and in time,

thus being able to resolve complicated solution structures in a more efficient manner by

using a set of relatively coarse numerical mesh. However, they are subject to CFL time step

restrictions. There are the dimensional split SL approach originally proposed in [7], and

further developed in the finite volume [15, 31, 2, 3, 13], finite difference [5, 24, 25], finite

element discontinuous Galerkin framework [26, 27] and a hybrid finite different-finite ele-

ment framework [18]. The semi-Lagrangian framework allows for extra large numerical time

steps compared with Eulerian approach, leading to some savings in computational cost. The

dimensional splitting allows for a very simple implementation procedure for tracing charac-
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teristics; however it causes a second order operator splitting error in time. For convergence

estimate for the semi-Lagrangian methods for the VP simulations, we refer to [6]. If the

splitting is not performed properly, numerically instabilities are observed [21]. In [9], an

integral deferred correction method is proposed for the dimensional split SL approach to

reduce the splitting error.

In this paper, we proposes a high order truly multi-dimensional SL finite difference ap-

proach for solving the VP system. The ‘truly multi-dimensional’ means that no operator

splitting is involved. The difficulty is the tracing of characteristics with high order temporal

accuracy in a time step. Especially the evolution of characteristics is due to the electric

field induced by the unknown particle distribution function f in the Vlasov equation (1.1).

A high order two-stage multi-derivative predictor-corrector algorithm is proposed to build

up a high order characteristic-tracing algorithm based on lower order ones, with the help

of moment equations of the VP system. A high order WENO interpolation is proposed to

recover information among grid points. The proposed algorithm is of high order accuracy in

both space and in time. However, there is no mass conservation. We discuss such issues as

well as the computational cost of the proposed algorithm.

The paper is organized as follows. Section 2 describes the high order SL finite difference

approach without operator splitting. High order way of tracing characteristics are proposed

and analyzed. Issues related to computational cost and mass conservation are discussed.

Section 3 presents numerical simulation results. Finally, the conclusion is given in Section 4.

2 Truly multi-dimensional SL algorithm.

2.1 Algorithm framework

Our goal is to design a high order SL finite difference scheme for the VP system without

operator splitting. Consider the VP system (1.1) with 1-D in x and 1-D v. The 2-D x− v

plane is discretized into uniformly spaces rectangular meshes,

x 1
2
< x1+ 1

2
< · · · < xi+ 1

2
< · · · < xnx+ 1

2
,

v 1
2
< v1+ 1

2
< · · · < vj+ 1

2
< · · · < vnv+ 1

2
.
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The center of each of the rectangular cell [xi− 1
2
, xi+ 1

2
]× [vj− 1

2
, vj+ 1

2
] is denoted as (xi, vj). We

consider evolving the numerical solution fni,j, i = 1, · · ·nx, j = 1, · · · , nv, where fni,j denotes

the numerical solution at (xi, vj) at the time level tn. The proposed SL algorithm in updating

the solution fn+1
ij consists of the following steps.

1. Characteristics are traced backward in time to tn. Let the foot of the characteris-

tic at the time level tn emanating from (xi, vj) at tn+1 be denoted as (x?i , v
?
j ). It is

approximated by numerically solving the following final value problem

dx(t)
dt

= v(t),

dv(t)
dt

= E(x(t), t),

x(tn+1) = xi,

v(tn+1) = vj.

(2.1)

Here, we remark that solving (2.1) with high order temporal accuracy is non-trivial.

Especially, the electric field E depends on the unknown function f via the Poisson’s

equation (1.2) in a global rather than local fashion. Moreover, being a final value

problem, the electrical field E is known initially only at the time step tn. In Section 2.2,

we discuss the proposed high order (up to third order) way of tracing characteristics

in time.

2. The solution is updated as

fn+1
i,j = f(x

n,(l)
i , v

n,(l)
j , tn) ≈ f(x?i , v

?
j , t

n). (2.2)

We propose to recover f(x
n,(l)
i , v

n,(l)
j , tn) by a high order (up to sixth order) WENO

interpolation from fni,j, i = 1, · · ·nx, j = 1, · · · , nv. The procedures are discussed in

Section 2.3.

