Skip to main content
Log in

Transformation Methods for the Numerical Integration of Three-Dimensional Singular Functions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The implementations of the eXtended Finite Element Method and the Boundary Element Method need to face the challenge of integrating singular functions. Since standard quadrature techniques usually produce inaccurate results, a number of specific algorithms have been developed to address this problem. We present a general framework for the systematic formulation of the three-dimensional case. The classical cubic transformation is also considered, including an analytical optimization of its parameters for improved practical efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alarcon, E., Doblare, M., Sanz-Serna, J.M.: An efficient nonlinear transformation for the numerical computation of the singular integrals appearing in the 2-D boundary element method. In: Annigeri, B.S., Tseng, K. (eds.) Boundary Element Methods in Engineering, pp. 472–479 (1989)

  2. Botha, M.M.: A family of augmented Duffy transformations for near-singularity cancellation quadrature. IEEE Trans. Antennas Propag. 61(6), 3123–3134 (2013)

    Article  MathSciNet  Google Scholar 

  3. Cano, A., Moreno, C.: A new method for numerical integration of singular functions on the plane. Numer. Algorithms 68, 547–568 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cerrolaza, M., Alarcón, E.: A bicubic transformation for the efficient evaluation of general boundary element integrals. Int. J. Num. Methods Eng. 24, 937–959 (1989)

    Google Scholar 

  5. Chernov, A., Reinarz, A.: Numerical quadrature for high-dimensional singular integrals over parallelotopes. Comput. Math. Appl. 66, 1213–1231 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chernov, A., von Petersdorff, T., Schwab, C.: Quadrature algorithms for high dimensional singular integrands on simplices. Numer. Algorithms 70(4), 847–874 (2015)

  7. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  8. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Cambridge (1984)

    MATH  Google Scholar 

  9. Duffy, M.G.: Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19(6), 1260–1262 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21, 1129–1148 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duruflé, M., Grob, P., Joly, P.: Influence of Gauss and Gauss–Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain. Numer. Methods Partial Differ. Equ. 25(3), 526–551 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elliott, D., Johnston, P.R.: Error analysis for a sinh transformation used in evaluating nearly singular boundary element integrals. J. Comput. Appl. Math. 203, 103–124 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elliott, D., Johnston, P.R.: The iterated sinh transformation. Int. J. Numer. Methods Eng. 75, 43–57 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fish, J., Belytschko, T.: A First Course in Finite Elements. Wiley, Hoboken (2007)

    Book  MATH  Google Scholar 

  15. Frey, A.E., Hall, C.A., Porsching, T.A.: Some results on the global inversion of bilinear and quadratic isoparametric finite element transformations. Math. Comput. 32(143), 725–749 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gu, Y., Chen, W., Zhang, C.: The sinh transformation for evaluating nearly singular boundary element integrals over high-order geometry elements. Eng. Anal. Bound. Elem. 37, 301–308 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gu, Y., Hua, Q., Chen, W., Zhang, C.: Numerical evaluation of nearly hyper-singular integrals in the boundary element analysis. Comput. Struct. 167, 15–23 (2016)

    Article  Google Scholar 

  18. Hayami, K., Brebbia, C. A.: A new coordinate transformation method for singular and nearly singular integrals over general curved boundary elements. In: Brebbia, C.A., Wendland, W.L., Kuhn, G. (eds.) Boundary Elements IX, pp. 375–399. Springer-Verlag (1987)

  19. Hayami, K.: A projection transformation method for nearly singular surface boundary element integrals. Lecture Notes in Engineering, vol. 73. Springer-Verlag (1992)

  20. Hayami, K., Matsumoto, H.: A numerical quadrature for nearly singular boundary element integrals. Eng. Anal. Bound. Elem. 13, 143–154 (1994)

    Article  Google Scholar 

  21. Hayami, K.: Variable transformations for nearly singular integrals in the boundary element method. Publ. Res. Inst. Math. Sci. 41(4), 821–842 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hua, C.: An inverse transformation for quadrilateral isoparametric elements: analysis and application. Finite Elem. Anal. Design 7, 159–166 (1990)

    Article  MATH  Google Scholar 

  23. Johnston, P.R., Elliott, D.: A sinh transformation for evaluating nearly singular boundary element integrals. Int. J. Num. Methods Eng. 62, 564–578 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Johnston, B.M., Johnston, P.R., Elliott, D.: A sinh transformation for evaluating two-dimensional nearly singular boundary element integrals. Int. J. Numer. Methods Eng. 69, 1460–1479 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Knabner, P., Korotov, S., Summ, G.: Conditions for the invertibility of the isoparametric mapping for hexahedral finite elements. Finite Elem. Anal. Design 40, 159–172 (2002)

