
ar
X

iv
:1

50
2.

04
39

1v
3

 [
m

at
h.

O
C

]
 2

1
M

ar
 2

01
5

A Flexible ADMM Algorithm for Big Data Applications

Daniel P. Robinson and Rachael E. H. Tappenden

Abstract

We present a flexible Alternating Direction Method of Multipliers (F-ADMM) algorithm for solving
optimization problems involving a strongly convex objective function that is separable into n ≥ 2 blocks,
subject to (non-separable) linear equality constraints. The F-ADMM algorithm uses a Gauss-Seidel

scheme to update blocks of variables, and a regularization term is added to each of the subproblems
arising within F-ADMM. We prove, under common assumptions, that F-ADMM is globally convergent.

We also present a special case of F-ADMM that is partially parallelizable, which makes it attractive
in a big data setting. In particular, we partition the data into groups, so that each group consists of
multiple blocks of variables. By applying F-ADMM to this partitioning of the data, and using a specific
regularization matrix, we obtain a hybrid ADMM (H-ADMM) algorithm: the grouped data is updated in
a Gauss-Seidel fashion, and the blocks within each group are updated in a Jacobi manner. Convergence
of H-ADMM follows directly from the convergence properties of F-ADMM. Also, a special case of H-
ADMM can be applied to functions that are convex, rather than strongly convex. We present numerical
experiments to demonstrate the practical advantages of this algorithm.

Keywords: Alternating Direction Method of Multipliers; convex optimization; Gauss-Seidel; Jacobi;
regularization; separable function;

AMS Classification: 49M15; 49M37; 58C15; 65K05; 65K10; 65Y20; 68Q25; 90C30; 90C60

1 Introduction

In this work we study the optimization problem

minimize
x1,...,xn

n
∑

i=1

fi(xi) (1a)

subject to

n
∑

i=1

Aixi = b, (1b)

where, for each i = 1, . . . , n, the function fi : R
Ni → R ∪ {∞} is strongly convex, closed, and extended real

valued, and the vector b ∈ Rm and matrix Ai ∈ Rm×Ni represent problem data. Note that the objective
function (1a) is separable in the decision vectors x1, . . . , xn, but that the linear constraint (1b) links them
together, which makes problem (1) non-separable overall.

We can think of the decision vectors {xi} as “blocks” of a single decision vector x ∈ RN , where N =
∑n

i=1 Ni. This can be achieved by partitioning the N ×N identity matrix I column-wise into n submatrices
{Ui ∈ RN×Ni}ni=1, so that I = [U1, . . . , Un], and then setting x =

∑n
i=1 Uixi. That is, x is the vector formed

by stacking the vectors {xi}ni=1 on top of each other. It is easy to see that xi = UT
i x ∈ RNi , and that if we

let A :=
∑n

i=1 AiU
T
i ∈ Rm×N , then (1b) is equivalent to Ax = b. Note that Ai = AUi for i = 1, 2, . . . , n,

and that we can write A = [A1, . . . , An]. If we now let f(x) :=
∑n

i=1 fi(xi), problem (1) is equivalent to

minimize
x∈RN

f(x) (2a)

subject to Ax = b. (2b)

Although problems (1) and (2) are mathematically equivalent, it is important to note that the best algorithms
for solving them take advantage of the block structure that is made explicit in formulation (1).

1

http://arxiv.org/abs/1502.04391v3

1.1 Relevant Previous Work

Many popular algorithms for solving (1) (equivalently, for solving (2)) are based on the Augmented La-
grangian function. In the remainder of this section, we describe several such algorithms that are closely
related to our proposed framework.

The Augmented Lagrangian Method of Multipliers (ALMM)

The ALMM (e.g., see [2]) is based on the augmented Lagrangian function

Lρ(x; y) := f(x)− 〈y,Ax− b〉+
ρ

2
‖Ax− b‖22, (3)

where ρ > 0 is called the penalty parameter, y ∈ Rm is a dual vector that estimates a Lagrange multiplier
vector, and 〈p, q〉 = pTq is the standard inner product in Rn. The most basic variant of ALMM (see
Algorithm 1), involves two key steps during each iteration. First, for a fixed dual estimate, the augmented
Lagrangian (3) is minimized with respect to the primal vector x. Second, using the minimizer computed in the
first step, a simple update is made to the dual vector that is equivalent to a dual ascent step for maximizing
an associated dual function. In practice, computing the minimizer in the first step is the computational
bottleneck. This is especially true for large-scale problems that arise in big data applications, and therefore
extensive research has focused on reducing its cost (e.g., decomposition techniques [15, 18, 19]).

Algorithm 1 A basic variant of ALMM for solving problem (2).

1: Initialization: y(0) ∈ Rm, iteration counter k = 0, and penalty parameter ρ > 0.
2: while the stopping condition has not been met do
3: Update the primal variables by minimizing the augmented Lagrangian:

x(k+1) ← argmin
x
Lρ(x; y

(k)) (4)

4: Update the dual variables:
y(k+1) ← y(k) − ρ(Ax(k+1) − b)

5: Set k ← k + 1.
6: end while

Although sophisticated variants of ALMM are successfully used in many important application areas
(e.g., optimal control in natural gas networks [23]), generally they are unable to directly take advantage of
the block separability described in formulation (1), when it exists. Nonetheless, ALMM serves as the basis
for many related and powerful methods, as we now discuss.

The Alternating Direction Method of Multipliers (ADMM)

The ADMM has been a widely used algorithm for solving problems of the form (1) when n = 2, for convex
functions. Global convergence of ADMM was established in the early 1990’s by Eckstein and Bertsekas [10]
while studying the algorithm as a particular instance of a Douglas-Rachford splitting method. This rela-
tionship allowed them to use monotone operator theory to obtain their global convergence guarantees. (An
introduction to ADMM and its convergence theory can be found in the tutorial style paper by Eckstein [9].
See also [4].) Pseudocode for ADMM when n = 2 is given below as Algorithm 2.

2

Algorithm 2 ADMM for solving problem (1) when n = 2.

1: Initialization: x(0) ∈ RN , y(0) ∈ Rm, iteration counter k = 0, and penalty parameter ρ > 0.
2: while the stopping condition has not been met do
3: Update the primal variables in a Gauss-Seidel fashion:

x
(k+1)
1 ← argmin

x
Lρ(x, x

(k)
2 ; y(k)) (5a)

x
(k+1)
2 ← argmin

x
Lρ(x

(k+1)
1 , x; y(k)) (5b)

4: Update the dual variables:
y(k+1) ← y(k) − ρ(Ax(k+1) − b)

5: Set k ← k + 1.
6: end while

In words, ADMM works as follows. At iteration k, for a fixed multiplier y(k) and fixed block x
(k)
2 , the

new point x
(k+1)
1 is defined as the minimizer (for simplicity, we assume throughout that this minimizer exists

and that it is unique) of the augmented Lagrangian with respect to the first block of variables x1. Then,

in a similar fashion, the first (updated) block x
(k+1)
1 is fixed, and the augmented Lagrangian is minimized

with respect to the second block of variables x2 to obtain x
(k+1)
2 . Finally, the dual variables are updated in

the same manner as for the basic ALMM (see Algorithm 1), and the process is repeated. Notice that a key
feature of ADMM is that the blocks of variables x1 and x2 are updated in a Gauss-Seidel fashion, i.e., the
updated values for the first block of variables are used to define the subproblem used to obtain the updated
values for the second block of variables. The motivation for the design of ADMM is that each subproblem
(see (5a) and (5b)) should be substantially easier to solve than the subproblem (see (4)) used by ALMM.
For many important applications, this is indeed the case.

The interest in ADMM has exploded in recent years because of applications in signal and image process-
ing, compressed sensing [21], matrix completion [22], distributed optimization and statistical and machine
learning [4], and quadratic and linear programming [3]. Convergence of ADMM has even been studied for
specific instances of nonconvex functions, namely consensus and sharing problems [14].

A natural question to ask is whether ADMM converges when there are more than two blocks, i.e., when
n ≥ 3. The authors in [6] show via a counterexample that ADMM is not necessarily convergent if n = 3.
However, they also show that if n = 3 and at least two of the matrices that define the linking constraint
(1b) are orthogonal, then ADMM will converge. In a different paper [5], the authors show that ADMM will
converge when n = 3 if at least one of the functions fi in (1a) is strongly convex.

Other works have considered the more general case of n ≥ 2. For example, an ADMM-type algorithm
for n ≥ 2 blocks is introduced in [20], where during each iteration a randomly selected subset of blocks is
updated in parallel. The method incorporates a “backward step” on the dual update to ensure convergence.
Hong and Luo [13] present a convergence proof for the n block ADMM when the functions are convex, but
under many assumptions that are difficult to verify in practice. Work in [11] shows that ADMM is convergent
in the n block case when the functions fi for i = 1, . . . , n are strongly convex.

The Generalized ADMM (G-ADMM)

Deng and Yin [8] introduced G-ADMM, which is a variant of ADMM for solving problems of the form (1)
when n = 2 and the functions fi are convex. They proposed the addition of a (general) regularization
term to the augmented Lagrangian function during the minimization subproblem within ADMM and the
addition of a relaxation parameter γ to the dual variable update. Their motivation for the inclusion of a
regularization term was twofold. First, for certain applications, a careful choice of that regularizer lead to
subproblems that were significantly easier to solve. Second, the regularization stabilized the iterates, which
has theoretical and numerical advantages.

3

Their method is stated below as Algorithm 3. It uses, for any symmetric positive-definite matrix M and
vector z, the ellipsoidal norm

‖z‖2M := zTMz. (6)

Algorithm 3 G-ADMM for solving problem (1) when n = 2.

1: Initialization: x
(0)
1 ∈ RN1 , x

(0)
2 ∈ RN2 , y(0) ∈ Rm, iteration counter k = 0, parameters ρ > 0 and

γ ∈ (0, 2), and regularization matrices P1 ∈ RN1×N1 and P2 ∈ RN2×N2 .
2: while the stopping condition has not been met do
3: Update the primal variables in a Gauss-Seidel fashion:

x
(k+1)
1 ← argmin

x
Lρ(x, x

(k)
2 ; y(k)) + 1

2‖x− x
(k)
1 ‖

2
P1

(7a)

x
(k+1)
2 ← argmin

x
Lρ(x

(k+1)
1 , x; y(k)) + 1

2‖x− x
(k)
2 ‖

2
P2

(7b)

4: Update the dual variables:
y(k+1) ← y(k) − γρ(Ax(k+1) − b)

5: Set k ← k + 1.
6: end while

The authors prove [8] that Algorithm 3 converges to a solution from an arbitrary starting point as long
as the regularization matrices P1 and P2 in (7a) and (7b) satisfy certain properties. We stress that the
convergence analysis for G-ADMM only applies to the n = 2 case.