2.2 Tracing characteristics with high order temporal accuracy

It is numerically challenging to design a one-step method to locate the foot of characteristics

with high order accuracy in time. The electric field E is not explicitly unknown; it is induced

by the unknown function f via the Poisson’s equation (1.2). Since it is difficult to evaluate the

electric field E (r.h.s. of equation (2.1)) for some intermedia time stages between [tn, tn+1],

Runge-Kutta methods can’t be used directly.
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Below we describe our proposed predictor-corrector procedure for locating the foot of

characteristics. We will first describe a first order scheme in tracing characteristics; the

second scheme is built upon the first order prediction; and the proposed third order scheme

is built upon the second order prediction. In our notations, the superscript n denotes the time

level, the subscript i and j denote the location xi and vj in x and v directions respectively,

the superscript (l) denotes the formal order of approximation. For example, in equation (2.3)

below, x
n,(1)
i (or v

n,(1)
j ) approximates x?i (or v?j ) with first order, and En

i = E(xi, t
n). d

dt
=

∂
∂t

+ ∂x
∂t

∂
∂x

denotes the material derivatives along characteristics. The order of approximation

we mentioned in this subsection is for temporal accuracy. We propose to use a spectrally

accurate fast Fourier transform (FFT) in solving the Poisson’s equation (1.2), whose r.h.s.

function ρ(x, t) =
∫
f(x, v, t)dv is evaluated by a mid-point rule numercally. The mid point

rule is of spectral accuracy given the function being integrated is either periodic or compactly

supported [4].

First order scheme. We let

x
n,(1)
i = xi − vj∆t; v

n,(1)
j = vj − En

i ∆t, (2.3)

which are first order approximations to x?i and v?j , see Proposition 2.1 below. Let

f
n+1,(1)
i,j = f(x

n,(1)
i , v

n,(1)
j , tn), (2.4)

which is a first order in time approximation to fn+1
i,j . Note that the spatial approximation

in equation (2.4) (and in other similar equations in this subsection) is performed via high

order WENO interpolation discussed in Section 2.3. Based on {fn+1,(1)
i,j }, we computed

ρ
n+1,(1)
i , E

n+1,(1)
i

by using a mid-point rule and FFT based on the Poisson’s equation (1.2). Note that ρ
n+1,(1)
i

and E
n+1,(1)
i also approximate ρn+1

i and En+1
i with first order temporal accuracy.

Proposition 2.1. x
n,(1)
i and v

n,(1)
j constructed in equation (2.3) are first order approxima-

tions to x?i and v?j in time.

5



Proof. By Taylor expansion,

x?i = xi −
dxi
dt

(xi, vj, t
n+1)∆t+O(∆t2)

= xi − vj∆t+O(∆t2)

(2.3)
= x

n,(1)
i +O(∆t2),

v?j = vj −
dvj
dt
|tn+1∆t+O(∆t2)

= vj − En+1
i ∆t+O(∆t2)

= vj − (En
i +O(∆t))∆t+O(∆t2)

(2.3)
= v

n,(1)
j +O(∆t2).

Hence x
n,(1)
i and v

n,(1)
j are second order approximations to x?i and v?j locally in time for a

time step; the approximation is of first order in time globally. We remark that the proposed

first order scheme is similar to, but different from, the standard forward Euler or backward

Euler integrator. It is specially tailored to the system (2.1).

Second order scheme. We let

x
n,(2)
i = xi −

1

2
(vj + v

n,(1)
j )∆t, v

n,(2)
j = vj −

1

2
(E(x

n,(1)
i , tn) + E

n+1,(1)
i )∆t, (2.5)

which are second order approximations to x?i and v?j , see Proposition 2.2 below. Note that

E(x
n,(1)
i , tn) in equation (2.5) can be approximated by WENO interpolation from {En

i }nx
i=1.

Let f
n+1,(2)
i,j = f(x

n,(2)
i , v

n,(2)
j , tn), approximating fn+1

i,j with second order in time. Based on

{fn+1,(2)
i,j }, we computed ρ

n+1,(2)
i , E

n+1,(2)
i approximating ρn+1

i and En+1
i with second order

temporal accuracy.

Proposition 2.2. x
n,(2)
i and v

n,(2)
j constructed in equation (2.5) are second order approxi-

mations to x?i and v?j in time.
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Proof. It can be checked by Taylor expansion

x?i = xi −
(
dx

dt
(xi, vj, t

n+1) +
dx

dt
(x?i , v

?
j , t

n)

)
∆t

2
+O(∆t3)

= xi −
(
v?j + vj

) ∆t

2
+O(∆t3)

Prop.2.1
= xi −

(
v
n,(1)
j +O(∆t2) + vj

) ∆t

2
+O(∆t3)

= xi −
(
v
n,(1)
j + vj

) ∆t

2
+O(∆t3)

(2.5)
= x

n,(2)
i +O(∆t3).