    Article  MathSciNet  Google Scholar 

  26. Knupp, P.M.: On the invertibility of the isoparametric map. Comput. Methods Appl. Mech. Eng. 78, 313–329 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kubatko, E.J., Yeager, B.A., Maggi, A.L.: New computationally efficient quadrature formulas for triangular prism elements. Comput. Fluids 73, 187–201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, H., Kamiya, N.: Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method. Eng. Anal. Bound. Elem. 26, 329–339 (2002)

    Article  MATH  Google Scholar 

  29. Ma, H., Kamiya, N.: A general algorithm for the numerical evaluation of nearly singular boundary integrals of various orders for two- and three-dimensional elasticity. Comput. Mech. 29, 277–288 (2002)

    Article  MATH  Google Scholar 

  30. Minnebo, H.: Three-dimensional integration strategies of singular functions introduced by the XFEM in the LEFM. Int. J. Numer. Methods Eng. 92, 1117–1138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moës, N., Gravouil, A., Belytschko, T.: Non-planar 3D crack growth by the extended finite element and level sets—part I: mechanical model. Int. J. Numer. Methods Eng. 53, 2549–2568 (2002)

    Article  MATH  Google Scholar 

  32. Mousavi, S.E., Sukumar, N.: Generalized Duffy transformation for integrating vertex singularities. Comput. Mech. 45, 127–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mustard, D., Lyness, J.N., Blatt, J.M.: Numerical quadrature in \(n\) dimensions. Comput. J. 6, 75–85 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nagarajan, A., Mukherjee, S.: A mapping method for numerical evaluation of two-dimensional integrals with \(1/r\) singularity. Comput. Mech. 12, 19–26 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Olver, F.W.J., et al.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  36. Park, K., Pereira, J.P., Duarte, C.A., Paulino, G.H.: Integration of singular enrichment functions in the generalized/extended finite element method for three-dimensional problems. Int. J. Numer. Methods Eng. 78, 1220–1257 (2009)

    Article  MATH  Google Scholar 

  37. Rathod, H.T., Venkatesudu, B., Nagaraja, K.V.: Gauss Legendre quadrature formulas over a tetrahedron. Int. J. Comput. Eng. Sci. Mech. 6(3), 197–205 (2005)

    MATH  Google Scholar 

  38. Sag, T.W., Szekeres, G.: Numerical evaluation of high-dimensional integrals. Math. Comput. 18, 245–253 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  39. Scuderi, L.: On the computation of nearly singular integrals in 3D BEM collocation. Int. J. Numer. Methods Eng. 74, 1733–1770 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sladek, V., Sladek, J., Tanaka, M.: Numerical integration of logarithmic and nearly logarithmic singularity in BEMs. Appl. Math. Model. 25, 901–922 (2001)

    Article  MATH  Google Scholar 

  41. Stroud, A.H., Secrest, D.: Gaussian Quadrature Formulas. Prentice-Hall Inc, New Jersey (1966)

    MATH  Google Scholar 

  42. Sukumar, N., Dolbow, J.E., Moës, N.: Extended finite element method in computational fracture mechanics: a retrospective examination. Int. J. Fract. 196(1), 189–206 (2015)

  43. Telles, J.C.F.: A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals. Int. J. Numer. Methods Eng. 24, 959–973 (1987)

    Article  MATH  Google Scholar 

  44. Telles, J.C.F., Oliveira, R.F.: Third degree polynomial transformation for boundary element integrals. Further improvements. Eng. Anal. Bound. Elem. 13, 135–141 (1994)

    Article  Google Scholar 

  45. Ushakova, O.V.: Conditions of nondegeneracy of three-dimensional cells. A formula of a volume of cells. SIAM J. Sci. Comput. 23(4), 1274–1290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiao, H., Gimbutas, Z.: A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions. Comput. Math. Appl. 59, 663–676 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xie, G., Zhou, F., Zhang, J., Zheng, X., Huang, C.: New variable transformations for evaluating nearly singular integrals in 3D boundary element method. Eng. Anal. Bound. Elem. 37, 1169–1178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ye, W.: A new transformation technique for evaluating nearly singular integrals. Comput. Mech. 42, 457–466 (2008)

    Article  MATH  Google Scholar 

  49. Yuan, K.Y., Huang, Y.S., Yang, H.T., Pian, T.H.H.: The inverse mapping and distortion measures for 8-node hexahedral isoparametric elements. Comput. Mech. 14, 189–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, S.: Numerical integration with Taylor truncations for the quadrilateral and hexahedral finite elements. J. Comput. Appl. Math. 205, 325–342 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, Y., Gong, Y., Gao, X.: Calculation of 2D nearly singular integrals over high-order geometry elements using the sinh transformation. Eng. Anal. Bound. Elem. 60, 144–153 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by Plan Nacional I+D+i (MTM2015-68275-R), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Moreno.