The Jacobi ADMM (J-ADMM)

Deng et al. [7] have extended the ideas first presented in G-ADMM [8]. Their new J-ADMM strategy (stated
below as Algorithm 4) may be used to solve problem (1) in the general case of n ≥ 2 blocks. Note that (8a)
is equivalent to the update

x
(k+1)
i ← argmin

xi

Lρ(x
(k)
1 , . . . , x

(k)
i−1, xi, x

(k)
i+1, . . . , x

(k)
n ; y(k)) + 1

2‖xi − x
(k)
i ‖

2
Pi
,

(where Pi ∈ RNi×Ni is a regularization matrix) which we state in order to highlight the relationship of their
method to the previous ones. We also comment that the form of the update used in (8a) motivates why
their algorithm is of the proximal type.

Algorithm 4 J-ADMM for solving problem (1) for n ≥ 2.

1: Initialize: x(0) ∈ RN , y(0) ∈ Rm, iteration counter k = 0, parameters ρ > 0 and γ ∈ (0, 2), and
regularization matrices Pi ∈ RNi×Ni for i = 1, . . . , n.

2: while stopping condition has not been met do
3: for i = 1, . . . , n (in parallel) do

x
(k+1)
i ← argmin

xi

{

fi(xi) +
ρ

2
‖Aixi +

n
∑

j 6=i

Ajx
(k)
j − b−

y(k)

ρ
‖22 +

1

2
‖xi − x

(k)
i ‖

2
Pi

}

(8a)

4: end for
5: Update the dual variables:

y(k+1) ← y(k) − γρ(Ax(k+1) − b) (8b)

6: Set k ← k + 1.
7: end while

4

In [7], the authors establish global convergence of J-ADMM for appropriately chosen regularization
matrices Pi. Moreover, they showed that J-ADMM has a convergence rate of o(1/k).

1.2 Our Main Contributions

We now summarize the main contributions of this work.

1. We present a new flexible ADMM algorithm, called F-ADMM, that solves problems of the form (1)
for strongly convex fi, for general n ≥ 2 based on a Gauss-Seidel updating scheme. The quadratic
regularizer used in F-ADMM is a user defined matrix that must be sufficiently positive definite (see As-
sumption 4), which makes F-ADMM flexible. For some applications, a careful choice of the regularizer
makes the subproblems arising within F-ADMM significantly easier to solve, e.g., see the discussion in
[8, Section 1.2] and [7, Section 1.2]. We prove that F-ADMM is globally convergent in Section 2.

2. We introduce a hybrid Jacobi/Gauss-Seidel variant of F-ADMM, called H-ADMM, that is partially
parallelizable. This is significant because it makes H-ADMM competitive in a big data setting. For
H-ADMM, the blocks of variables are gathered into multiple groups, with a Gauss-Seidel updating
scheme between groups, and a Jacobi updating scheme on the individual blocks within each group. We
demonstrate that H-ADMM is simply F-ADMM with a particular choice of regularization matrix, and
thus the convergence of H-ADMM follows directly from the convergence proof for F-ADMM.

3. We show that if the n blocks of data are partitioned into two groups, then H-ADMM can be applied to
convex functions fi, rather than strongly convex functions. In this special case, with carefully chosen
regularization matrices, H-ADMM extends the algorithm in [8] from the n = 2 case, to the case with
general n, and convergence follows directly from the results presented in [8].

1.3 Paper Outline

In Section 2 we present our new flexible ADMM framework and show that any instance of it is globally
convergent. In Section 3 we consider a particular instance of our general framework, and proceed to show
that it is a hybrid of Jacobi- and Gauss-Seidel-type updates. We also discuss the practical advantages of this
hybrid algorithm, which includes the fact that it is partially parallelizable. Finally, in Section 4 we present
numerical experiments that illustrate the advantages of our flexible ADMM framework.

2 A Flexible ADMM (F-ADMM)

In this section we present and analyze a new F-ADMM framework for solving problems of the form (1). For
convenience, we define the vector

u(k) :=

[

x(k)

y(k)

]

. (9)

Our analysis requires several assumptions concerning problem (1) that are assumed to hold throughout. The
first of which uses ∂f(x) to denote the subdifferential of f at the point x, i.e.,

∂f(x) := {s ∈ RN | 〈s, w − x〉 ≤ f(w)− f(x), ∀w ∈ domf}, (10)

where domf = {x : f(x) <∞}. Moreover,

∂fi(xi) := {si ∈ RNi | 〈si, wi − xi〉 ≤ fi(wi)− fi(xi), ∀wi ∈ domfi}. (11)

We also require the following definition of strong convexity. A function fi : R
N → R ∪ {+∞} is strongly

convex with convexity parameter µi > 0 if for all xi, wi ∈ dom fi,

fi(wi) ≥ fi(xi) + 〈∂fi(xi), wi − xi〉+
µi

2
‖wi − xi‖

2
2. (12)

We may now state our assumptions on problem (1).

5

Assumption 1. The set of saddle points (equivalently, the set of KKT-points) for (1) is nonempty, i.e.,

U∗ := {u∗ ∈ RN+m : u∗ = (x∗, y∗), AT y∗ ∈ ∂f(x∗), and Ax∗ − b = 0} 6= ∅.

Assumption 2. The function fi is strongly convex with strong convexity constant µi > 0 for i = 1, . . . , n.

If Assumption 1 does not hold, then ADMM may have unsolvable or unbounded subproblems, or the
sequence of Lagrange multiplier estimates may diverge. In particular, x∗ is the solution to (1) and y∗ is a
solution to the associated dual problem. Assumption 2 allows us to define

µ := min
1≤i≤n

µi > 0 (13)

as the minimum strong convexity parameter for the functions {fi}
n
i=1, as well as use the following lemma.

Lemma 3 (Strong monotonicity of the subdifferential, Theorem 12.53 and Exercise 12.59 in [17]). Under
Assumption 2, for any xi, wi ∈ dom fi we have

〈si − ti, xi − wi〉 ≥ µi‖xi − wi‖
2
2, ∀si ∈ ∂fi(xi), ti ∈ ∂fi(wi), i = 1, . . . , n. (14)

The following matrices will be important for defining the regularization matrices used in our algorithm,
and will also be used in our convergence proof. In particular, we define the block diagonal matrix AD, and
the strictly upper triangular matrix A△ as

A△ :=

A2 . . . An

. . .
...

An

and AD :=

A1

. . .

An

, (15)

where {A△, AD} ⊂ Rmn×N . We then have the strictly (block) upper triangular matrix

AT
DA△ =

AT
1 A2 . . . AT

1 An

. . .
...

AT
n−1An

∈ RN×N . (16)

Notice that AT
DA△ is equivalent to triu+(ATA), where triu+(X) denotes the strictly upper (block) triangular

part of X . We are now in a position to describe the details of our F-ADMM method.

2.1 The Algorithm

Our F-ADMM method is stated formally as Algorithm 5. As for J-ADMM, F-ADMM requires the choice
of a penalty parameter ρ > 0 and regularization matrices {Pi}ni=1. Our convergence analysis considered in
Section 2.2 requires them to satisfy the following assumption that uses the definition of µ in (13).

Assumption 4. The matrices Pi are symmetric and satisfy Pi ≻
ρ2

2µ‖A
T
DA△‖22I for all i = 1, . . . , n.

6

Algorithm 5 F-ADMM for solving problem (1).

1: Initialize: x(0) ∈ RN , y(0) ∈ Rm, iteration counter k = 0, parameters ρ > 0, γ ∈ (0, 2), and matrices
{Pi}ni=1 satisfying Assumption 4.

2: while stopping condition has not been met do
3: Update the primal variables in a Gauss-Seidel fashion:

x
(k+1)
1 ← argmin

x1

{

f1(x1) +
ρ

2
‖A1x1 +

n
∑

j=2

Ajx
(k)
j − b−

y(k)

ρ
‖22 +

1

2
‖x1 − x

(k)
1 ‖

2
P1

}

...

x
(k+1)
i ← argmin

xi

{

fi(xi) +
ρ

2
‖Aixi +

i−1
∑

j=1

Ajx
(k+1)
j +

n
∑

l=i+1

Alx
(k)
l − b−

y(k)

ρ
‖22 +

1

2
‖xi − x

(k)
i ‖

2
Pi

}

...

x(k+1)
n ← argmin

xn

{

fn(xn) +
ρ

2
‖Anxn +

n−1
∑

j=1

Ajx
(k+1)
j − b−

y(k)

ρ
‖22 +

1

2
‖xn − x(k)

n ‖
2
Pn

}

4: Update the dual variables:
y(k+1) ← y(k) − γρ(Ax(k+1) − b) (17)

5: Set k ← k + 1.
6: end while

We now describe the kth iteration of Algorithm 5 in more detail. For fixed dual vector y(k), the cur-
rent point x(k) is updated in a Gauss-Seidel (i.e., a cyclic block-wise) fashion. To begin, decision vectors

x
(k)
2 , . . . , x

(k)
n are fixed, and the first subproblem in Step 3 is minimized with respect to x1 to give the new

point x(k+1). Similar to before, we note that the ith subproblem in Step 3 is equivalent to

x
(k+1)
i ← argmin

xi

Lρ(x
(k+1)
1 , . . . , x

(k+1)
i−1 , xi, x

(k)
i+1, . . . , x

(k)
n ; y(k)) + 1

2‖xi − x
(k)
i ‖

2
Pi
. (18)

Next, the second block x2 is updated using the information obtained in the update of the first block x1.

That is, the vectors x
(k)
3 , . . . , x

(k)
n remain fixed, as does x

(k+1)
1 , and the regularized augmented Lagrangian is

minimized with respect to x2 to give the new point x
(k+1)
2 . The process is repeated until all n blocks have

been updated, giving the vector x(k+1). Finally, the dual vector y(k) is updated using the same formula as
in J-ADMM (see Algorithm 4). Steps 3 and 4 are repeated until a stopping threshold has been reached.

Remark 5. It is clear that Algorithm 5 uses a (serial) cyclic block coordinate descent (CD) type method to
update the primal vector x. That is, in Step 3 of Algorithm 5, a single pass of block CD is applied to the
current point x(k) to give the new point x(k+1), and then the dual vector is updated.

2.2 Convergence

To analyze F-ADMM, we require the block diagonal matrices Gx and G defined as

Gx :=

P1

. . .

Pn

and G :=

[

Gx
1
γρI

]

, (19)

where I is the (appropriately sized) identity matrix, and γ ∈ (0, 2) and ρ > 0 are algorithm parameters. The
following result gives sufficient conditions for declaring that a limit point of problem (1) is optimal.

7

Lemma 6. If K is any subsequence of the natural numbers satisfying

lim
k∈K

u(k) = uL and lim
k∈K
‖u(k) − u(k+1)‖G = 0 (20)

for some limit point uL, then uL ∈ U∗, i.e., uL solves problem (1).

Proof. Let us first observe that the two limits in (20) jointly imply that

lim
k∈K

u(k+1) = uL ≡

(

xL

yL

)

. (21)

Also, it follows from (20) and the definitions of u(k) (see (9)) and G (see (19)), that limk∈K(y
(k)−y(k+1)) = 0.

