Skip to main content
Log in

Highly Accurate Pseudospectral Approximations of the Prolate Spheroidal Wave Equation for Any Bandwidth Parameter and Zonal Wavenumber

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The prolate spheroidal wave equation (PSWE) is transformed, using suitable mappings, into three different canonical forms which resemble the Jacobi, Laguerre and the Hermite differential equations. The eigenpairs of the PSWE are approximated with the corresponding classical orthogonal polynomial as a basis set. It is observed that for any zonal wavenumber m the Jacobi type pseudospectral methods are well suited for small bandwidth parameters c whereas the Hermite and Laguerre pseudospectral methods are appropriate for very large c values. Moreover, Jacobi pseudospectral methods work well for any parameter values such that \(m\ge c\). Our numerical results confirm that for any values of m, the Jacobi \(\left[ (\alpha ,\beta )=(\pm 1/2,m)\right] \) and the Laguerre \(({\upgamma }=\pm 1/2)\) pseudospectral methods formulated in this article for the numerical solution of the PSWE with small and very large bandwidth parameters, respectively, are highly efficient both from the accuracy and fastness point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1970)

    MATH  Google Scholar 

  2. Alıcı, H., Taşeli, H.: Pseudospectral methods for an equation of hypergeometric type with a perturbation. J. Comput. Appl. Math. 234, 1140–1152 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barakat, T., Abodayeh, K., Mukheimer, A.: The asymptotic iteration method for the angular spheroidal eigenvalues. J. Phys. A: Math. Gen. 38, 1299–1304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrowes, B.E., O’Neill, K., Grzegorczyk, T.M., Kong, J.A.: On the asymptotic expansion of the spheroidal wave function and its eigenvalues for complex size parameter. Stud. Appl. Math. 113, 271–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, J.P.: Prolate spheroidal wave functions as an alternative to chebyshev and legendre polynomials for spectral element and pseudospectral algorithms. J. Comput. Phys. 199, 688–716 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications Inc., Mineola (2001)

    MATH  Google Scholar 

  7. Boyd, J.P.: Prolate elements: prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral and pseudospectral algorithms. J. Comput. Phys. 199, 688–716 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boyd, J.P.: Computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions-prolate elements. ACM Trans. Math. Softw. 31, 149–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Q.Y., Gottlieb, D., Hesthaven, J.S.: Spectral methods based on prolate spheroidal wave functions for hyperbolic pdes. SIAM J. Numer. Anal. 43(5), 1912–1933 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Do-Nhat, T.: Asymptotic expansion of the Mathieu and prolate spheroidal eigenvalues for large parameter. Can. J. Phys. 77(8), 635–652 (1999)

    Article  Google Scholar 

  11. Fang, Q., Nicholls, D.P., Shen, J.: A stable, high-order method for two-dimensional bounded-obstacle scattering. J. Comput. Phys. 224, 1145–1169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flammer, C.: Spheroidal Wave Functions. Stanford University Press, Stanford (1957)

    MATH  Google Scholar 

  13. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comput. 23:221–230+s1–s10 (1969)

  14. Hogan, J.A., Lakey, J.D.: Duration and Bandwidth Limiting: Prolate Functions. Sampling and Applications, Boston (2011)

    MATH  Google Scholar 

  15. Huang, Z., Xiao, J., Boyd, J.P.: Adaptive radial basis function and Hermite function pseudospectral methods for computing eigenvalues of the prolate spheroidal wave equation for very large bandwidth parameter. J. Comput. Phys. 281, 269–284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kong, W.Y., Rokhlin, V.: A new class of highly accurate differentiation schemes based on the prolate spheroidal wave functions. Appl. Comput. Harmon. Anal. 33(2), 226–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nicholls, D.P., Reitich, F.: Analytic continuation of Dirichlet-Neumann operators. Numer. Math. 94(1), 107–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ogburn, D.X., Waters, C.L., Sciffer, M.D., Hogan, J.A., Abbott, P.C.: A finite difference construction of the spheroidal wave functions. Comput. Phys. Commun. 185, 244–253 (2014)

    Article  MATH  Google Scholar 

  19. Olver, F.W.J., Lozier, D.W., Boisvert, R.F. In: Clark, C.W. (ed.) NIST Handbook of Mathematical Functions. Press, Cambridge University (2010)

  20. Osiov, A., Rokhlin, V., Xiao, H.: Prolate Spheroidal Wave Functions of Order Zero, vol. 187. Springer, New York (2013)

    Book  Google Scholar 

  21. Schmutzhard, S., Hrycak, T., Feichtinger, H.G.: A numerical study of the Legendre-Galerkin method for the evaluation of the prolate spheroidal wave functions. Numer. Algorithms 68, 691–710 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shen, J., Wang, L.L.: Fourierization of the Legendre-Galerkin method and a new space-time spectral method. Appl. Numer. Math. 57(5–7), 710–720 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, L.L., Zhang, J., Zhang, Z.: On hp-convergence of prolate spheroidal wave functions and a new well-conditioned prolate-collocation scheme. J. Comput. Phys. 268, 377–398 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weideman, J.A.C., Trefethen, L.N.: Eigenvalues of second-order spectral differentiation matrices. SIAM J. Numer. Anal. 25, 1279–1298 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xiao, H., Rokhlin, V., Yarvin, N.: Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Probl. 17(4), 805–828 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to dedicate this research to the memory of his father who suddenly passed away just two days later than the author’s arrival to USA. He feels a hearthfelt sadness for being thousands of miles away at the moment he passed away.The first author’s research was supported by a grant from TUBITAK, the Scientific and Technological Research Council of Turkey. The second author’s research was partially supported by NSF DMS-1419053 and AFOSR FA9550-16-1-0102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Alıcı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alıcı, H., Shen, J. Highly Accurate Pseudospectral Approximations of the Prolate Spheroidal Wave Equation for Any Bandwidth Parameter and Zonal Wavenumber. J Sci Comput 71, 804–821 (2017). https://doi.org/10.1007/s10915-016-0321-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0321-7

Keywords

Mathematics Subject Classification

Navigation