Similarly,

v?j = vj −
(
En+1
i + E(x?i , t

n)
) ∆t

2
+O(∆t3)

Prop.2.1
= vj −

(
E
n+1,(1)
i + E(x

n,(1)
i , tn) +O(∆t2)

) ∆t

2
+O(∆t3)

(2.5)
= v

n,(2)
j +O(∆t3).

Hence x
n,(2)
i and v

n,(2)
j are third order approximations to x?i and v?j locally in time for a time

step; the approximation is of second order in time globally. Again the proposed second order

scheme tailored to the system (2.1) is similar to, but slightly different from, the second order

Runge-Kutta integrator based on the trapezoid rule.

Third order scheme. We let

x
n,(3)
i = xi − vj∆t+

∆t2

2
(
2

3
E
n+1,(2)
i +

1

3
E(x

n,(2)
i , tn)), (2.6)

v
n,(3)
j = vj − En+1,(2)

i ∆t+
∆t2

2

(
2

3
(
d

dt
E(xi, t

n+1))(2) +
1

3

d

dt
E(x

n,(2)
i , tn)

)
, (2.7)

which are third order approximations to x?i and v?j , see Proposition 2.4 below. Note that

d
dt
E terms on the r.h.s. of equation (2.7) will be obtained by using the macro-equations

described below. Let f
n+1,(3)
i,j = f(x

n,(3)
i , v

n,(3)
j , tn), approximating fn+1

i,j with third order in

time. Based on {fn+1,(3)
i,j }, we computed ρ

n+1,(3)
i , E

n+1,(3)
i approximating ρn+1

i and En+1
i

with third order temporal accuracy.

Remark 2.3. We note that the mechanism to build this third order scheme is different

from Runge-Kutta methods where intermedia stage solutions are constructed. It has some

7



similarity in spirit to the Taylor-series (Lax-Wendroff type) method, where higher order

time derivatives are recursively transformed into spatial derivatives. The difference with the

Lax-Wendroff type time integration is: Lax-Wendroff method only uses spatial derivatives

at one time level, while the proposed method used the spatial derivatives (or its high order

approximations) at both tn and tn+1 via a predictor-corrector procedure. In a sense, the

proposed method is a two-stage multi-derivative method.

With ∂E
∂x

= ρ − 1 from the Poisson’s equation (1.2), to compute the Lagrangian time

derivative along characteristics d
dt
E = ∂

∂t
+ v ∂

∂x
, we only need to numerically approximate

∂E
∂t

. Notice that if we integrate the Vlasov equation (1.1) over v, we have

ρt + Jx = 0, (2.8)

where ρ(x, t) is the charge density and J(x, t) =
∫
fvdv is the current density. With the

Poisson’s equation (1.2), and from eq. (2.8), we have ∂
∂x

(Et + J) = 0, that is Et + J is

independent of the spatial variable x. Thus

Et + J =
1

L

∫
(Et + J(x, t))dx =

1

L

∫
J(x, t)dx,

the last equality above is due to the periodic boundary condition of the problem. It can be

shown, by multiplying the Vlasov equation (1.1) by v and performing integration in both x-

and v- directions, that
∂

∂t

∫
J(x, t)dx = 0,

therefore
∂

∂t
E(x, t) + J =

1

L

∫
j(x, t = 0)dx

.
= J̄0,

where ·̄ denotes one’s spatial average. Hence,

d

dt
E = (

∂

∂t
+ v

∂

∂x
)E = J̄0 − J(x, t) + v(ρ− 1). (2.9)

Specifically, in equation (2.7)

(
d

dt
E(xi, t

n+1))(2) = J̄0 − Jn+1,(2)
i + vj(ρ

n+1,(2)
i − 1),

d

dt
E(x

n,(2)
i , tn) = J̄0 − J(x

n,(2)
i , tn) + v

n,(2)
j (ρ(x

n,(2)
i , tn)− 1).
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Note that J
n+1,(2)
i and Jni can be evaluated by mid-point rule from {fn+1,(2)

i,j } and {fni,j}

respectively with spectral accuracy in space; while J(x
n,(2)
i , tn) can be numerically approxi-

mated by WENO interpolation from Jni .

Proposition 2.4. x
n,(3)
i and v

n,(3)
j constructed in equation (2.6)-(2.7) are third order ap-

proximations to x?i and v?j in time.