Combining this with (17), (21), and (20) establishes that

b = lim
k∈K

Ax(k+1) = AxL = lim
k∈K

Ax(k) (22)

so that, in particular, xL is feasible for problem (1).
Next, the optimality condition for the ith subproblem in Step 3 of Algorithm 5 ensures the existence of

a vector gi(x
(k+1)
i) ∈ ∂fi(x

(k+1)
i) satisfying

0 = gi(x
(k+1)
i) + ρAT

i

(

Aix
(k+1)
i +

i−1
∑

j=1

Ajx
(k+1)
j +

n
∑

l=i+1

Alx
(k)
l − b−

y(k)

ρ

)

+ Pi(x
(k+1)
i − x

(k)
i)

= gi(x
(k+1)
i)−AT

i y
(k) + ρAT

i

(

Aix
(k+1)
i +

i−1
∑

j=1

Ajx
(k+1)
j +

n
∑

l=i+1

Alx
(k)
l − b

)

+ Pi(x
(k+1)
i − x

(k)
i)

= gi(x
(k+1)
i)−AT

i y
(k) + ρAT

i

(

i
∑

j=1

Ajx
(k+1)
j +

n
∑

l=i+1

Alx
(k)
l − AxL

)

+ Pi(x
(k+1)
i − x

(k)
i),

where we also used (22) to substitute for b in the last equation. Using AxL =
∑n

j=1 Ajx
L
j and rearranging

the previous equation gives

gi(x
(k+1)
i) = AT

i y
(k) − ρAT

i

(

i
∑

j=1

Aj(x
(k+1)
j − xL

j) +

n
∑

l=i+1

Al(x
(k)
l − xL

l)
)

− Pi(x
(k+1)
i − x

(k)
i).

By taking limits over the subsequence K of the previous equation, and using (20) and (21), we know that

lim
k∈K

gi(x
(k+1)
i) = AT

i y
L. (23)

We may then use gi(x
(k+1)
i) ∈ ∂fi(x

(k+1)
i), (21), (23), and [16, Theorem 24.4] to conclude that

AT
i y

L ∈ ∂fi(x
L
i).

Combining this inclusion, which holds for all 1 ≤ i ≤ n, with (22) shows that uL is a KKT point for problem
(1), and thus is a solution as claimed.

Our aim is to combine Lemma 6 with the next result, which shows that the sequence {‖uk − u∗‖G} is
nonexpansive with respect to any u∗ ∈ U∗. We note that the proof is inspired by that for J-ADMM [7].

Theorem 7. Let Assumptions 1, 2, and 4 hold. Then, for any u∗ ∈ U∗ and all k ≥ 1, there exists a constant
η > 0 such that

‖u(k) − u∗‖2G − ‖u
(k+1) − u∗‖2G ≥ η‖u(k) − u(k+1)‖2G (24)

with u(k) defined in (9) and G defined in (19).

8

Proof. At each iteration of Algorithm 5, a subproblem of the following form is solved for xi:

x
(k+1)
i = argmin

xi

{

fi(xi) +
ρ

2
‖Aixi +

i−1
∑

j=1

Ajx
(k+1)
j +

n
∑

l=i+1

Alx
(k)
l − b−

y(k)

ρ
‖22 +

1

2
‖xi − x

(k)
i ‖Pi

}

. (25)

The first order optimality condition for (25) is

0 ∈ ∂fi(x
(k+1)
i) + ρAT

i

i
∑

j=1

Ajx
(k+1)
j +

n
∑

l=i+1

Alx
(k)
l − b−

y(k)

ρ

 + Pi(x
(k+1)
i − x

(k)
i),

and rearranging gives

ρAT
i

b+
y(k)

ρ
−

i
∑

j=1

Ajx
(k+1)
j −

n
∑

l=i+1

Alx
(k)
l

+ Pi(x
(k)
i − x

(k+1)
i) ∈ ∂fi(x

(k+1)
i).

Noting that
∑n

l=i+1 Alx
(k+1)
l −Ax(k+1) = −

∑i
j=1 Ajx

(k+1)
j and defining ŷ := y(k) − ρ(Ax(k+1) − b) gives

AT
i ŷ − ρAT

i

n
∑

j=i+1

Aj(x
(k)
j − x

(k+1)
j)

+ Pi(x
(k)
i − x

(k+1)
i) ∈ ∂fi(x

(k+1)
i).

Using Lemma 3 with AT
i y

∗ ∈ ∂fi(x
∗
i), we have

µi‖x
(k+1)
i − x∗

i ‖
2
2 ≤

〈

x
(k+1)
i − x∗

i , A
T
i (ŷ − y∗)− ρAT

i

n
∑

j=i+1

Aj(x
(k)
j − x

(k+1)
j) + Pi(x

(k)
i − x

(k+1)
i)

〉

.

Now, summing the previous inequality over all blocks i gives

µ‖x(k+1) − x∗‖22 ≤
〈

A(x(k+1) − x∗), ŷ − y∗
〉

− ρ

n
∑

i=1

〈

Ai(x
(k+1)
i − x∗

i),

n
∑

j=i+1

Aj(x
(k)
j − x

(k+1)
j)

〉

+

n
∑

i=1

(x
(k+1)
i − x∗

i)
TPi(x

(k)
i − x

(k+1)
i), (26)

where µ > 0 is defined in (13). Notice that, by (17) the following relation holds

A(x(k+1) − x∗) = 1
γρ(y

(k) − y(k+1)), (27)

and we also have that

ŷ − y∗ = (ŷ − y(k+1)) + (y(k+1) − y∗) =
γ − 1

γ
(y(k) − y(k+1)) + (y(k+1) − y∗). (28)

Then (26) becomes

n
∑

i=1

(x
(k+1)
i − x∗

i)
TPi(x

(k)
i − x

(k+1)
i)− ρ

n
∑

i=1

〈

Ai(x
(k+1)
i − x∗

i),

n
∑

j=i+1

Aj(x
(k)
j − x

(k+1)
j)

〉

(27)

≥ µ‖x(k+1) − x∗‖22 −
1

γρ
〈y(k) − y(k+1), ŷ − y∗〉

(28)
= µ‖x(k+1) − x∗‖22 −

1

γρ
〈y(k) − y(k+1), y(k+1) − y∗〉+

1− γ

γ2ρ
‖y(k) − y(k+1)‖22. (29)

9

Using the identity

n
∑

i=1

〈

Ai(x
(k+1)
i − x∗

i),

n
∑

j=i+1

Aj(x
(k)
j − x

(k+1)
j)

〉

(16)
=
〈

x(k+1) − x∗, AT
DA△(x(k) − x(k+1))

〉

, (30)

we may deduce from (29) and the definition of Gx that

n
∑

i=1

(x
(k+1)
i − x∗

i)
TPi(x

(k)
i − x

(k+1)
i)

=
〈

x(k+1) − x∗, Gx(x
(k) − x(k+1))

〉

≥ µ‖x(k+1) − x∗‖22 −
1

γρ
〈y(k) − y(k+1), y(k+1) − y∗〉

+
1− γ

γ2ρ
‖y(k) − y(k+1)‖22 + ρ

〈

x(k+1) − x∗, AT
DA△(x(k) − x(k+1))

〉

. (31)

Then, by rearranging (31) we have

(u(k+1) − u∗)G(u(k) − u(k+1)) ≥ µ‖x(k+1) − x∗‖22 +
1− γ

γ2ρ
‖y(k) − y(k+1)‖22

+ ρ
〈

x(k+1) − x∗, AT
DA△(x(k) − x(k+1))

〉

, (32)

where G is defined in (19). Combining the relation

‖u(k) − u∗‖2G − ‖u
(k+1) − u∗‖2G = 2(u(k+1) − u∗)G(u(k) − u(k+1)) + ‖u(k) − u(k+1)‖2G

with (32) gives

‖u(k) − u∗‖2G − ‖u
(k+1) − u∗‖2G ≥ 2µ‖x(k+1) − x∗‖22 + 2

1− γ

γ2ρ
‖y(k) − y(k+1)‖22 + ‖u

(k) − u(k+1)‖2G

+ 2ρ
〈

x(k+1) − x∗, AT
DA△(x(k) − x(k+1))

〉

= 2µ‖x(k+1) − x∗‖22 +
2− γ

γ2ρ
‖y(k) − y(k+1)‖22 + ‖x

(k) − x(k+1)‖2Gx

+ 2ρ
〈

x(k+1) − x∗, AT
DA△(x(k) − x(k+1))

〉

. (33)

Notice that, because µ > 0, the following holds:

2ρ
〈

x(k+1) − x∗, AT
DA△(x(k) − x(k+1))

〉

≥ −2µ‖x(k+1) − x∗‖22 −
ρ2

2µ
‖AT

DA△(x(k) − x(k+1))‖22. (34)

Now, combining (33) and (34) gives

‖u(k) − u∗‖2G − ‖u(k+1) − u∗‖2G

≥
2− γ

γ2ρ
‖y(k) − y(k+1)‖22 + ‖x

(k) − x(k+1)‖2Gx
−

ρ2

2µ
‖AT

DA△‖
2
2‖x

(k) − x(k+1)‖22

=
2− γ

γ2ρ
‖y(k) − y(k+1)‖22 +

n
∑

i=1

‖x
(k)
i − x

(k+1)
i ‖2

Pi−
ρ2

2µ ‖AT
D
A△‖2

2I
(35)

and note that Assumption 4 guarantees that

Ti := Pi −
ρ2

2µ
‖AT

DA△‖
2
2I ≻ 0.

10

If we then let ηi := λmin(Ti)/‖Pi‖2 > 0, we have from the definition of Ti and standard norm inequalities

‖x
(k)
i − x

(k+1)
i ‖2

Pi−
ρ2

2µ ‖AT
D
A△‖2

2I
= ‖x

(k)
i − x

(k+1)
i ‖2Ti

≥ λmin(Ti)‖x
(k)
i − x

(k+1)
i ‖22

= ηi‖Pi‖2‖x
(k)
i − x

(k+1)
i ‖22

≥ ηi(x
(k)
i − x

(k+1)
i)TPi(x

(k)
i − x

(k+1)
i) = ηi‖x

(k)
i − x

(k+1)
i ‖2Pi

.

Combining this with (35) gives

‖u(k) − u∗‖2G − ‖u
(k+1) − u∗‖2G ≥

2− γ

γ2ρ
‖y(k) − y(k+1)‖22 +

n
∑

i=1

ηi‖x
(k)
i − x

(k+1)
i ‖2Pi

.

From the previous inequality and the definition

η := min

{

2− γ

γ
, min
1≤i≤n

ηi

}

> 0,

we have

‖u(k) − u∗‖2G − ‖u
(k+1) − u∗‖2G ≥ η

(

1

γρ
‖y(k) − y(k+1)‖22 +

n
∑

i=1

‖x
(k)
i − x

(k+1)
i ‖2Pi

)

= η‖u(k) − u(k+1)‖2G,

which is the desired result.

We we may now state our main convergence result for Algorithm 5.

Theorem 8. If the conditions of Theorem 7 hold, then the sequence {u(k)}k≥0 generated by Algorithm 5
converges to some vector uL that is a solution to problem (1).

