Skip to main content
Log in

Total Generalized Variation Based Denoising Models for Ultrasound Images

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we introduce a class of variational models for the restoration of ultrasound images corrupted by noise. The proposed models involve the convex or nonconvex total generalized variation regularization. The total generalized variation regularization ameliorates the staircasing artifacts that appear in the restored images of total variation based models. Incorporating total generalized variation regularization with nonconvexity helps preserve edges in the restored images. To realize the proposed convex model, we adopt the alternating direction method of multipliers, and the iteratively reweighted \(\ell _1\) algorithm is employed to handle the nonconvex model. These methods result in fast and efficient optimization algorithms for solving our models. Numerical experiments demonstrate that the proposed models are superior to other state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aubert, G., Aujol, J.F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Barcelos, C.A., Vieira, L.E.: Ultrasound speckle noise reduction via an adaptive edge-controlled variational method. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 145–151 (2014)

  4. Besag, J.: Digital image processing: towards Bayesian image analysis. J. Appl. Stat. 16(3), 395–407 (1989)

    Article  Google Scholar 

  5. Bredies, K., Holler, M.: A TGV regularized wavelet based zooming model. Scale Space Var. Methods Comput. Vis. 7893, 149–160 (2013)

    Article  Google Scholar 

  6. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bredies, K., Kunisch, K., Valkonen, T.: Properties of \(L^1\) -\(TGV^2\): The one-dimensional case. J. Math. Anal. Appl. 389(1), 438–454 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candés, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  10. Chambolle, A., Lions, P.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66, 889–916 (2016)

    Article  MathSciNet  Google Scholar 

  14. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 4(7), 932–946 (1995)

    Article  Google Scholar 

  17. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  18. Getreuer, P.: Total variation inpainting using split Bregman. Image Process. On Line 2, 147–157 (2012)

    Article  Google Scholar 

  19. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45, 272–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin, Z., Yang, X.: A variational model to remove the multiplicative noise in ultrasound images. J. Math. Imaging Vis. 39, 62–74 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kang, M., Jung, M., Kang, M.: Nonconvex higher-order regularization based Rician noise removal with spatially adaptive parameters. J. Vis. Commun. Image R. 32, 180–193 (2015)

    Article  Google Scholar 

  23. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1033–1041 (2009)

  24. Krissian, K., Kikinis, R., Westin, C., Vosburgh, K.: Speckle constrained filtering of ultrasound images. IEEE Comput. Vis. Pattern Recogn. 2, 547–552 (2005)

    Google Scholar 

  25. Kuan, D.T., Sawchuk, A.A., Strand, T.C., Chavel, P.: Adaptive restoration of images with speckle. IEEE Trans. Acoust. Speech Signal Process. ASSP–35, 373–383 (1987)

    Article  Google Scholar 

  26. Lee, J.S.: Speckle suppression and anaylsis for synthetic aperture radar. Opt. Eng. 25(5), 636–643 (1999)

    Google Scholar 

  27. Li, F., Shen, C., Fan, J., Shen, C.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image R. 18(4), 322–330 (2007)

    Article  Google Scholar 

  28. Loupas, T., McDicken, W.N., Allan, P.L.: An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 36(1), 129–135 (1989)

    Article  Google Scholar 

  29. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  MATH  Google Scholar 

  30. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Kluwer, Boston (2004)

    MATH  Google Scholar 

  31. Nikolova, M., Ng, M.K., Tam, C.P.: Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Trans. Image Process. 19(12), 3073–3088 (2010)

    Article  MathSciNet  Google Scholar 

  32. Nikolova, M., Ng, M.K., Zhang, S., Ching, W.: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 1(1), 2–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  34. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: An iterated \(\ell _1\) algorithm for non-smooth non-convex optimization in computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)

  35. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: On iteratively reweighted algorithm for nonsmooth nonconvex optimization in computer vision. SIAM J. Imaging Sci. 8(1), 331–372 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Oh, S., Woo, H., Yun, S., Kang, M.: Non-convex hybrid total variation for image denoising. J. Vis. Commun. Image R. 24(3), 332–344 (2013)

    Article  Google Scholar 

  37. Papafitsoros, K., Schönlieb, C.B.: A combined first and second order variational approach for image restoration. J. Math. Imaging Vis. 48, 308–338 (2014)