Proof. It can be checked by Taylor expansion

x?i = xi −
dx

dt
(xi, vj, t

n+1)∆t+

(
2

3

d2xi
dt2

(xi, vj, t
n+1) +

1

3

d2xi
dt2

(x?i , v
?
j , t

n)

)
∆t2

2
+O(∆t4)

= xi − vj∆t+

(
2

3
En+1
i +

1

3
E(x?i , t

n)

)
∆t2

2
+O(∆t4)

Prop.2.2
= xi − vj∆t+

(
2

3
E
n+1,(2)
i +

1

3
E(x

n,(2)
i , tn) +O(∆t3)

)
∆t2

2
+O(∆t4)

(2.6)
= x

n,(3)
i +O(∆t4).

Similarly,

v?j = vj − En+1
i ∆t+

(
2

3

dE

dt
(xi, t

n+1) +
1

3

dE

dt
(x?i , t

n)

)
∆t2

2
+O(∆t4)

Prop.2.2
= vj − (E

n+1,(2)
i +O(∆t3))∆t

+

(
2

3
(
dE

dt
(xi, t

n+1))(2) +
1

3

dE

dt
(x

n,(2)
i , tn) +O(∆t3)

)
∆t2

2
+O(∆t4)

(2.7)
= v

n,(3)
j +O(∆t4).

Hence x
n,(3)
i and v

n,(3)
j are fourth order approximations to x?i and v?j locally in time for a time

step; the approximation is of third order in time globally.

Higher order extensions. The procedures proposed above for locating the foot of charac-

teristics can be extended to schemes with higher order temporal accuracy by using higher

order version of Taylor expansion, e.g. as in equation (2.6) (2.7). As higher order material

derivatives, e.g. d2

dt2
E, are involved, a set of macro-equations from the Vlasov equation are

needed. Specifically, we propose to multiply the Vlasov equation (1.1) by vk, integrate over

v and obtain
∂

∂t
Mk +

∂

∂x
Mk+1 − kEMk−1 = 0,
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where Mk(x, t) =
∫
f(x, v, t)vkdv. Especially, M0 = ρ(x, t) is the charge density and M1 =

J(x, t) is the current density. When k = 0, we have equation (2.8); When k = 1, we have

∂

∂t
J +

∂

∂x
M2 − Eρ = 0. (2.10)

With these, we have

d2E

dt2
(2.9)
= (

∂

∂t
+ v

∂

∂x
)(J̄0 − J(x, t) + v(ρ− 1))

(2.10)
= v2 ∂ρ

∂x
+
∂M2

∂x
− 2v

∂J

∂x
− E, (2.11)

where spatial derivative terms can be evaluated by high order WENO interpolations or

reconstructions.

2.3 High order WENO interpolations.

In this subsection, we discuss the procedures in spatial interpolation to recover information

among grid points, e.g. to update numerical solution by equation (2.2), and in spatial recon-

struction to recover function derivatives at grid points, e.g. in computing spatial derivatives

in equation (2.11). There have been a variety of interpolation choices, such as the piece-

wise parabolic method (PPM) [11], spline interpolation [12], cubic interpolation propagation

(CIP) [32], ENO/WENO interpolation [5, 25]. In our work we adapt the WENO interpola-

tions.

WENO interpolations. High order accuracy is achieved by using several points in the

neighborhood: the number of points used in the interpolation determines the order of interpo-

lation. WENO [10, 5, 25], short for ‘weighted essentially non-oscillatory’, is a well-developed

adaptive procedure to overcome Gibbs phenomenon, when the solution is under-resolved or

contains discontinuity. Specifically, when the solution is smooth the WENO interpolation

recovers the linear interpolation for very high order accuracy; when the solution is under-

resolved, the WENO interpolation automatically assign more weights to smoother stencils.

The smoothness of the stencil is measured by the divided differences of numerical solutions.

Below we provide formulas for the sixth order WENO interpolations, which is what we used

in our simulations.
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The sixth order WENO interpolation at a position x ∈ [xi−1, xi] (or ξ
.
= x−xi

∆x
∈ [−1, 0])

is obtained by

Q(ξ) = ω1P1(ξ) + ω2P2(ξ) + ω3P3(ξ),

where

P1(ξ) = (fi−3, fi−2, fi−1, fi)


0 −1/3 −1/2 −1/6
0 3/2 2 1/2
0 −3 −5/2 −1/2
1 11/6 1 1/6




1
ξ
ξ2

ξ3

 ,

P2(ξ) = (fi−2, fi−1, fi, fi+1)


0 1/6 0 −1/6
0 −1 1/2 1/2
1 1/2 −1 −1/2
0 1/3 1/2 1/6




1
ξ
ξ2

ξ3

 ,

P3(ξ) = (fi−1, fi, fi+1, fi+2)


0 −1/3 1/2 −1/6
1 −1/2 −1 1/2
0 1 1/2 −1/2
0 −1/6 0 1/6




1
ξ
ξ2

ξ3

 .