Proof. Let u∗ be any solution in U∗. It then follows from Theorem 7 that

‖u(k) − u∗‖G ≤ ‖u
(0) − u∗‖G for all k ≥ 1, (36)

so that {u(k)}k≥0 is a bounded sequence. Moreover, for any integer p ≥ 1, it follows from (7) that

p
∑

k=1

η‖u(k)−u(k+1)‖2G ≤

p
∑

k=1

(

‖u(k) − u∗‖2G − ‖u
(k+1) − u∗‖G

)

= ‖u(0)−u∗‖2G−‖u
(p+1)−u∗‖2G ≤ ‖u

(0)−u∗‖2G.

Taking limits of both sides of the previous inequality as p → ∞ shows that the sum is finite, and since all
the summands are nonnegative that

lim
k→∞

‖u(k) − u(k+1)‖G = 0. (37)

Next, using the boundedness of {u(k)}k≥0, we may conclude the existence of a subsequence K ⊆ {1, 2, . . .}
and a vector uL ∈ RN+m such that

lim
k∈K

u(k) = uL. (38)

It follows from (38), (37), and Lemma 6 that uL is a solution to problem (1). Finally, since (24) held for any
u∗ ∈ U∗ and we have proved that uL ∈ U∗, it follows that limk→∞ u(k) = uL, as desired.

11

3 A Hybrid ADMM (H-ADMM)

One of the disadvantages of a Gauss-Seidel type updating scheme within ADMM is that it is inherently serial.
With problem dimension growing ever larger in this era of big data, and the ubiquity of parallel processing
power, a Jacobi type updating scheme may be preferable in many real-world instances of problem (1). The
purpose of this section is to show that if F-ADMM is applied to “grouped data”, and a special choice of
regularization matrix is employed for each group, then Algorithm 5 becomes a hybrid Gauss-Seidel/Jacobi
ADMM-type method. Therefore, Algorithm 5 is partially parallelizable.

3.1 Notation and Assumptions

Suppose that the function f(x) is separable into n blocks, as in (1a). Then, we can (implicitly) partition the
variables xi and functions fi(xi) together into ℓ < n groups. For simplicity of exposition, we will assume
that n is divisible by some p, so that ℓp = n, which means that we form ℓ groups of p blocks. Then, problem
(1) is equivalent to the following partitioned problem:

minimize
x∈RN

f(x) ≡
ℓ
∑

j=1

fj(xj) (39a)

subject to

ℓ
∑

j=1

Ajxj = b (39b)

with

x1 :=

x1

...
xp

, x2 :=

xp+1

...
x2p

, . . . xℓ :=

x(ℓ−1)p+1

...
xn

, (40)

f1(x1) :=

p
∑

i=1

fi(xi), f2(x2) :=

2p
∑

i=p+1

fi(xi), . . . fℓ(xℓ) :=

n
∑

i=(ℓ−1)p+1

fi(xi),

and

A1 :=
[

A1 . . . Ap

]

, A2 :=
[

Ap+1 . . . A2p

]

, . . . Aℓ :=
[

A(n−1)p+1 . . . An

]

.

Notice that A = [A1,A2, . . .Aℓ] ≡ [A1, A2, . . . , An], and x = [xT
1 , . . . ,x

T
ℓ]

T ≡ [xT
1 , . . . , x

T
n]

T . Furthermore, it
will be useful to define the index sets

S1 = {1, . . . , p}, S2 = {p+ 1, . . . , 2p}, . . . Sℓ = {(ℓ− 1)p+ 1, . . . , n} (41)

associated with the partition described above, and to use the notation Si,j to denote the jth element of Si.
We now think of applying Algorithm 5 to the ℓ groups of data. That is, in Step 3 of Algorithm 5 we have

ℓ minimization problems, one for each of the grouped data points xj (rather than n minimization problems,
one for each of the individual data blocks xi). For the grouped data, we require regularization matrices
P1, . . . ,Pℓ, for each of the ℓ groups; these matrices will be crucial in our upcoming derivation.

To motivate the idea of “grouped data”, and to make the ideas that will be discussed in this rest of this
section more concrete, we give a specific example that shows how our hybrid algorithm will work.

Example 9. Suppose there are n = 12 blocks and we have access to a parallel computer with p = 4 processors.
We make a formal partition of the data into ℓ = 3 groups. That is, we set f1(x1) =

∑4
i=1 fi(xi), f2(x2) =

∑8
i=5 fi(xi) and f3(x3) =

∑12
i=9 fi(xi), x1 = [xT

1 , . . . , x
T
4]

T , x2 = [xT
5 , . . . , x

T
8]

T , and x3 = [xT
9 , . . . , x

T
12]

T ,

12

partition the matrix A accordingly, and initialize index sets S1 = {1, . . . , 4}, S2 = {5, . . . , 8} and S3 =
{9, . . . , 12}. Then, a single iteration of H-ADMM (see Steps 3–7 of Algorithm 6) will run in the following

way. The Lagrange multiplier estimate y(k) and (group) variables x
(k)
2 and x

(k)
3 are fixed. Group variable

x1 is updated by solving a subproblem of the form (52) for each of x1, . . . , x4 in parallel. This gives the new

point x
(k+1)
1 . Then, x

(k+1)
1 and x

(k)
3 are fixed, and four subproblems of the form (52) are solved for each of

x5, . . . , x8 in parallel, giving x
(k+1)
2 . Next, x

(k+1)
1 and x

(k+1)
2 are fixed, and four subproblems of the form

(52) are solved for each of x9, . . . , x12 in parallel, giving x
(k+1)
3 . Finally, y(k+1) is updated in (53).

Example 9 shows that Algorithm 6 is running a Gauss-Seidel process on the group variables, but run-
ning a Jacobi process to update the individual blocks within each group. This example shows an efficient
implementation in the sense that, by ensuring that the group size p matches the number of processors, all
processors are always engaged, and that updated information is utilized when it is available.

In the rest of this section we explain how H-ADMM (Algorithm 6) is obtained from F-ADMM.

3.2 Separability Via Regularization

We show that, if the regularization matrices {Pi}ℓi=1 are chosen appropriately, F-ADMM can be partially
parallelized, and forms the hybrid algorithm H-ADMM. In particular, for the ith subproblem in F-ADMM
(applied to the grouped data in (39)), the p blocks within the ith group can be solved for in parallel.

In what follows, we use the relationships

‖
n
∑

j=1

Ajxj‖
2
2 =

n
∑

j=1

〈Ajxj , Ajxj〉+
n
∑

j=1

n
∑

l=1

l 6=j

〈Ajxj , Alxl〉 and (42)

∑

j∈Si

∑

l∈Si
l 6=j

〈Alxl, Ajxj〉 =

p
∑

j=1

p
∑

l=1

l 6=j

〈ASi,j
xSi,j

, ASi,l
xSi,l
〉, (43)

which can easily be verified. Using the definition of Ai and a similar reasoning as for (42), it follows that

‖Aixi‖
2
2 = ‖

∑

j∈Si

Ajxj‖
2
2 =

∑

j∈Si

‖Ajxj‖
2
2 +

∑

j∈Si

∑

l∈Si
l 6=j

〈Ajxj , Alxl〉. (44)

We now define bi := b −
∑i−1

q=1Aqx
(k+1)
q −

∑ℓ
s=i+1Asx

(k)
s , and notice that bi is fixed when minimizing the

augmented Lagrangian with respect to group xi. Recalling Algorithm 5 and (18), and using (44), the update
for the ith subproblem for our grouped data problem without the regularization term is equivalent to

x
(k+1)
i = argmin

xi

Lρ(x
(k+1)
1 , . . . ,x

(k+1)
i−1 ,xi,x

(k)
i+1, . . . ,x

(k)
ℓ ; y(k))

= argmin
xi

{

fi(xi)− 〈y
(k),Aixi − bi〉+

ρ

2
‖Aixi − bi‖

2
2

}

= argmin
xi

{

fi(xi)− 〈y
(k),Aixi − bi〉+

ρ

2
‖bi‖

2
2 +

ρ

2
‖Aixi‖

2
2 − ρ〈Aixi,bi〉

}

= argmin
xi

{

fi(xi)− 〈y
(k),Aixi − bi〉 − ρ〈Aixi,bi〉+

ρ

2

∑

j∈Si

‖Ajxj‖
2
2 +

ρ

2

∑

j∈Si

∑

l∈Si
l 6=j

〈Alxl, Ajxj〉
}

. (45)

Notice that it is the final term in (45) that makes the minimization of the augmented Lagrangian (with
respect to the group xi) non-separable; it contains a cross product term, which shows interaction between
different blocks of variables within the ith group indexed by Si.

13

3.2.1 Defining the group regularization matrices

We eliminate the non-separability in (45) by carefully choosing the regularization matrices {Pi}ℓi=1. From a
practical perspective, if the problem is made separable, then the individual blocks within the ith group can
be updated in parallel. To this end, we choose the matrix that defines our regularizer to be

Pi :=

PSi,1 −ρAT
Si,1

ASi,2 . . . −ρAT
Si,1

ASi,p

−ρAT
Si,2

ASi,1 PSi,2

...
...

. . .
... PSi,p−1 −ρAT

Si,p−1
ASi,p

−ρAT
Si,p

ASi,1 . . . −ρAT
Si,p

ASi,p−1 PSi,p

. (46)

We remind the reader that the matrices {PSi,j
}pj=1 used to define Pi are user defined symmetric matrices that

must be chosen to be sufficiently positive definite, to ensure that convergence of F-ADMM on the grouped
data is guaranteed. Before we formalize our assumption, we require the definitions

A△ :=

A2 . . . Aℓ

. . .
...
Aℓ

and AD :=

A1

. . .

Aℓ

, (47)

where {A△,AD} ⊂ Rmℓ×N . We then have the strictly (block) upper triangular matrix

AT
DA△ =

AT
1 A2 . . . AT

1 Aℓ

. . .
...

AT
ℓ−1Aℓ

∈ RN×N . (48)

Notice that the definitions ofAD, A△ andAT
DA△ in (47) and (48), are analogues toAD, A△ andAT

DA△defined
in (15) and (16). We are now ready to state our assumption on {Pi}ℓi=1, which is actually Assumption 4
applied to the grouped data problem (39).

Assumption 10. The matrices Pi are symmetric and satisfy Pi ≻
ρ2

2µ‖A
T
DA△‖22I for all i = 1, . . . , ℓ.

Importantly, if F-ADMM is applied to the grouped data problem (39) and Assumption 10 holds, then
convergence is automatic, i.e., convergence of F-ADMM equipped with Assumption 10 applied to problem
(39) follows directly from the convergence results presented in Section 2.