Appendix

Appendix

A proof of the Theorem in Sect. 3.2.5 is now provided.

Lemma 1

Consider the family of cubic polynomials given by

$$\begin{aligned} P_{r}(\tau )=(1-r)\tau ^{3}-r\tau +\varepsilon , \end{aligned}$$
(31)

with \(r\in [0,1)\) and \(\varepsilon >0\). Then, \(P_{r}\) has exactly one negative root that is a strictly decreasing function of the parameter r.

Furthermore, the polynomials \((1-r)\tau ^{3}+r\tau -\varepsilon \) have exactly one positive root that is a strictly decreasing function of r.

Proof

A direct application of Descartes’ rule of signs shows that \(P_{r}(\tau )\) only has a negative root, that will be denoted by \(\tau _{1}(r)\), as shown in Fig. 11.

Assuming \(0\leqslant r_{1}<r_{2}<1\), it can be readily shown that

$$\begin{aligned} P_{r_{1}}(\tau )-P_{r_{2}}(\tau )=(r_{2}-r_{1})(\tau ^{2}+1)\tau , \end{aligned}$$
(32)

i.e., \(P_{r}\) intersect only at \((0,\varepsilon )\) and \(P_{r_{1}}(\tau )<P_{r_{2}}(\tau )\) if \(\tau <0\). Since \(P_{r_{1}}\) vanishes at \(\tau _{1}(r_{1})\), it follows from (32) that \(P_{r_{2}}(\tau _{1}(r_{1}))>0\). Moreover, \(P_{r_{2}}(\tau )\rightarrow -\infty \) as \(\tau \rightarrow -\infty \), and it is a consequence of Bolzano’s theorem that \(P_{r_{2}}\) has its negative root in \((-\infty ,\tau _{1}(r_{1}))\), i.e., \(\tau _{1}(r)\) is strictly decreasing.

The second part of the Lemma is proved in a completely analogous way. \(\square \)

Fig. 11
figure 11

Intersection of \(P_{r}(\tau )\)

Lemma 2

The poles of \(\phi _{N}(q(t))\) reach a maximum distance to the real axis for the optimal value \(r_{0}\) given in (30).

Proof

The composite kernel

$$\begin{aligned} \phi _{N}(q(t))=\left( (rt+(1-r)t^{3})^{2}+\varepsilon ^{2}\right) ^{-\alpha /2}, \end{aligned}$$

has 6 complex poles given by the roots of the equation

$$\begin{aligned} (1-r)t^{3}+rt\pm i\varepsilon =0. \end{aligned}$$
(33)

Since t is a solution of (33) if \(-t\) is a solution, it suffices considering the 3 complex roots of

$$\begin{aligned} (1-r)t^{3}+rt-i\varepsilon =0, \end{aligned}$$
(34)

where \(\varepsilon >0\) is assumed without loss of generality. In order to avoid complex coefficients, let \(t=i\tau \) in (34) to obtain \(P_{r}(\tau )=0\), with \(P_{r}\) defined in (31). Hence, the real part of the roots \(\tau _{j}\) is taken into account from now on. \(\square \)

It is clear that \(P_{r}\) has two or zero positive roots depending on the sign of \(P_{r}(\tau )\) at the local minimum point, \(\tau _{m}(r)=\left( \frac{r}{3(1-r)}\right) ^{1/2}\), with

$$\begin{aligned} P_{r}(\tau _{m}(r))=\varepsilon \left( 1-\sqrt{\frac{4}{27\varepsilon ^{2}}\frac{r^{3}}{1-r}}\right) . \end{aligned}$$
(35)

We denote by \(r_{0}\) the value of \(r\in (0,1)\) for which \(P_{r}(\tau _{m}(r_{0}))=0\), and discuss the distance of the closest root to the imaginary axis when \(P_{r}(\tau _{m}(r))\) changes its sign:

  1. (i)