Linear weights

γ1(ξ) =
1

20
(ξ − 1)(ξ − 2), γ2(ξ) = − 1

10
(ξ + 3)(ξ − 2), γ3(ξ) =

1

20
(ξ + 3)(ξ + 2).

Nonlinear weights are chosen to be

ωm =
ω̃m∑3
l=1 ω̃l

, with ω̃l =
γl

(ε+ βl)2
, l = 1, 2, 3,

where ε = 10−6, and the smoothness indicators

β1 = −9 fi−3fi−2 + 4/3 fi−3
2 − 11/3 fi−3fi + 10 fi−3fi−1 + 14 fi−2fi

+22 fi−1
2 − 17 fi−1fi + 10/3 fi

2 + 16 fi−2
2 − 37 fi−2fi−1,

β2 = −7 fi−2fi−1 + 4/3 fi−2
2 − 5/3 fi−2fi+1 + 6 fi−2Ui + 6 fi−1fi+1

+10 fi
2 − 7 fifi+1 + 4/3 f4

2 + 10 fi−1
2 − 19 fi−1fi,

β3 = −17 fi−1fi + 10/3 fi−1
2 − 11/3 fi−1fi+2 + 14 fi−1fi+1 + 10 fifi+2

+16 fi+1
2 − 9 fi+1fi+2 + 4/3 fi+2

2 + 22 fi
2 − 37 fifi+1.
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2.4 Computational cost and savings

One of the procedures in the proposed algorithm that takes up much computational time is

to trace the foot of characteristics. Assume N = nx = nv, the scheme involves solving the

Poisson’s equation via FFT with the cost on the order of Nlog(N) and a high order 2-D

WENO interpolation on the order of CN2, where the constant C is larger when the order of

interpolation is higher. Since the 2-D WENO interpolation (compared with the 1-D Poisson

solver) is a procedure that takes most of the computational time, we will use the number of

2-D WENO interpolations as a measurement of computational cost.

For the first order scheme (2.3), there is a high order 2-D WENO interpolation involved.

The proposed second order scheme (2.5) is based on the first order prediction: two high order

2-D WENO interpolations are involved. This leads to twice the computational cost as a first

order scheme. The third order scheme (2.6) - (2.7) is based on the second order prediction:

three high order 2-D WENO interpolations are involved. We claim that proposed high order

procedures are computationally efficient: the computational cost roughly grows linearly with

the order of approximation. To further save some computational cost, we propose to use

lower order 2-D WENO interpolation in the prediction steps. Specifically, in the third order

scheme (2.6) - (2.7), we propose to use a second order 2-D WENO interpolation in the first

order prediction, use a fourth order 2-D WENO interpolation in the second order prediction,

and use a sixth order 2-D WENO interpolation in the final step of updating.

2.5 Discussion on mass conservative correction and stability

The proposed scheme is non mass conservative. One possible remedy is a conservative

correction procedure, that allows the construction of a conservative scheme starting from a

non conservative one. This approach was first introduced in the context if the BGK model of

rarefied gas dynamics by P. Santagati in his PhD thesis [29], and illustrated in a preprint [28].

Take a simple linear convection equation in one space dimension for example, the equation

will take the form
∂f

∂t
+
∂f

∂x
= 0, f(x, 0) = f 0(x), (2.1)

with periodic boundary conditions. (2.1) is discretized on a spatial grid, xi = i∆x, i =

1 . . . , n.
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Following Osher and Shu [30], we impose that the pointwise value fni ≈ f(xi, t
n) satisfies

the equation

fn+1
i − fni = −

F̂j+1/2 − F̂j−1/2

∆x
,

where the function F̂ is reconstructed at the edge of the cell from the point wise values

of F (xi) =
∫ tn+1

tn
f(xi, τ)dτ in the same way pointwise values of a function u(x ± ∆x) can

be reconstructed from cell average ūi, see [23] for a detailed description of the WENO

reconstruction procedure. Let (c`, b`), ` = 1, . . . , s be the nodes and weights of an accurate

quadrature formula in the interval [0, 1]. To approximate F (xi), one can use a quadrature

rule

F (xi) ≈ ∆t
s∑
`=1

b`f(xi, t
n + c`∆t),

where f(xi, t
n + c`∆t) can be obtained by the characteristics tracing as well as WENO

interpolation described earlier this section. Such procedure can be directly extended to two

dimensional problem, including the Vlasov-Poisson procedure, where the non-conservative

semi-Lagrangian method previously proposed can be used to get the solution at quadrature

points. The 2-point Gauss-Legendre quadrature formula with b1 = b2 = 1 and c1,2 = 1
2
± 1

2
√

3
is

found to be a good choice with good stability property. On the other hand, such conservative

correction is subject to a time step constraint related to the spatial mesh size similar to that

of the Eulerian approach from spatial interpolation and reconstruction procedures. As a

result, the advantage of using larger time steps in a SL method is lost. To investigate and

improve such stability constraint is subject to our future research.