3.2.2 Incorporating the regularization term

Now that the regularization matrices {Pi}
ℓ
i=1 are defined, we return to the non-separability encountered in

(45). Recall that the subproblem in Step 3 of F-ADMM (Algorithm 5) is equivalent to (18), which in turn

14

is equivalent to (45) + 1
2‖xi − x

(k)
i ‖

2
Pi
. We concentrate on the regularization term, and notice that

1

2
xT
i Pixi

(40)+(41)
=

1

2

[

xT
Si,1

. . . xT
Si,p

]

PSi,1xSi,1 − ρAT
Si,1

(

∑p
j=1

j 6=1

ASi,j
xSi,j

)

...

PSi,p
xSi,p

− ρAT
Si,p

(

∑p
j=1

j 6=p

ASi,j
xSi,j

)

=
1

2

p
∑

j=1

‖xSi,j
‖2PSi,j

−
ρ

2

p
∑

j=1

p
∑

l=1

l 6=j

〈ASi,j
xSi,j

, ASi,l
xSi,l
〉

(43)
=

1

2

∑

j∈Si

‖xj‖
2
Pj
−

ρ

2

∑

j∈Si

∑

l∈Si
l 6=j

〈Alxl, Ajxj〉. (49)

Following a similar argument, we can write

xT
i Pix

(k)
i =

p
∑

j=1

xT
Si,j

PSi,j
x
(k)
Si,j
− ρ

p
∑

j=1

p
∑

l=1

l 6=j

〈ASi,j
xSi,j

, ASi,l
x
(k)
Si,l
〉

=
∑

j∈Si

xT
j Pjx

(k)
j − ρ

∑

j∈Si

∑

l∈Si
l 6=j

〈Alx
(k)
l , Ajxj〉. (50)

We may now use (49) and (50) to write

1

2
‖xi − x

(k)
i ‖

2
Pi

=
1

2

∑

j∈Si

‖xj‖
2
Pj
−
∑

j∈Si

xT
j Pjx

(k)
j +

1

2

∑

j∈Si

‖x
(k)
j ‖

2
Pj

+ ρ
∑

j∈Si

∑

l∈Si
l 6=j

〈Alx
(k)
l , Ajxj〉 −

ρ

2

∑

j∈Si

∑

l∈Si
l 6=j

〈Alxl, Ajxj〉 −
ρ

2

∑

j∈Si

∑

l∈Si
l 6=j

〈Alx
(k)
l , Ajx

(k)
j 〉.

This may be equivalently written as

1

2
‖xi − x

(k)
i ‖

2
Pi

=
1

2

∑

j∈Si

‖xj − x
(k)
j ‖

2
Pj

+ ρ
∑

j∈Si

∑

l∈Si
l 6=j

〈Alx
(k)
l , Ajxj〉 −

ρ

2

∑

j∈Si

∑

l∈Si
l 6=j

〈Alxl, Ajxj〉 −
ρ

2

∑

j∈Si

∑

l∈Si
l 6=j

〈Alx
(k)
l , Ajx

(k)
j 〉.

By adding this regularization term, i.e., 1
2‖xi−x

(k)
i ‖

2
Pi
, to the objective function in (45), we obtain (ignoring

terms independent of xi) the F-ADMM update

x
(k+1)
i = argmin

xi

{

fi(xi)− 〈y
(k),Aixi − bi〉 − ρ〈Aixi,bi〉

+
ρ

2

∑

j∈Si

‖Ajxj‖
2
2 + ρ

∑

j∈Si

∑

l∈Si

l 6=j

〈Alx
(k)
l , Ajxj〉+

1

2

∑

j∈Si

‖xj − x
(k)
j ‖

2
Pj

}

,

which is equivalent (again ignoring constant terms) to

x
(k+1)
i = argmin

xi

∑

j∈Si

{

fj(xj)− 〈y
(k), Ajxj〉 − ρ〈Ajxj ,bi〉+

ρ

2
‖Ajxj‖

2
2 + ρ

∑

l∈Si
l 6=j

〈Alx
(k)
l , Ajxj〉+

1

2
‖xj − x

(k)
j ‖

2
Pj

}

= argmin
xi

∑

j∈Si

{

fj(xj) +
ρ

2
‖Ajxj +

∑

l∈Si
l 6=j

Alx
(k)
l − bi −

y(k)

ρ
‖22 +

1

2
‖xj − x

(k)
j ‖

2
Pj

}

. (51)

15

The regularization matrix Pi, defined in (46), has caused the cross-product term to be eliminated from (45)
(recall that (45) was the update without using the regularization term), and subsequently the subproblem

for updating x
(k+1)
i is separable into p blocks (one solve for each j ∈ Si). That is, the decision variables

xj for j ∈ Si can be solved for in parallel. This updating strategy forms our hybrid algorithm H-ADMM,
which is able to use a combination of both Jacobi and Gauss-Seidel updates. We emphasize that H-ADMM
is a special case of Algorithm 5, where the blocks of variables have been (implicitly) grouped together as in
(39), and the regularization matrices have the form (46).

3.2.3 The H-ADMM Algorithm

The following is a formal statement of our H-ADMM algorithm. Recall that H-ADMM is a special case of
F-ADMM, and convergence of H-ADMM follows directly from the convergence theory for F-ADMM.

Algorithm 6 H-ADMM for solving problem (1).

1: Initialize: x(0) ∈ RN , y(0) ∈ Rm, iteration counter k = 0, parameters ρ > 0 and γ ∈ (0, 2), data
partition index sets {Si}ℓi=1, and regularization matrices {Pi}ni=1 satisfying Assumption 10.

2: while stopping condition has not been met do
3: for i = 1, . . . , ℓ in a Gauss-Seidel fashion solve do

4: Set bi ← b−
∑i−1

q=1Aqx
(k+1)
q −

∑ℓ
s=i+1Asx

(k)
s .

5: for j ∈ Si (in parallel) do

x
(k+1)
j ← argmin

xj

∑

j∈Si

{

fj(xj) +
ρ

2
‖Ajxj +

∑

l∈Si
l 6=j

Alx
(k)
l − bi −

y(k)

ρ
‖22 +

1

2
‖xj − x

(k)
j ‖

2
Pj

}

(52)

6: end for
7: end for
8: Update the dual variables:

y(k+1) ← y(k) − γρ(Ax(k+1) − b). (53)

9: Set k ← k + 1.
10: end while

The groups of data are updated in a Gauss-Seidel scheme (see the for loop in Step 3), while the individual
blocks within each group are updated in a Jacobi (parallel) scheme (see the inner for loop in Step 5).

We have presented H-ADMM as a (serial) Gauss-Seidel algorithm that has an inner loop which can be
executed in parallel, i.e., H-ADMM is partially parallel. However, we can also view H-ADMM as a fully
parallel method that occasionally inserts updated information during the update from x(k) to x(k+1). This
shows that H-ADMM is extremely flexible.

Remark 11. Notice that the regularization matrix (46) is not explicitly formed in H-ADMM (Algorithm 6).
Specifically, H-ADMM only uses the matrices PSi,1 , . . . , PSi,p

, which lie on the main (block) diagonal of Pi.
Therefore, as for F-ADMM, only one Ni ×Ni regularization matrix Pi is required by H-ADMM for each of
the i = 1, . . . , n (individual) blocks.

Remark 12. The update (52) in H-ADMM has the same form as the update (8a) in J-ADMM (Algorithm 4)
for all j ∈ Si. Therefore, a single iteration of H-ADMM has essentially the same cost as that of J-ADMM.
However, H-ADMM has the advantage of using the most recent updates when updating the groups of data.

3.3 Computational Considerations

Parallel algorithms are imperative on modern computer architectures, which is why, at face value, Jacobi-type
methods seem to have significant advantages over Gauss-Seidel-type competitors. The H-ADMM (Algorithm

16

6) bridges the gap between purely Jacobi or purely Gauss-Seidel updates, finding a balance between ensuring
algorithm speed via parallelization and allowing up-to-date information to be fed back into the algorithm. In
this section we describe how to choose the number of groups ℓ and group size p to “optimize” H-ADMM from
a computational perspective. Moreover, we show that H-ADMM is competitive compared with J-ADMM.

Consider a big data application where the number of blocks n is very large. Moreover, suppose we have
access to a parallel machine with p processors, where p < n (or even p ≪ n). Again we will assume that
n = ℓp, and the n blocks are organized into ℓ groups of p blocks. We stress that the number of blocks in each
group is the same as the number of processors.

To implement H-ADMM we first initialize b1. Then, take the first group of p blocks and send one block
to each of the p processors. These p blocks are updated in parallel as in (52) (Step 5 of Algorithm 6).

Once these p blocks have been updated, we have the updated group variable x
(k+1)
1 consisting of individual

blocks x
(k+1)
1 , . . . , x

(k+1)
p . We then form b2 as in Step 4 of Algorithm 6. Notice that b2 incorporates the new

information from the updated block x
(k+1)
1 via the term A1x

(k+1)
1 , i.e., we feed the updated information back

into the algorithm. Now, the next group of p blocks are sent to the p processors to be updated, giving x
(k+1)
2

consisting of individual blocks x
(k+1)
p+1 , . . . , x

(k+1)
2p . This new information is then fed back into H-ADMM via

the vector b3. The process is repeated until a full sweep of the data has been completed, i.e., all n blocks
have been updated.

In this way, our H-ADMM algorithm has (essentially) the same computational cost as J-ADMM, because
the data blocks have been grouped in an intelligent way that takes advantage of the processors available. (For
J-ADMM, the data blocks also need to be sent to processors in groups of p, it is just that, for J-ADMM, there
is no need to update the vector bi between the ℓ sweeps of the processors.) We note that for J-ADMM, the
matrix-vector multiplication Ax(k+1) is computed once all n blocks of x have been updated (i.e., once x(k+1)

is available), whereas for H-ADMM, the computation of Ax(k+1) has been split and performed in stages

with the vectors Aix
(k+1)
i (for i = 1, . . . , ℓ) computed after each group of data has been updated and the

sum taken just before the dual variables are updated. Again, this shows that H-ADMM and J-ADMM have
approximately the same computational cost, but H-ADMM has the advantage of new information becoming
available to the algorithm, which has the potential for H-ADMM to be more efficient.

Remark 13. Notice that if n ≤ p, then H-ADMM is essentially equivalent to J-ADMM (applied to strongly
convex functions) if we take ℓ = 1 and replace Step 4 with b1 ≡ b.

3.3.1 An efficient implementation of Steps 4–6 in Algorithm 6

Algorithm 6 was written to match our presentation in the text. However, in practice, it is computationally
advantageous to perform Steps 4–6 in a different, but equivalent way. To that end, consider the middle term
in the minimization subproblem (52), and using the definition of bi (Step 4 in Algorithm 6) we have

Ajxj +
∑

l∈Si

l 6=j

Alx
(k)
l − bi −

y(k)

ρ
= Ajxj +

∑

l∈Si

l 6=j

Alx
(k)
l +

i−1
∑

q=1

Aqx
(k+1)
q +

ℓ
∑

s=i+1

Asx
(k)
s − b−

y(k)

ρ

= Ajxj −Ajx
(k)
j +

∑

l∈Si

Alx
(k)
l +

i−1
∑

q=1

Aqx
(k+1)
q +

ℓ
∑

s=i+1

Asx
(k)
s − b−

y(k)

ρ

= Ajxj −Ajx
(k)
j +Aix

(k)
i +

i−1
∑

q=1

Aqx
(k+1)
q +

ℓ
∑

s=i+1

Asx
(k)
s − b−

y(k)

ρ

= Ajxj −Ajx
(k)
j +

i−1
∑

q=1

Aqx
(k+1)
q +

ℓ
∑

s=i

Asx
(k)
s − b−

y(k)

ρ
. (54)

Notice that the last 4 terms in (54) are fixed with respect to j ∈ Si, so we can combine them into a single
vector vi say, and rewrite Steps 4–6 in Algorithm 6 as follows.

