Skip to main content
Log in

Uniformly Convergent Cubic Nonconforming Element For Darcy–Stokes Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we construct a cubic element named DSC33 for the Darcy–Stokes problem of three-dimensional space. The finite element space \({{\varvec{V}}}_{h}\) for velocity is -conforming, i.e., the normal component of a function in \({{\varvec{V}}}_{h}\) is continuous across the element boundaries, meanwhile the tangential component of a function in \({{\varvec{V}}}_{h}\) is averagely continuous across the element boundaries, hence \({{\varvec{V}}}_{h}\) is \({{\varvec{H}}}^{1}\)-average conforming. We prove that this element is uniformly convergent with respect to the perturbation constant \(\varepsilon \) for the Darcy–Stokes problem. In addition, we construct a discrete de Rham complex corresponding to DSC33 element. The finite element spaces in the discrete de Rham complex can be applied to some singular perturbation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arnold, D.N.: Differential complexes and numerical stability. In: Proceedings of the International Congress of Mathematicians, vol. 1, pp. 137–157. Higher Education Press, Beijing (2002)

  2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Qin, J.: Quadratic velocity/linear pressure Stokes elements. In: Vichnevetsky, R., Knight, D., Richter, G. (eds.) Advances in Computer Methods for Partial Differential Equations-VII, pp. 28–34. IMACS, New Brunswick (1992)

  4. Badia, S., Codina, R.: Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal. 47, 1971–2000 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  6. Brezzi, F., Douglas, J., Fortin, M., Marini, L.D.: Efficient rectangualr mixed finite elements in two and three space variables. RAIRO Model. Math. Anal. Numer. 21(4), 581–604 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problem. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  9. Brezzi, F., Fortin, M., Marini, L.D.: Mixed finite element methods with continuous stress. Math. Models Methods Appl. Sci. 3, 275–287 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burman, E., Hansbo, P.: Stabilized Crouzeix–Raviart element for the Darcy–Stokes problem. Numer. Methods Partial Differ. Equ. 21, 986–997 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, H.R., Chen, S.C., Qiao, Z.H.: \(C^{0}\)-nonconforming tetrahedral and cuboidelements for the three-dimensional fourth order elliptic problem. Numer. Math. 124, 99–119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, S.C., Dong, L.N., Qiao, Z.H.: Uniformly convergent \(H(\mathit{div})\)-conforming rectangular elements for Darcy–Stokes problem. Sci. China (Math.) 12, 2723–2736 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Ser. Rouge. 7, 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  14. Das, D.B.: Hydrodynamic modeling for groundwater flow through permeable barriers. Hydrol. Process. 16, 3393–3418 (2002)

    Article  Google Scholar 

  15. Girault, V., Raviar, P.A.: Finite Element Methods for Navier-Stokes equation, Theory and Algorithms. Springer, New York (1986)

    Book  Google Scholar 

  16. Grieble, J., Klitz, M.: Nomohenization and numerical simulation of flow in geometries with textile microstructures. Multiscale Model. Simul. 8, 1439–1460 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guzman, J., Neilan, M.: A family of nonconforming elements for the Brinkman problem. IMA J. Numer. Anal. 32, 1484–1508 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kara, T., Goldak, J.: Three-dimensional numerical analysis of heat and mass transfer in heat pipes. Heat Mass Trasfer. 43, 775–785 (2007)

    Article  Google Scholar 

  19. Konno, J.: Finite Element Methods for Flow in Porous Media. Ph.D. Thesis, Aalto University (2011)

  20. Konno, J., Stenberg, R.: Numerical computations with H(div)-finite elements for the Brinkman problem. Comput. Geosci. 16, 139–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Konno, J., Stenberg, R.: Analysis of H(div)-conforming finite elements for the Brinkman problem. Math. Models Methods Appl. Sci. 21, 2227–2248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liua, C.Y., Yinga, W.M., Tan, J.O.: Flow in the adiabatic section of a heat pipe. Int. Commun. Heat Mass Transfer. 16, 79–88 (1989)

    Article  Google Scholar 

  23. Mardal, K.A., Tai, X.C., Winther, R.: A robust finite element method for Darcy–Stokes flow. SIAM J. Numer. Anal. 40, 1605–1631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Miladi, W., Racila, M.: Mathematical model of fluid flow in an osteon influence of cardiac system. Comput. Methods Biomech. Biomed. Eng. 12, 187–188 (2009)

    Article  Google Scholar 

  25. Nassehi, V.: Modelling of combined Navier–Stokes and Darcy flows in crossflow membrane filtration. Chem. Eng. Sci. 53, 1253–1265 (1998)

    Article  Google Scholar 

  26. Nédelec, J.C.: Mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nédelec, J.C.: A new family of mixed finite element in \(\mathbb{R}^{3}\). Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qin, J.: On the Convergence of Some Low Order Mixed Finite Elements for Incompressible Fluids. Ph.D. Thesis, Penn State University (1994)

  29. Raviart, P.A., Thomas, J.: A mixed finite element method for 2-nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of the Finite Elements Method, Lectures Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977)

    Chapter  Google Scholar 

  30. Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. Math. Model. Numer. Anal. 19, 111–143 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tai, X.C., Winther, R.: A discrete de Rham complex with enhanced smoothness. Calcolo 43, 287–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xie, X.P., Xu, J.C., Xue, G.R.: Uniformly-stable finite element methods for Darcy–Stokes–Brinkman models. J. Comput. Math. 26, 437–455 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Xu, X.J., Zhang, S.Y.: A new divergence-free interpolation operator with applications to the Darcy–Stokes–Brinkman equations. SIAM J. Sci. Comput. 32, 855–874 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xue, G.R.: Numerical Methods for Multiphysics, Multiphase, and Multicomponent Models for Fuel Cells. Ph.D. Thesis, Pennsylvania State University (2008)

  35. Zhang, S.Y.: A new family of stable mixed finite elements for the 3d Stokes equations. Math. Comput. 74, 543–554 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, S., Xie, X.P., Chen, Y.: Low order nonconforming rectangular finite element methods for Darcy–Stokes problems. J. Comput. Math. 27, 400–424 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We should like to thank the anonymous referees for their helpful suggestions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-na Dong.

Additional information

This work is supported by NSFC (11371331).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sc., Dong, Ln. & Zhao, Jk. Uniformly Convergent Cubic Nonconforming Element For Darcy–Stokes Problem. J Sci Comput 72, 231–251 (2017). https://doi.org/10.1007/s10915-016-0353-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0353-z

Keywords

Mathematics Subject Classification

Navigation