3 Numerical tests: the Vlasov-Poisson system

In this section, we examine the performance of the proposed fully multi-dimensional semi-

Lagrangian method for the VP systems. Periodic boundary condition is imposed in x-

direction, while zero boundary condition is imposed in v-direction. We recall several norms

in the VP system below, which should remain constant in time.

1. Lp norm 1 ≤ p <∞:

‖f‖p =

(∫
v

∫
x

|f(x, v, t)|pdxdv
) 1

p

. (3.2)
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2. Energy:

Energy =

∫
v

∫
x

f(x, v, t)v2dxdv +

∫
x

E2(x, t)dx, (3.3)

where E(x, t) is the electric field.

3. Entropy:

Entropy =

∫
v

∫
x

f(x, v, t) log(f(x, v, t))dxdv. (3.4)

Tracking relative deviations of these quantities numerically will be a good measure of the

quality of numerical schemes. The relative deviation is defined to be the deviation away from

the corresponding initial value divided by the magnitude of the initial value. In our numerical

tests, we let the time step size ∆t = CFL · min(∆x/vmax,∆v/max(E)), where CFL is

specified for different runs; and let vmax = 6 to minimize the error from truncating the domain

in v-direction. We first present the example of two stream instability. In this example, we will

demonstrate the (1) high order spatial accuracy and the high order temporal accuracy of the

proposed schemes; (2) the time evolution of overall mass and other theoretically conserved

physical norms for the proposed method; (3) the performance of the proposed method in

resolving solution structures.

Example 3.1. Consider two stream instability [14], with an unstable initial distribution

function:

f(x, v, t = 0) =
2

7
√

2π
(1 + 5v2)(1 + α((cos(2kx) + cos(3kx))/1.2 + cos(kx)) exp(−v

2

2
) (3.5)

with α = 0.01, k = 0.5, the length of the domain in the x direction is L = 2π
k

and the

background ion distribution function is fixed, uniform and chosen so that the total net

charge density for the system is zero.

We test both spatial and temporal convergence of the proposed truly multi-dimensional

semi-Lagrangian method. We first test the spatial convergence by using a sequence of meshes

with nx = nv = {210, 126, 90, 70}. The meshes are designed so that the coarse mesh grid

coincides with part of the reference fine mesh grid (nx = nv = 630). We set CFL = 0.01

so that the spatial error is the dominant error. Table 3.1 is the spatial convergence table

for the proposed schemes with sixth order WENO interpolation. The expected fifth order
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convergence globally in time in observed. We then test the temporal convergence of the

proposed first, second and third order schemes. Table 3.2 provides the temporal convergence

rate for the scheme with the first to third order temporal accuracy. We use the sixth order

WENO interpolation and a spatial mesh of Nx = Nv = 160, so that the temporal error is

the dominant error. Expected first, second and third order temporal accuracy is observed.

In Table 3.2, the time step size is about 6 to 10 times that from an Eulerian method, yet

highly accurate numerical results is achieved. To compare the performance of schemes with

different temporal orders, we numerically track the time evolution of physically conserved

quantities of the system. In our runs, we let nx = nv = 128, CFL = 5. In Figure 3.1, the

time evolution of numerical L1 norm, L2 norm, energy and entropy for schemes with different

orders of temporal accuracy are plot. In general, high order temporal accuracy indicates a

better preservation of those physically conserved norms. The L1 norm is not conserved since

our scheme is neither mass conservative nor positivity preserving. In Figure 3.2, we show the

contour plot of the numerical solution of the proposed SL WENO method with third order

temporal accuracy at around T = 53. The plot is comparable to our earlier work reported

in [24, 25].

Nx×Nv L1 error order
70× 70 7.01E-7 –
90× 90 2.06E-7 4.88

126× 126 3.96E-8 4.89
210× 210 3.20E-9 4.95

Table 3.1: Order of accuracy in space for the SL WENO schemes: two stream instability.
The scheme use sixth order WENO interpolation and has a third order temporal accuracy
in tracing characteristics. T = 1 and CFL = 0.01.