17

Algorithm 7 An efficient implementation to replace Steps 4–6 in H-ADMM.

1: Set vi ←
∑i−1

q=1Aqx
(k+1)
q +

∑ℓ
s=iAsx

(k)
s − b− y(k)

ρ .

2: for j ∈ Si (in parallel) do

x
(k+1)
j ← argmin

xj

∑

j∈Si

{

fj(xj) +
ρ

2
‖Aj(xj − x

(k)
j) + vi‖

2
2 +

1

2
‖xj − x

(k)
j ‖

2
Pj

}

. (55)

3: end for

3.3.2 Practical considerations regarding Assumption 10

As discussed in Section 3.2.1, choosing the regularization matrices to have the form (46) for i = 1, . . . , ℓ in
a manner that satisfies Assumption 10, ensures that H-ADMM is globally convergent. However, we have
remarked that an implementation of H-ADMM only needs the individual (diagonal) block matrices {Pj}nj=1.
The purpose of this section is to translate Assumption 10, which is an assumption on the group regularization
matrices {Pi}ℓi=1, into a practical condition on the matrices {Pj}nj=1.

To this end, recall the definition of Pi in (46). If we define

PD
i :=

PSi,1 + ρAT
Si,1

ASi,1

. . .

PSi,p
+ ρAT

Si,p
ASi,p

, (56)

then Assumption 10 can be written equivalently as Pi ≡ PD
i − ρAT

i Ai ≻
ρ2

2µ‖A
T
DA△‖22I, which holds if and

only if PD
i ≻ ρAT

i Ai +
ρ2

2µ‖A
T
DA△‖22I. Using ρ‖Ai‖22I � ρAT

i Ai, a sufficient condition for Assumption 10 to
hold is that

PD
i ≻ ρ‖Ai‖

2
2I +

ρ2

2µ
‖AT

DA△‖
2
2I. (57)

It then follows from the definition of PD
i that (57) will hold (equivalently, Assumption 10 will be satisfied)

if the matrices {Pj}j∈Si
are chosen to satisfy

Pj + ρAT
j Aj ≻ ρ‖Ai‖

2
2I +

ρ2

2µ
‖AT

DA△‖
2
2I ∀ j ∈ Si. (58)

That is, if (58) is satisfied for all 1 ≤ i ≤ ℓ, then H-ADMM is globally convergent.

3.4 A Special Case for Convex Functions

In this section, we describe how our hybrid algorithm is appropriate for convex functions (i.e., we do not
need strong convexity) in the case of 2 groups. In particular, it is based on Algorithm 3, which was first
introduced in [8] and shown to be globally convergent if the regularization matrices P1 and P2 in (7) are
chosen appropriately. In particular, the convergence theory introduced in [8] holds when P1 ≻ 0 and P2 ≻ 0.

During the remainder of this section, we demonstrate that by choosing the regularization matrix appro-
priately, Algorithm 3 can be extended to handle the n block case while maintaining all existing convergence
theory. This is done by following the hybridization scheme introduced previously in this section.

So, suppose that we have an optimization problem of the form (1), and that we partition the n blocks
into 2 groups, i.e., we have ℓ = 2 groups and, for simplicity, assume that p = n/2.1 We can then equivalently

1From a practical perspective it is sensible to let the first group have a cardinality that is a multiple of the number of

processors, and then the second group would contain the remaining blocks.

18

write our problem in the form (39) where

x1 =

x1

...
xn/2

, x2 =

xn/2+1

...
xn

, (59a)

f1(x1) =

n/2
∑

i=1

fi(xi), f2(x2) =
n
∑

i=n/2+1

fi(xi), (59b)

and

A1 =
[

A1 . . . An/2

]

and A2 =
[

An/2+1 . . . An

]

. (59c)

It is clear that we can apply Algorithm 3 to the grouped data (59). If we now choose the regularization
matrices P1 and P2 to have the same form as in (46), we have

P1 =

P1 −ρAT
1 A2 . . . −ρAT

1 An/2

−ρAT
2 A1 P2

...
...

. . .
...

−ρAT
n/2A1 Pn/2

(60)

and

P2 =

Pn/2+1 −ρAT
n/2+1An/2+2 . . . −ρAT

n/2+1An

−ρAT
n/2+2An/2+1 Pn/2+2

...
...

. . .
...

−ρAT
nAn/2+1 Pn

. (61)

Moreover, by letting

PD
1 =

P1 + ρAT
1 A1

. . .

Pn/2 + ρAT
n/2An/2

and PD

2 =

Pn/2+1 + ρAT
n/2+1An/2+1

. . .

Pn + ρAT
nAn

we have that P1 = PD
1 − ρAT

1 A1 and P2 = PD
2 − ρAT

2A2. Thus, a sufficient condition for the matrices P1

and P2 to be positive definite is that

PD
1 ≻ ρ‖A1‖

2
2I and PD

2 ≻ ρ‖A2‖
2
2I. (62)

We can then see that a sufficient condition for (62) to hold is to choose the matrices {Pj}nj=1 to satisfy

Pj ≻ ρ‖A1‖
2
2I for 1 ≤ j ≤ n/2, and Pj ≻ ρ‖A2‖

2
2I for n/2 + 1 ≤ j ≤ n. (63)

In summary, if the matrices {Pj}nj=1 are chosen to satisfy (63), then Algorithm 8 is guaranteed to converge
for convex functions. We also comment that P1 and P2 in (60) and (61) need not be formed explicitly, since
Algorithm 8 only requires the block diagonal regularization matrices {Pj}nj=1 be chosen to satisfy (63).

19

Algorithm 8 H-ADMM(ℓ = 2) for solving problem (1) with a convex objective.

1: Initialization: x(0) ∈ RN , y(0) ∈ Rm, iteration counter k = 0, parameters ρ > 0 and γ ∈ (0, 2), and
regularization matrices {Pj}nj=1.

2: while the stopping condition has not been met do

3: Set v1 =
∑2

i=1Aix
(k)
i − b− y(k)

ρ .

4: for j ∈ {1, . . . , n/2} in parallel do

x
(k+1)
j ← min

xj

{

fj(xj) +
ρ

2
‖Aj(xj − x

(k)
j) + v1‖

2
2 +

1

2
‖xj − x

(k)
j ‖

2
Pj

}

(64a)

5: end for
6: Set v2 = A1x

(k+1)
1 +A2x

(k)
2 − b− y(k)

ρ .

7: for j ∈ {n/2 + 1, . . . , n} in parallel do

x
(k+1)
j ← min

xj

{

fj(xj) +
ρ

2
‖Aj(xj − x

(k)
j) + v2‖

2
2 +

1

2
‖xj − x

(k)
j ‖

2
Pj

}

(64b)

8: end for
9: Update the dual variables:

y(k+1) ← y(k) − γρ(Ax(k+1) − b).

10: Set k ← k + 1.
11: end while

Remark 14. An algorithm similar to Algorithm 8 is presented in [12]. However, Algorithm 8 is more
general because the only restriction on the matrices {Pj}nj=1, are that they are “positive definite enough”,
i.e., they satisfy (63). On the other hand, the algorithm in [12] requires the regularization matrices to take the
specific form ciρA

T
i Ai, where Ai has full rank and ci > n/2 for all i = 1, . . . , n (assuming that the individual

blocks are partitioned evenly into 2 groups). These latter conditions are more restrictive, and also do not
necessarily mean that the subproblems arising within their algorithm are easier to solve. For the example of
l1-minimization subject to equality constraints, the regularization matrices {Pj}nj=1 in Algorithm 8, can be

chosen to have the form Pi = τjI − ρAT
i Ai for some τj, which means that subproblems (64a) and (64b) can

be solved using soft-thresholding. This is not possible for the algorithm presented in [12]. For further details,
see the numerical experiments in Section 4.2.

4 Numerical Experiments

In this section we present numerical experiments to demonstrate the computational performance of F-ADMM
(Algorithm 5) and H-ADMM (Algorithm 6), and compare them with J-ADMM [7]. All numerical experiments
were conducted using Matlab on a PC with an Intel i5-3317U, 1.70GHz processor, and 6Gb RAM.

4.1 l2-Minimization with Linear Constraints

In this numerical experiment, we consider the problem of determining the solution to an underdetermined
system of equations with the smallest 2-norm. Specifically, we aim to solve

minimize
x∈RN

1

2
‖x‖22 subject to Ax = b. (65)

We assume that there are p = 10 processors, and then divide the data into ℓ = 10 groups, each group
containing p = 10 blocks, with each block of size Ni = 100, which results in N = 104 total variables. We also
note that the objective function in (65) is (block) separable and can be written as f(x) =

∑n
i=1 fi(xi), with

20

n = 100 and xi ∈ Ni and fi is strongly convex with convexity parameter µi = 1 for all 1 ≤ i ≤ 100. The
constraint matrix A ∈ Rm×N with m = 3 · 103 is chosen to be sparse, with approximately 20 nonzeros per
row, where the nonzeros are taken from a Gaussian distribution. To ensure that b ∈ range(A), we randomly
generate a vector z ∈ RN with Gaussian entries, and set b := Az so that the constraints in (65) are feasible.

Notice that for problem (65), the subproblem for the jth block of x in H-ADMM can be written as

x
(k+1)
j ← argmin

xj

{1

2
‖xj‖

2
2 +

ρ

2
‖Aj(xj − x

(k)
j) + vi‖

2
2 +

1

2
‖xj − x

(k)
j ‖

2
Pj

}

(66)

for j ∈ Si, where vi is defined in Step 1 of Algorithm 7. (For F-ADMM the subproblems are solved for all

1 ≤ j ≤ n.) Notice that the update x
(k+1)
j can be found by solving the system of equations

(Pj + I + ρAT
j Aj)x

(k+1)
j = (Pj + ρAT

j Aj)x
(k)
j − ρAT

j vi. (67)

This linear system motivates us to choose the regularization matrix Pj to be of the form

Pj = τjI − ρAT
j Aj (68)

for some value τj , because it may then be combined with (66) to give the simple and inexpensive update

x
(k+1)
j =

τj
τj + 1

x
(k)
j −

ρ

τj + 1
AT

j vi. (69)

For computational reasons, the fraction τj/(τj + 1) should be computed before multiplication with x
(k)
j .