    \(P_{r}(\tau _{m}(r))\geqslant 0\) \((0\leqslant r\leqslant r_{0})\) In this case \(P_{r}\) has two complex conjugate roots, denoted by \(\tau _{23}(r)\). The two complex roots merge into a double real root in the limit case \(P_{r}(\tau _{m}(r))=0\). One of the well-known Vieta’s formulas states that the sum of the three roots of a cubic polynomial equals its quadratic coefficient (with sign changed). Since in our case this coefficient is zero, the real part of the complex roots is \(\mathfrak {R}(\tau _{23})=-\frac{\tau _{1}}{2}\), i.e., \(\tau _{23}\) is closer than \(\tau _{1}\) to the imaginary axis, and, according to Lemma 1 its real part is a positive and strictly increasing function of r. Its maximum \(\tau _{0}\) is then reached at \(r_{0}\), with

    $$\begin{aligned} \tau _{0}(\varepsilon )=\frac{3\varepsilon }{2r_{0}(\varepsilon )}. \end{aligned}$$
    (36)
  2. (ii)

    \(P_{r}(\tau _{m}(r))<0\) \((r_{0}<r<1)\) In this case \(P_{r}\) has two distinct positive roots, denoted by \(\tau _{2}(r)\) and \(\tau _{3}(r)\), with \(\tau _{2}<\tau _{3}\). Since, according to (32), \(P_{r}(\tau _{0})<0\) and \(P_{r}(0)=\varepsilon \), it follows from Bolzano’s theorem that \(0<\tau _{2}<\tau _{0}\). In other words, the root \(\tau _{2}\) is always closer to the imaginary axis than \(\tau _{0}\).

We conclude that the distance of the closest pole to the real axis reaches a maximum at \(r_{0}\), i.e. when \(P_{r}(\tau _{m}(r))=0\) in (35), which is equivalent to the cubic equation

$$\begin{aligned} \frac{4}{27\varepsilon ^{2}}r^{3}+r-1=0. \end{aligned}$$
(37)

Explicit inversion of (37) by means of the well-known classical formulas (see e.g. [35]) leads to the final expression for \(r_{0}\) provided in (30). \(\square \)

Lemma 3

The poles of \(\phi _{N}(q(t))\) and \(\phi _{N}(\bar{v}(v))\) have imaginary parts bounded below by \(\left( \frac{\varepsilon }{2}\right) ^{1/3}\) and \(\frac{\varepsilon ^{1/3}}{2}\) respectively.

Proof

From (22) we have that \(v=\frac{t(v)-t_{0}}{t_{1}-t_{0}}\) and taking (36) into account it follows that the complex poles of \(\phi _{N}(\bar{v}(v))\) have imaginary parts given by

$$\begin{aligned} \mathfrak {I}(v)=\frac{3\varepsilon }{2r_{0}(\varepsilon )(t_{1}(\varepsilon )-t_{0}(\varepsilon ))}. \end{aligned}$$

We next find upper bounds for both factors in the denominator.

The term in brackets in (30) is bounded above by \(2^{1/3}\), and thus \(r_{0}\leqslant 3\left( \frac{\varepsilon }{2}\right) ^{2/3}\). We notice that (36) implies a lower bound for \(\tau _{0}\), namely \(\tau _{0}\geqslant \left( \frac{\varepsilon }{2}\right) ^{1/3}.\)

On the other hand, according to (21)–(23) we can consider \(t_{j}\) as functions of \(\bar{v}_{p}\) and try to find the maximum of the function \(t_{1}(\bar{v}_{p})-t_{0}(\bar{v}_{p})\), i.e. we impose

$$\begin{aligned} \frac{d}{d\bar{v}_{p}}\left( t_{1}(\bar{v}_{p})-t_{0}(\bar{v}_{p})\right) =\frac{1}{q'(t_{1})}-\frac{1}{q'(t_{0})}=0, \end{aligned}$$

from where the condition \(t_{1}^{2}-t_{0}^{2}=0\) can be derived. Since q(t) is strictly increasing, \(t_{1}>t_{0}\) and we have that \(t_{1}=-t_{0}\). Substituting terms in (23) and summing equations for \(j=1,2\), we obtain \(\bar{v}_{p}=\frac{1}{2}\). This way, the equation for \(t_{1}\) takes the form

$$\begin{aligned} (1-r)t_{1}^{3}+rt_{1}-\frac{1}{2}=0. \end{aligned}$$
(38)

Applying the second part of Lemma 1, the only positive real root of (38) is a decreasing function of r. Its maximum is therefore reached at \(r=0\), i.e. \(t_{1}\leqslant \left( \frac{1}{2}\right) ^{1/3}\). It follows that \(t_{1}-t_{0}=2t_{1}\leqslant 2^{2/3}\), which finishes the proof. \(\square \)

The Theorem in Sect. 3.2.5 is a consequence of Lemmas 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cano, A., Moreno, C. Transformation Methods for the Numerical Integration of Three-Dimensional Singular Functions. J Sci Comput 71, 571–593 (2017). https://doi.org/10.1007/s10915-016-0311-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0311-9

Keywords

Mathematics Subject Classification

Navigation