Example 3.2. Consider weak Landau damping for the Vlasov-Poisson system with initial

condition:

f(x, v, t = 0) =
1√
2π

(1 + α cos(kx)) exp(−v
2

2
), (3.6)

where α = 0.01. When the perturbation magnitude is small enough (α = 0.01), the VP

system can be approximated by linearization around the Maxwellian equilibrium f 0(v) =

1√
2π
e−

v2

2 . The analytical damping rate of electric field can be derived accordingly [16]. We

15



first order second order third order
CFL L1 error order L1 error order L1 error order

6 1.17E-4 – 2.40E-6 – 1.13E-7 –
7 1.40E-4 1.13 2.80E-6 2.04 1.79E-7 3.02
8 1.63E-4 1.16 3.69E-6 2.07 2.69E-7 3.02
9 1.87E-4 1.16 4.69E-6 2.04 3.84E-7 3.03
10 2.12E-4 1.20 5.84E-6 2.08 5.31E-7 3.06

Table 3.2: Order of accuracy in time for the SL WENO schemes with sixth order WENO
interpolation and various orders of temporal accuracy. Two stream instability. Nx = Nv =
160 and T = 5.

test the numerical numerical damping rates with theoretical values. We only present the

case of k = 0.5. The spatial computational grid has nx = nv = 128 and CFL = 5.

For the scheme with first, second and third order accuracy in time and sixth order WENO

interpolation in space, we plot the evolution of electric field in L2 norm benchmarked with

theoretical values (solid black lines in the figure) in Figure 3.3. A better match with the

theoretical decay rate of the electric field is observed for schemes with second and third order

temporal accuracy. The time evolution of discrete L1 norm, L2 norm, kinetic energy and

entropy of schemes with different temporal orders are reported in Figure 3.4. L1 and L2

norms are better preserved by schemes with higher order temporal accuracy. Note that the

mass is not exactly preserved. Energy and entropy are better preserved by schemes with

second and third order accuracy than that with first order accuracy.

Example 3.3. Consider strong Landau damping. The initial condition is equation (3.6),

with α = 0.5 and k = 0.5. The evolution of L2 norms of electric field is provided in Figure

3.5, which is comparable to existing results in the literature, e.g. see [18]. The time evolution

of discrete L1 norm, L2 norm, kinetic energy and entropy are reported in Figure 3.6. The

L1 norm, as expected, is not conservative. Numerical solutions of the proposed scheme at

different times are observed to be comparable to those that have been well reported in the

literature, e.g. [24, 18] among many others. Thus we omit to present those figures to save

space.
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Figure 3.1: Two stream instability. The SL WENO scheme with sixth order WENO inter-
polation in space and various orders of temporal accuracy. Time evolution of the relative
deviations of discrete L1 norms (upper left), L2 norms, kinetic energy norms (lower left) and
entropy (lower right).

Example 3.4. Consider the symmetric two stream instability [1], with the initial condition

f(x, v, t = 0) =
1√

8πvth

[
exp

(
−(v − u)2

2v2
th

)
+ exp

(
−(v + u)2

2v2
th

)] (
1+0.0005 cos(kx)

)
(3.7)

with u = 5
√

3/4, vth = 0.5 and k = 0.2. The background ion distribution function is fixed,

uniform and chosen so that the total net charge density for the system is zero. Figure 3.7

plots the evolution of electric fields for the proposed scheme benchmarked with a reference

rate from linear theory γ = 1√
8
, see [1]. Theoretical consistent results are observed. Time

evolution of discrete L1 norm, L2 norm, kinetic energy and entropy of schemes with different

temporal orders are reported in Figure 3.8. Again, higher order schemes in general perform

better in preserving the conserved physical quantities than low order ones. In Figures 3.9,

we report numerical solutions from the SL WENO schemes with various temporal accuracy

17



Figure 3.2: Two stream instability: T = 53. The SL WENO scheme with the sixth order
WENO interpolation and a third order temporal accuracy. The spatial mesh is 128 × 128
and CFL = 5.

in approximating the distribution solution f . It can be observed that, with the same time

step size, the higher order schemes (e.g. second and third order ones) perform better than a

first order one.

4 Conclusion

In this paper, we propose a systematical way of tracing characteristics for a one-dimensional

in space and one-dimensional in velocity Vlasov-Poisson system with high order temporal

accuracy. Based on such mechanism, a finite difference grid-based semi-Lagrangian approach

coupled with WENO interpolation is proposed to evolve the system. It is numerically demon-

strated that schemes with higher order of temporal accuracy perform better in many aspects

than the first order one. Designing mass conservative semi-Lagrangian schemes, yet not sub-

ject to time step constraints, is considered to be challenging and is subject to future research

investigations.
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Figure 3.3: Weak Landau damping. Time evolution of electric field in L2 norm.
.
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[15] F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative numerical

schemes for the Vlasov equation, Journal of Computational Physics, 172 (2001), pp. 166–

187.

[16] B. Fried and S. Conte, The plasma dispersion function, The Plasma Dispersion

Function, New York: Academic Press, 1 (1961).

[17] A. Friedman, S. Parker, S. Ray, and C. Birdsall, Multi-scale particle-in-cell

plasma simulation, Journal of Computational Physics, 96 (1991), pp. 54–70.

21



Figure 3.6: Strong Landau damping. The SL WENO scheme with sixth order WENO
interpolation in space and various orders of temporal accuracy. Time evolution of the relative
deviations of discrete L1 norms (upper left), L2 norms, kinetic energy norms (lower left) and
entropy (lower right).

[18] W. Guo and J.-M. Qiu, Hybrid semi-Lagrangian finite element-finite difference meth-

ods for the Vlasov equation, Journal of Computational Physics, 234 (2013), pp. 108–132.

[19] R. Heath, I. M. Gamba, P. J. Morrison, and C. Michler, A discontinuous

galerkin method for the vlasov–poisson system, Journal of Computational Physics, 231

(2012), pp. 1140–1174.

[20] J. Heikkinen, S. Janhunen, T. Kiviniemi, and F. Ogando, Full f gyrokinetic

method for particle simulation of tokamak transport, Journal of Computational Physics,

227 (2008), pp. 5582–5609.

[21] F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrucker, and O. Coulaud,

22



Figure 3.7: Symmetric two stream instability: time evolution of electric field in L2 norm.
The SL WENO scheme with sixth order WENO interpolation in space and various orders of
temporal accuracy.
.

Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov–

Maxwell system, Journal of Computational Physics, 185 (2003), pp. 512–531.

[22] G. Jacobs and J. Hesthaven, Implicit-explicit time integration of a high-order

particle-in-cell method with hyperbolic divergence cleaning, Computer Physics Commu-

nications, 180 (2009), pp. 1760–1767.

[23] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes,

Journal of Computational Physics, 126 (1996), pp. 202–228.

[24] J.-M. Qiu and A. Christlieb, A Conservative high order semi-Lagrangian WENO

method for the Vlasov Equation, Journal of Computational Physics, 229 (2010),

pp. 1130–1149.

[25] J.-M. Qiu and C.-W. Shu, Conservative semi-Lagrangian finite difference WENO

formulations with applications to the Vlasov equation, Communications in Computa-

tional Physics, 10 (2011), pp. 979–1000.

[26] , Positivity preserving semi-Lagrangian discontinuous Galerkin methods for Vlasov

simulations, Journal of Computational Physics, 230 (2011), pp. 8386–8409.

23



Figure 3.8: Two stream instability. The SL WENO scheme with sixth order WENO inter-
polation in space and various orders of temporal accuracy. Time evolution of the relative
deviations of discrete L1 norms (upper left), L2 norms, kinetic energy norms (lower left) and
entropy (lower right).

[27] J. Rossmanith and D. Seal, A positivity-preserving high-order semi-Lagrangian dis-

continuous Galerkin scheme for the Vlasov-Poisson equations, Journal of Computational

Physics, 230 (2011), pp. 6203–6232.

[28] G. Russo and P. Santagati, A new class of Conservative Large Time Step Methods

for the BGK Model of the Boltzmann Equation, Phys. Lett., B393 (1997), pp. 132–142.

[29] P. Santagati, High order semilagrangian schemes for the BGK model of the Boltz-

mann equation, PhD thesis, University of Catania, Italy, 2007.

[30] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory

shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471.

24



[31] E. Sonnendruecker, J. Roche, P. Bertrand, and A. Ghizzo, The semi-

Lagrangian method for the numerical resolution of the Vlasov equation, Journal of Com-

putational Physics, 149 (1999), pp. 201–220.

[32] T. Yabe, F. Xiao, and T. Utsumi, The constrained interpolation profile method for

multiphase analysis, Journal of Computational Physics, 169 (2001), pp. 556–593.

[33] T. Zhou, Y. Guo, and C.-W. Shu, Numerical study on Landau damping, Physica

D: Nonlinear Phenomena, 157 (2001), pp. 322–333.

25
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