For all of the numerical results reported below, we give the number of epochs required by J-ADMM,
F-ADMM, and H-ADMM, and use algorithm parameters ρ = 0.1 and γ = 1. The terminology “epoch”
refers to one sweep of the data, i.e. that all n blocks of x are updated once. All reported results are averages
over one hundred runs. The stopping condition used in all experiments is 1

2‖Ax− b‖22 ≤ 10−10.

4.1.1 Results using the values of τ that satisfy the theory

In this section, we give the results of our numerical experiments when τj that defines Pj in (68) is chosen as
dictated by theory. Specifically, we have

• F-ADMM: τj =
ρ2

2µ‖A
T
DA△‖22 + ρ‖Aj‖22 for all 1 ≤ j ≤ n (see Assumption 4)

• H-ADMM: τj =
ρ2

2µ‖A
T
DA△‖22 + ρ‖Ai‖22 for all j ∈ Si and 1 ≤ i ≤ ℓ (see Assumption 10 and (58))

• J-ADMM: τj = ρ(n− 1)‖Aj‖22 for all 1 ≤ j ≤ n (see [7])

for the three methods. To get a sense of the size of these choices for τj , we plot their magnitudes in Figure 1.
The x-axis represents the block number and the y-axis the value of τj . For example, a blue point at the
value (20, 180) means that τ20 = 180. We can clearly see that the τj values are much smaller for H-ADMM
and F-ADMM, than for J-ADMM. Moreover, the τj values used for F-ADMM and H-ADMM are similar in
magnitude. This is, perhaps, a disadvantage since a large value for τj translates into stronger regularization
in each subproblem (66), which in turn translates into smaller steps and potentially slower convergence. For
our test problem (65), this turns out to be the case, as we now discuss.

21

0 20 40 60 80 100
0

100

200

300

Magnitude of tau for each block

J-ADMM
F-ADMM
H-ADMM

Figure 1: A plot of the magnitude of τi for each block 1 ≤ i ≤ n for problem (65).

In Table 1, we present the number of epochs needed by each method (averaged over 100 runs). They show
that H-ADMM and F-ADMM require significantly fewer epochs than J-ADMM to determine the solution
of problem (65) when the theoretical values of τj are chosen. As discussed in the previous paragraph, we
can see that the larger values for τj needed by J-ADMM lead to poor numerical performance compared with
F-ADMM and H-ADMM. However, we remind the reader that H-ADMM and J-ADMM are essentially the
same cost per epoch (see Remark 12), while F-ADMM is generally more costly due to its sequential nature.

J-ADMM H-ADMM F-ADMM
4358.2 214.1 211.3

Table 1: We present the number of epochs required by J-ADMM, F-ADMM, and H-ADMM for the l2-
minimization problem (65) using theoretical values of τj for j = 1, . . . , n.

4.1.2 Results using values for τ obtained by parameter tuning

In [7], it was mentioned that J-ADMM displays better practical performance for smaller values of τj than
those required by the convergence theory. In this section, we compare the number of epochs required by
H-ADMM, F-ADMM, and J-ADMM when τj is allowed to be obtained through parameter tuning. In this
experiment, for simplicity, we assign the same value τj for all blocks j = 1, . . . , n. (i.e., τ1 = τ2 = · · · = τn.)

Moreover, we picked the starting value to be τj =
ρ2

2 ‖A‖
4 because it approximates the values of τj given by

theory, in the sense that: ‖AT
DA△‖2 ≤ ‖AD‖2‖A△‖2 ≈ ‖A‖2‖A‖2. 2

Table 2 presents the number of epochs required by J-ADMM, F-ADMM, and H-ADMM on problem (65)
as τj varies. For each τj we run each algorithm (J-ADMM, F-ADMM and H-ADMM) on 100 random instances
of the problem formulation described in Section 4.1. It is clear that all algorithms require fewer epochs to
satisfy the stopping tolerance as τj decreases. Moreover, for fixed τj , F-ADMM and H-ADMM require slightly
fewer epochs than J-ADMM. Table 2 also shows that F-ADMM and H-ADMM will converge, in practice, for

smaller values of τj than J-ADMM. In particular, J-ADMM diverged when we set τj = 0.2 · ρ
2

2 ‖A‖
4, whereas

F-ADMM and H-ADMM converged for τj as small as 0.1 · ρ
2

2 ‖A‖
4; both diverged for τj = 0.09 · ρ

2

2 ‖A‖
4.

It is clear that, when the parameter τj is tuned, F-ADMM and H-ADMM outperform J-ADMM, when
performance is measured in terms of the number of epochs.

2There are many other ways that parameter tuning could be implemented, and we have simply implemented one possibility.

22

τj J-ADMM H-ADMM F-ADMM
ρ2

2 ‖A‖
4 530.0 526.3 526.2

0.6 · ρ
2

2 ‖A‖
4 324.0 320.1 319.9

0.4 · ρ
2

2 ‖A‖
4 217.7 214.5 214.1

0.22 · ρ
2

2 ‖A‖
4 123.1 119.3 119.0

0.2 · ρ
2

2 ‖A‖
4 — 95.8 95.5

0.1 · ρ
2

2 ‖A‖
4 — 75.3 73.0

Table 2: We present the number of epochs required by J-ADMM, F-ADMM, and H-ADMM for the ℓ2-
minimization problem (65) for varying values of τj . Here, τj takes the same value for all blocks j = 1, . . . , n.

4.2 l1-Minimization with Linear Constraints

We now consider the problem of l1-minimization subject to equality constraints as given by

minimize
x

‖x‖1 subject to Ax = b, (70)

which arises frequently in the compressed sensing and machine learning literature. The one norm promotes
sparse solutions, while the linear constraints ensure data fidelity. Note that the one norm is separable.

Problem (70) is convex and not strongly convex, which means that H-ADMM(ℓ = 2) (Algorithm 8)
is guaranteed to converge, while convergence for F-ADMM and H-ADMM has not yet been established.
Nonetheless, we include them in the numerical experiments to study their practical performance.

For ease of comparison, we follow the experiment setup given in [7]. In particular, suppose that the data
is partitioned into n = 100 blocks of size Ni = 10 for all 1 ≤ i ≤ n, so that N =

∑n
i=1 Ni = 1000. We

suppose that A = [A1, . . . , An] is randomly generated with Gaussian entries, and that Ai ∈ Rm×Ni for each
1 ≤ i ≤ n and m = 300, which means that A ∈ Rm×N . The sparse signal x∗ has k = 60 randomly located
nonzero entries, the nonzero entries are Gaussian, and the vector b is defined by b := Ax∗.

For every algorithm we set γ = 1 and ρ = 10/‖b‖1. For H-ADMM we let n = pℓ with p = 4 and
ℓ = 25, and for H-ADMM(ℓ = 2) we set ℓ = 2 with both groups containing p = 50 blocks. All algorithms
were terminated when ‖x − x∗‖2/‖x

∗‖2 ≤ 10−10. We report on the number of epochs (as in the previous
section) and the final constraint residual 1

2‖r‖
2
2, where r = Ax− b for J-ADMM, F-ADMM, H-ADMM, and

H-ADMM(ℓ = 2). All reported results are averages over 100 runs.
For problem (70), the subproblem for the jth block of x in H-ADMM can be written as

x
(k+1)
j ← argmin

xj

{

‖xj‖1 +
ρ

2
‖Aj(xj − x

(k)
j) + vi‖

2
2 +

1

2
‖xj − x

(k)
j ‖

2
Pj

}

, (71)

for j ∈ Si, where vi is defined in Step 1 of Algorithm 7. (For F-ADMM the subproblems are solved for all
1 ≤ j ≤ n.) Next, using a similar choice for Pj as given by (68), the latter two terms in (71) become

ρ

2
‖Aj(xj − x

(k)
j) + vi‖

2
2 +

1

2
‖xj − x

(k)
j ‖

2
Pj

=
ρ

2
(xj − x

(k)
j)TAT

j Aj(xj − x
(k)
j) + ρ(xj − x

(k)
j)TAT

j vi +
1

2
(xj − x

(k)
j)TPj(xj − x

(k)
j) +

ρ

2
‖vi‖

2
2

=
1

2
(xj − x

(k)
j)T (Pj + ρAT

j Aj)(xj − x
(k)
j) + ρ(xj − x

(k)
j)TAT

j vi +
ρ

2
‖vi‖

2
2

=
τj
2
(xj − x

(k)
j)T (xj − x

(k)
j) + ρ(xj − x

(k)
j)TAT

j vi +
ρ

2
‖vi‖

2
2

= τj

[1

2
‖xj − dj‖

2
2 −

1

2
‖x

(k)
j − dj‖

2
2 +

ρ

2τj
‖vj‖

2
2

]

,

23

where we have defined dj := x
(k)
j − ρ

τj
AT

j vi to derive the last equality. Using the previous equality, the

solution to subproblem (71) is the same as that given by

x
(k+1)
j ← argmin

xj

{ 1

τj
‖xj‖1 +

1

2
‖xj − dj‖

2
2

}

, (72)

which is separable, so that soft thresholding can be used to solve for x
(k+1)
j .

4.2.1 Results using the values of τ that satisfy the theory

Here we present the results of the above stated experiment setup when the values of τj required by the theory
are used. We recall that the convergence theory for F-ADMM and H-ADMM has not been established in
the convex case, so here we simply use the values of τj that are needed in the strongly convex case. We
also recall that convergence of H-ADMM(ℓ = 2) is guaranteed in the convex case (see Section 3.4). Thus,
in addition to the τj values for F-ADMM, H-ADMM, and J-ADMM given in Section 4.1.1, we also use

• H-ADMM(ℓ = 2): τj = ρ‖Ai‖22 for all j ∈ Si and 1 ≤ i ≤ 2 (see (62)).

Figure 2 shows typical τj values for each algorithm for the l1-minimization experiment. (For the meaning
of each plotted point, see Section 4.1.1.) As it was for the ℓ2-minimization problem (65), we again see that
the τj values are much smaller for F-ADMM and H-ADMM, when compared to J-ADMM. In addition, the
τj values for H-ADMM(ℓ = 2) are the smallest overall. Consequently, the regularization matrices used in
H-ADMM(ℓ = 2) are significantly less positive definite than all other algorithms, and the regularization
matrices for F-ADMM and H-ADMM are less positive definite than for J-ADMM.

0 20 40 60 80 100
0

50

100

150

200

250
Magnitude of tau for each block

J-ADMM
F-ADMM
H-ADMM
H-ADMM(l=2)

Figure 2: A plot of the magnitude of τi for each block 1 ≤ i ≤ n for problem (70).

In Table 3 we give the number of epochs required by each algorithm, as well as the final constraint
residual 1

2‖r‖
2
2, where r = Ax − b. Table 3 shows that H-ADMM(ℓ = 2) requires far fewer epochs than the

other algorithm, with F-ADMM and H-ADMM requiring about one-sixth the number of epochs compared
with J-ADMM, for the τj values stated above. Although there is no convergence theory for F-ADMM and
H-ADMM, they both converge in practice for this setup, and are very competitive with J-ADMM.

4.2.2 Results using values for τ obtained by parameter tuning

While theory dictates the values of τj needed to guarantee convergence, experimental performance can often
be improved by selecting better parameter values. In this section, we compare the performance of the
algorithms from the previous section using smaller values of τj than those used in Section 4.2.1. We repeat

24

J-ADMM H-ADMM(ℓ = 2) H-ADMM F-ADMM
Epochs 1

2‖r‖
2
2 Epochs 1

2‖r‖
2
2 Epochs 1

2‖r‖
2
2 Epochs 1

2‖r‖
2
2

12610.1 0.27e-16 605.8 0.19e-16 1882.1 0.24e-16 1879.4 0.24e-16

Table 3: We present the number of epochs required and final constraint violation by J-ADMM, F-ADMM,
H-ADMM, and H-ADMM(ℓ = 2) for the l1-minimization problem (70) for varying values of τj .

the experiments described in Section 4.2, but now use the same value τj for all blocks j = 1, . . . , n and for
all algorithms. The results are presented in Table 4.

Table 4 shows that for the l1-minimization problem, the number of epochs needed by each of the algo-
rithms to reach the stopping tolerance decreases as τj decreases. Also, for each fixed τj , J-ADMM requires
the most epochs followed by H-ADMM(ℓ = 2) and H-ADMM, while F-ADMM requires the smallest number
of epochs. This makes intuitive sense because, during every epoch, F-ADMM incorporates new information
after every block has been updated, H-ADMM incorporates new information after every group of p = 4
blocks have been updated, H-ADMM(ℓ = 2) only incorporates new information after half of the blocks have
been updated (p = n/2 = 50), while J-ADMM does not use any updated information within each epoch.

J-ADMM H-ADMM(ℓ = 2) H-ADMM F-ADMM
τj Epochs 1

2‖r‖
2
2 Epochs 1

2‖r‖
2
2 Epochs 1

2‖r‖
2
2 Epochs 1

2‖r‖
2
2

0.2 · ρ
2

2 ‖A‖
4 1078.3 0.23e-16 1066.2 0.23e-16 1051.3 0.21e-16 1053.3 0.21e-16

0.1 · ρ
2

2 ‖A‖
4 600.3 0.19e-16 581.5 0.19e-16 570.0 0.20e-16 567.8 0.22e-16

0.05 · ρ
2

2 ‖A‖
4 344.4 0.19e-16 328.8 0.20e-16 325.9 0.21e-16 326.0 0.21e-16

0.03 · ρ
2

2 ‖A‖
4 — inf — inf 246.3 0.16e-16 244.4 0.15e-16

0.02 · ρ
2

2 ‖A‖
4 — inf — inf 162.2 0.34e-16 150.3 0.29e-16

Table 4: We present the number of epochs required and final constraint violation by J-ADMM, F-ADMM,
H-ADMM, and H-ADMM(ℓ = 2) for the l1-minimization problem (70) for varying values of τj .

Next, we can also see that J-ADMM and H-ADMM(ℓ = 2) perform well until τj = 0.05 ρ2

2 ‖A‖
4
2. However,

for smaller values of τj , J-ADMM and H-ADMM(ℓ = 2) diverged. On the other hand, F-ADMM and H-

ADMM still converge (in practice) for τj = 0.02 ρ2

2 ‖A‖
4
2, but diverged when τ = 00.19 ρ2

2 ‖A‖
4
2. Thus, we can

conclude that if the parameter τj is hand-tuned for each algorithm, then practical performance is greatly
improved for all methods, and that both F-ADMM and H-ADMM perform the best in practice on this
convex optimization problem.

Remark 15. An adaptive parameter tuning scheme is presented in [7, Section 2.3], which ensures that the
convergence theory developed for J-ADMM still holds, i.e., convergence of J-ADMM is guaranteed if their
adaptive parameter tuning scheme is followed. Unfortunately, we were unable to replicate the numerical
results presented in that paper, because there was not enough information regarding the tuning parameters
that they used. However, we implemented the adaptive parameter tuning scheme for J-ADMM using the
following parameters: η = 0.1, αi = 1.1, βi = 0.1, Qi = I, for all i = 1, . . . , n, and on average over 100 runs
on the l1-minimization experiment, J-ADMM required 442.6 epochs. This is more than the ≈ 220 epochs
reported in that paper. In either case, by hand tuning τj, F-ADMM, H-ADMM, and H-ADMM(ℓ = 2) all
outperform J-ADMM.

Remark 16. Following the same ideas as in [7, Section 2.3], it may be possible to develop adaptive parameter
updating schemes for F-ADMM and H-ADMM that still ensure convergence. In this way, it may be possible
to achieve additional computational gains for both of them.

25

5 Conclusion

We presented an algorithm for minimizing block-separable strongly convex objective functions subject to
linear equality constraints. Our method, called F-ADMM, may be viewed as a flexible version of the popular
ADMM algorithm. In particular, F-ADMM is provably convergent for any number of blocks, and contains
popular methods such as ADMM, J-ADMM, and G-ADMM as special cases.

Our work was motived by big data applications. We showed, via numerical experiments, that F-ADMM
is especially effective when the number of blocks is larger than the number of available machines. In this
case, unlike Jacobi methods, our method allows for updated variables to be used when updating the blocks
within subsequent groups, all while maintaining essentially the same cost of a fully Jacobi method. Our
numerical experiments indicate that this approach is more efficient and stable than the fully Jacobi method.

References

[1] D. P. Bertsekas. Extended monotropic programming and duality. Extended monotropic programming
and duality, 139(2):209–225, 2008.

[2] Dimitri Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, 1996.

[3] Daniel Boley. Local linear convergence of the alternating direction method of multipliers on quadratic
or linear programs. SIAM Journal on Optimization, 23(4):2183–2207, November 2013.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Foundations and Trends in Machine Learning,
3(1):1–122, 2010.

[5] Xingju Caia, Deren Han, and Xiaoming Yuan. The direct extension of admm for three-block separable
convex minimization models is convergent when one function is strongly convex. Technical report,
School of Mathematical Sciences, Nanjing Normal University, and Department of Mathematics, Hong
Kong Baptist University, Nanjing 210023, P.R. China and Hong Kong, P.R. China, November 2014.

[6] Caihua Chen, Bingsheng He, Yinyu Ye, and Xiaoming Yuan. The direct extension of admm for multi-
block convex minimization problems is not necessarily convergent. Technical report, Department of
Management Science and Engineering, Stanford University, Huang Engineering Center 308, 475 Via
Ortega, CA 94305-4121, October 2013. To appear in Mathematical Programming.

[7] Wei Deng, Ming-Jun Lai, Zhimin Peng, and Wotao Yin. Parallel multi-block ADMM with o(1/k)
convergence. Technical report, Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA,
March 2014.

[8] Wei Deng and Wotao Yin. On the global and linear convergence of the generalized alternating direction
method of multipliers. Report 12–14, Department of Computational and Applied Mathematics, Rice
University, Houston, TX 77005-1892, 2012.

[9] Jonathan Eckstein. Augmented Lagrangian and alternating direction methods for convex optimization:
A tutorial and some illustrative computational results. Technical Report Report RRR 32-2012, Center
for Operations Research, Rutgers University, 640 Bartholomew Road, Piscataway, New Jersey, December
2012.

[10] Jonathan Eckstein and Dimitri P. Bertsekas. On the Douglas-Rachford splitting method and the prox-
imal point algorithm for maximal monotone operators. Mathematical Programming, 55:293–318, 1992.

[11] Deren Han and Xiaoming Yuan. A note on the alternating direction method of multipliers. Journal of
Optimization Theory and Applications, 155(1):227–238, 2012.

26

[12] Bingsheng He and Xiaoming Yuan. Block-wise alternating direction method of multipliers for multiple-
block convex programming and beyond. Technical report, Department of Mathematics, Nanjing Uni-
versity and Department of Mathematics, Hong Kong Baptist University, August 2014.

[13] Mingyi Hong and Zhi-Quan Luo. On the linear convergence of the alternating direction method of multi-
pliers. Technical report, Department of Electrical and Computer Engineering, University of Minnesota,
200 Union ST SE, Minneapolis, MN, 55455, March 2012.

[14] Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn. Convergence analysis of alternating direction
method of multipliers for a family of nonconvex problems. Technical report, Department of Industrial
and Manufacturing Systems Engineering, Iowa State University; The Chinese University of Hong Kong;
Department of Electrical Engineering, Stanford University, Ames, IA 50011, USA; Shenzhen, China;
350 Serra Mall, Stanford, CA 94305, October 2014.

[15] John M. Mulvey and Andrzej Ruszczyński. A diagonal quadratic approximation method for large scale
linear programs. Operations Research Letters, 12:205–215, 1992.

[16] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[17] R. Tyrrell Rockafellar and Roger J-B. Wets. Variational Analysis. Springer-Verlag, 3 edition, 2009.

[18] Andrzej Ruszczyński. On convergence of an augmented Lagrangian decomposition method for sparse
convex optimization. Mathematics of Operations Research, 20(3):634–656, 1995.

[19] Rachael Tappenden, Peter Richtárik, and Burak Büke. Separable approximations and decomposition
methods for the augmented Lagrangian. Optimization Methods and Software, 2014. Published online:
06 November 2014.

[20] Huahua Wang, Arindam Banerjee, and Zhi-Quan Luo. Parallel direction method of multipliers. Techni-
cal report, Department of Computer Science, University of Minnesota, 200 Union Street SE, Minneapo-
lis, MN 55455, September 2014.

[21] Junfeng Yang and Yin Zhang. Alternating direction algorithms for ℓ1-problems in compressive sensing.
SIAM Journal on Scientific Computing, 33(1):250–278, 2011.

[22] Xiaoming Yuan and Junfeng Yang. Sparse and low-rank matrix decomposition via alternating direction
methods. Technical report, Department of Mathematics, Hong Kong Baptist University, Hong Kong,
China, November 2009.

[23] Victor M Zavala. Stochastic optimal control model for natural gas network operations. Technical report,
Mathematics and Computer Science Division, Argonne National Laboratory, 2013.

27

	1 Introduction
	1.1 Relevant Previous Work
	1.2 Our Main Contributions
	1.3 Paper Outline

	2 A Flexible ADMM (F-ADMM)
	2.1 The Algorithm
	2.2 Convergence

	3 A Hybrid ADMM (H-ADMM)
	3.1 Notation and Assumptions
	3.2 Separability Via Regularization
	3.2.1 Defining the group regularization matrices
	3.2.2 Incorporating the regularization term
	3.2.3 The H-ADMM Algorithm

	3.3 Computational Considerations
	3.3.1 An efficient implementation of Steps 4–6 in Algorithm 6
	3.3.2 Practical considerations regarding Assumption 10

	3.4 A Special Case for Convex Functions

	4 Numerical Experiments
	4.1 l2-Minimization with Linear Constraints
	4.1.1 Results using the values of that satisfy the theory
	4.1.2 Results using values for obtained by parameter tuning

	4.2 l1-Minimization with Linear Constraints
	4.2.1 Results using the values of that satisfy the theory
	4.2.2 Results using values for obtained by parameter tuning

	5 Conclusion

