Skip to main content
Log in

Conformal Mapping for the Efficient Solution of Poisson Problems with the Kansa-RBF Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider the solution of Poisson Dirichlet problems in simply-connected irregular domains. These domains are conformally mapped onto the unit disk and the resulting Poisson Dirichlet problems are solved efficiently using a Kansa-radial basis function (RBF) method with a matrix decomposition algorithm (MDA). In a similar way, we treat Poisson Dirichlet and Poisson Dirichlet–Neumann problems in doubly-connected domains. These domains are mapped onto annular domains by a conformal mapping and the resulting Poisson Dirichlet and Poisson Dirichlet–Neumann problems are solved efficiently using a Kansa-RBF MDA. Several examples demonstrating the applicability of the proposed technique are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.E.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  2. Bialecki, B., Fairweather, G., Karageorghis, A.: Matrix decomposition algorithms for elliptic boundary value problems: a survey. Numer. Algorithms 56, 253–295 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bramble, J., King, J.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buhmann, M.D.: A new class of radial basis functions with compact support. Math. Comput. 70, 307–318 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coco, A., Russo, G.: Finite-difference ghost-point multigrid methods on Cartesian grids for elliptic problems in arbitrary domains. J. Comput. Phys. 241, 464–501 (2013)

    Article  MATH  Google Scholar 

  6. Davis, P.J.: Circulant Matrices, 2nd edn. AMS Chelsea Publishing, Providence (1994)

    MATH  Google Scholar 

  7. Driscoll, T.A.: The Schwarz-Christoffel Toolbox for MATLAB, http://www.math.udel.edu/driscoll/SC

  8. Driscoll, T.A., Trefethen, L.N.: Schwarz-Christoffel Mapping, Cambridge Monographs on Applied and Computational Mathematics, vol. 8. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  9. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co. Pte. Ltd, Hackensack (2007)

  10. Fasshauer, G.E., Zhang, J.G.: On choosing optimal shape parameters for rbf approximation. Numer. Algorithms 45, 345–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fasshauer, G.E., McCourt, M.: Kernel-based Approximation Methods using MATLAB, Interdisciplinary Mathematical Sciences, vol. 19. World Scientific Publishing Co. Pte. Ltd, Hackensack (2016)

  12. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions with Applications to the Geosciences, Society for Industrial and Applied Mathematics, Philadelphia, Pa., CBMS-NSF Regional Conference Series in Applied Mathematics, No. 87 (2015)

  14. Gibou, F., Fedkiw, R.P., Cheng, L.-T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176, 205–227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic Press Inc, San Diego (2000)

    MATH  Google Scholar 

  16. Heryudono, A.R.H., Driscoll, T.A.: Radial basis function interpolation on irregular domain through conformal transplantation. J. Sci. Comput. 44, 286–300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hough, D.M.: User’s Guide to CONFPACK, IPS Research Report 90–11. ETH, Zürich (1990)

    Google Scholar 

  18. Kamgnia, E., Sameh, A.: A fast elliptic solver for simply connected domains. Comput. Phys. Comm. 55, 43–69 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kansa, E.J.: Multiquadrics: a scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. P. Noordhoff Ltd., Groningen (1958)

    MATH  Google Scholar 

  21. Karageorghis, A., Chen, C.S., Liu, X.-Y.: Kansa-RBF algorithms for elliptic problems in axisymmetric domains. SIAM J. Sci. Comput. 38, A435–A470 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karageorghis, A., Smyrlis, Y.-S.: Conformal mapping for the efficient MFS solution of Dirichlet boundary value problems. Computing 83, 1–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kober, H.: Dictionary of Conformal Representations. Admiralty Computing Service, Department of Scientific Research and Experiment, Admiralty, London (1944–1948)

  24. Kythe, P.K.: Computational Conformal Mapping. Birkhäuser, Boston (1998)

    Book  MATH  Google Scholar 

  25. Lee, C.K., Liu, X., Fan, S.C.: Local multiquadric approximation for solving boundary value problems. Comput. Mech. 30, 396–409 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Levin, D., Papamichael, N., Sideridis, A.: On the use of conformal transformations for the numerical solution of harmonic boundary value problems. Comput. Methods Appl. Mech. Eng. 12, 201–218 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, X.Y., Karageorghis, A., Chen, C.S.: A Kansa-radial basis function method for elliptic boundary value problems in annular domains. J. Sci. Comput. 65, 1240–1269 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, X.Y., Li, W., Li, M., Chen, C.S.: Circulant matrix and conformal mapping for solving partial differential equations. Comput. Math. Appl. 68, 67–76 (2014)

    Article  MathSciNet  Google Scholar 

  29. Moiseev, I.: Elliptic functions for Matlab and Octave. GitHub repository (2008). doi:10.5281/zenodo.48264

    Google Scholar 

  30. Nehari, Z.: Conformal Mapping. Reprinting of the 1952 edition. Dover Publications, Inc., New York (1975)

  31. Papamichael, N.: Dieter Gaier’s contributions to numerical conformal mapping. Comput. Methods Funct. Theory 3, 1–53 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Papamichael, N., Stylianopoulos, N.: Numerical Conformal Mapping: Domain Decomposition and the Mapping of Quadrilaterals. World Scientific Publishing Co., Pte. Ltd, Hackensack (2010)

  33. Spiegel, M.R.: Complex Variables. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  34. Symm, G.T.: Conformal mapping of doubly-connected domains. Numer. Math. 13, 448–457 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  35. The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA, Matlab

  36. Warby, M.K.: BKMPACK User’s Guide, Technical Report. Department of Mathematics and Statistics, Brunel University, Uxbridge (1992)

Download references

Acknowledgements

The authors are grateful to Professor Nick Papamichael for many enlightening discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XY., Chen, C.S. & Karageorghis, A. Conformal Mapping for the Efficient Solution of Poisson Problems with the Kansa-RBF Method. J Sci Comput 71, 1035–1061 (2017). https://doi.org/10.1007/s10915-016-0330-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0330-6

Keywords

Mathematics Subject Classification

Navigation