    Article  MATH  Google Scholar 

  38. Robini, M., Lachal, A., Magnin, I.: A stochastic continuation approach to piecewise constant reconstruction. IEEE Trans. Image Process. 16(10), 2576–2589 (2007)

    Article  MathSciNet  Google Scholar 

  39. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Setzer, S., Steidl, G.: Variational methods with higher-order derivatives in image processing. In: Approximation Theory XII: San Antonio, pp. 360–386 (2008)

  41. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image R. 21(3), 193–199 (2010)

    Article  Google Scholar 

  42. Shi, J., Osher, S.: A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imaging Sci. 1(3), 294–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imaging Vis. 36(2), 168–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Teboul, S., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Variational approach for edge-preserving regularization using coupled PDEs. IEEE Trans. Image Process. 7(3), 387–397 (1998)

    Article  Google Scholar 

  45. Vese, L., Chan, T.: Redced non-convex functional approximations for image restoration and segmentation. UCLA CAM Report 97-56 (1997)

  46. Woo, H., Yun, S.: Proximal linearized alternating direction method for multiplicative denoising. SIAM J. Sci. Comput. 35(2), B336–B358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, J., Zhang, Y.: Alternating direction algorithms for \(\ell _1\) problems in compressive sensing. SIAM J. Sci. Comput 33(1), 250–278 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Myeongmin Kang was supported by the NRF (2016R1C1B1009808). Myungjoo Kang was supported by the NRF (2014R1A2A1A10050531, 2015R1A5A1009350), MOTIE (10048720) and IITP-MSIP (B0717-16-0107). Miyoun Jung was supported by the Hankuk University of Foreign Studies Research Fund and NRF (2013R1A1A3010416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyoun Jung.

Appendix: The Proof of Theorem 3

Appendix: The Proof of Theorem 3

Proof

For any fixed \(x\in \varOmega ,\) we can deduce from the inequality of arithmetic-geometric mean that for \(u > 0\),

$$\begin{aligned} \frac{(f(x)-u)^2}{u} = u + \frac{f(x)^2}{u} - 2f(x) \ge 2|f(x)| - 2f(x). \end{aligned}$$

It follows from the above inequality that

$$\begin{aligned} E(u) \ge \gamma \int _\varOmega \frac{(f-u)^2}{u} \,\,dx \ge \gamma \int _\varOmega 2|f| - 2f \,\,dx, \end{aligned}$$

i.e., E(u) is bounded below. Hence, we can choose a minimizing sequence \(\{u^n\}\in L^2(\varOmega )\) for problem (12), and the sequence \(\{TGV^2_\alpha (u^n)\}\) is also bounded.

In addition, from the Poincar\(\acute{e}\) inequality of \(TGV^2_\alpha \), we can obtain that

$$\begin{aligned} \Vert u^n - Pu^n\Vert _2 \le C\cdot TGV^2_\alpha (u^n), \quad \text {for some constant } C, \end{aligned}$$

where \(P : L^2(\varOmega ) \rightarrow \ker (TGV_\alpha ^2)\) is a linear projection. It follows that \(u^n - Pu^n\) is bounded in \(L^2(\varOmega )\) for each n.

We can also easily deduce that for \(u > 0\),

$$\begin{aligned} \int _\varOmega \frac{(f-u)^2}{u}\,\,dx= & {} \int _\varOmega u + \frac{f^2}{u} - 2f \,\,dx \ge \Vert u\Vert _1 - \int _\varOmega 2f\,\,dx\\\ge & {} c\cdot \Vert Pu\Vert _1 - \int _\varOmega 2f\,\,dx \ge c\cdot \Vert Pu\Vert _2 - \int _\varOmega 2f\,\,dx, \end{aligned}$$

where c is a positive constant that is independent of n. Since \(\{u^n\}\) is a minimizing sequence of problem (12), \(\Vert Pu^n\Vert _2\) is bounded from the above inequalities.

Then, from the following inequalities,

$$\begin{aligned} \Vert u^n\Vert _2 \le \Vert u^n - Pu^n + Pu^n \Vert _2 \le \Vert u^n - Pu^n\Vert _2 + \Vert Pu^n\Vert _2, \end{aligned}$$

we can conclude that \(\{u^n\}\) is bounded in \(L^2(\varOmega )\). