Skip to main content
Log in

Extended Algorithms for Approximating Variable Order Fractional Derivatives with Applications

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper proposes accurate and robust algorithms for approximating variable order fractional derivatives of arbitrary order. The proposed schemes are based on finite difference approximations. We compare the performance of algorithms by introducing a new formulation of experimental convergence order. Two initial value problems are considered and solved by means of the proposed methods. Numerical results are provided justifying the usefulness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Machado, J.A.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Machado, J.A.T., Galhano, A.M., Trujillo, J.J.: On development of fractional calculus during the last fifty years. Scientometrics 98(1), 577–582 (2014)

    Article  Google Scholar 

  3. Machado, J.A.T., Mainardi, F., Kiryakova, V.: Fractional calculus: Quo Vadimus? (Where Are We Going?) contributions to round table discussion held at ICFDA 2014. Fract. Calc. Appl. Anal. 18(2), 495–526 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 81(3), 1023–1052 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Moghaddam, B.P., Aghili, A.: A numerical method for solving linear non-homogenous fractional ordinary differential equation. Appl. Math. Inf. Sc. 6(3), 441–445 (2012)

    MathSciNet  Google Scholar 

  6. Machado, J.A.T.: Numerical calculation of the left and right fractional derivatives. J. Comput. Phys. 293, 96–103 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhrawy, A.H., Doha, E.H., Machado, J.A.T., Ezz-Eldien, S.S.: An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian J. Control 18(2), 1–14 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Moghaddam, B.P., Mostaghim, Z.S.: Numerical method based on finite difference for solving fractional delay differential equations. J. Taibah Univ. Sci. 7(3), 120–127 (2013)

    Article  Google Scholar 

  9. Moghaddam, B.P., Mostaghim, Z.S.: A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations. Ain Shams Eng. J. 5(2), 585–594 (2014)

    Article  Google Scholar 

  10. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1(4), 277–300 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Almeida, A., Samko, S.: Fractional and hypersingular operators in variable exponent spaces on metric measure spaces. Mediterr. J. Math. 6(2), 215–232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12, 692–703 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1), 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56(1), 145–157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pedro, H.T.C., Kobayashi, M.H., Pereira, J.M.C., Coimbra, C.F.M.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ramirez, L.E.S., Coimbra, C.F.M.: On the selection and meaning of variable order operators for dynamic modeling. Int. J. Differ. Equ. 2010, 846107 (2010). doi:10.1155/2010/846107

  17. Ramirez, L.E.S., Coimbra, C.F.M.: On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Phys. D 240(13), 1111–1118 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Atanacković, T.M., Janev, M., Pilipović, S., Zorica, D.: An expansion formula for fractional derivatives of variable order. Open Phys. 11(10), 1350–1360 (2013)

    Google Scholar 

  19. Tavares, D., Almeida, R., Torres, D.F.M.: Caputo derivatives of fractional variable order: numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 35, 69–87 (2016)

    Article  MathSciNet  Google Scholar 

  20. Yaghoobi, Sh., Moghaddam, B.P., Ivaz, K.: An efficient cubic spline approximation for variable-order fractional differential equations with time delay. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-3079-4

  21. Moghaddam, B.P., Machado, J.A.T.: SM-algorithms for approximating the variable-order fractional derivative of high order. Fundam inform. 150, 1–19 (2017). doi:10.3233/FI-2016-1500

  22. Valério, D., Costa, J.S.: Variable-order fractional derivatives and their numerical approximations. Sig. Process. 91(3), 470–483 (2011)

    Article  MATH  Google Scholar 

  23. Sierociuk, D., Malesza, W., Macias, M.: Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl. Math. Model. 39(13), 3876–3888 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sierociuk, D., Malesza, W., Macias, M.: On the recursive fractional variable-order derivative: equivalent switching strategy, duality, and analog modeling. Circuits Syst. Signal Process. 34(4), 1077–1113 (2014). doi:10.1007/s00034-014-9895-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Moghaddam, B.P., Yaghoobi, S., Machado, J.A.T.: An extended predictor-corrector algorithm for variable-order fractional delay differential equations. J. Comput. Nonlinear Dyn. 11(6), 061001 (2016). doi:10.1115/1.4032574

    Article  Google Scholar 

  26. Zhao, X., Sun, Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Almeida, R., Torres, D.F.M.: An expansion formula with higher-order derivatives for fractional operators of variable order. Sci. World J. 2013(11), 1309–4899 (2013)

    Google Scholar 

  28. Sun, H.G., Chen, W., Sheng, H., Chen, Y.Q.: On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys. Lett. A 374(7), 906–910 (2010)

    Article  MATH  Google Scholar 

  29. Ross, B., Samko, S.K.: Fractional integration operator of variable order in the holder spaces \(H^{\lambda (x)}\). J. Math. Math. Sci. 18(4), 777–788 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sun, H.G., Chen, W., Chen, Y.Q.: Variable order fractional differential operators in anomalous diffusion modeling. Phys. A 388(21), 4586–4592 (2009)

    Article  Google Scholar 

  31. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1), 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Orosco, J., Coimbra, C.F.M.: On the control and stability of variable-order mechanical systems. Nonlinear Dyn (June 30, 2016). doi:10.1007/s11071-016-2916-9

  33. Bartels, S.: Finite difference method. In: Numerical Approximation of Partial Differential Equations, Springer International Publishing (2016)

  34. Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212(2), 435–445 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32(4), 1740–1760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bhrawy, A.H., Zaky, M.A.: Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn. 85(3), 1815–1823 (2016). doi:10.1007/s11071-016-2797-y

    Article  MathSciNet  MATH  Google Scholar 

  38. Moghaddam, B.P., Machado, J.A.T.: A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Comput. Math. Appl. (2016). doi:10.1016/j.camwa.2016.07.010

    Google Scholar 

  39. Soon, C.M., Coimbra, C.F., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14(6), 378–389 (2005)

    Article  MATH  Google Scholar 

  40. Sousa, E.: How to approximate the fractional derivative of order \(1<\alpha \le 2\). Int. J. Bifur. Chaos Appl. Sci. Eng. 22(4), 1–6 (2012)

    Article  MathSciNet  Google Scholar 

  41. Cooper, F., Khare, A., Ukhatme, U.: Supersymmetry and quantum mechanics. Phys. Rep. 251(5–6), 267–285 (1995)

    Article  MathSciNet  Google Scholar 

  42. Zelekin, M.I.: Homogeneous Spaces and Riccati Equation in Variational Calculus. Factorial, Moscow (1998)

    Google Scholar 

  43. Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective Action in Quantum Gravity. IOP Publishing Ltd., Bristol (1992)

    Google Scholar 

  44. Milton, K., Odintsov, S.D., Zerbini, S.: Bulk versus brane running couplings. Phys. Rev. D 65, 065012 (2002)

    Article  Google Scholar 

  45. Rosu, H.C., Aceves de la Cruz, F.: One-parameter Darboux-transformed quantum actions in Thermodynamics. Phys. Scr. 65(5), 377–382 (2002). doi:10.1238/physica.regular.065a00377

  46. Nowakowski, M., Rosu, H.C.: Newtons laws of motion in the form of a Riccati equation. Phys. Rev. E 65, 047602 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Olesen, P., Ferkinghoff-Borg, J., Jensen, M.H., Mathiesen, J.: Diffusion, fragmentation, and coagulation processes: analytical and numerical results. Phys. Rev. E 72, 031103 (2005)

    Article  Google Scholar 

  48. Merdan, M.: On the solutions fractional Riccati differential equation with modified Riemann-Liouville derivative. Int. J. Diff. Equ. 2012, 346089 (2012). doi:10.1155/2012/346089

  49. Hasan, M.K., Ahamed, M.S., Huq, M.A., Alam, M.S., Hossain, M.B.: A new implicit method for numerical solution of singular initial value problems. Open Math. J. 2(1), 1–5 (2014)

    Article  Google Scholar 

  50. Davis, H.T.: Introduction to Nonlinear Differentialand Integral Equations. Dover Publications, New York (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Parsa Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddam, B.P., Machado, J.A.T. Extended Algorithms for Approximating Variable Order Fractional Derivatives with Applications. J Sci Comput 71, 1351–1374 (2017). https://doi.org/10.1007/s10915-016-0343-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0343-1

Keywords

Mathematics Subject Classification

Navigation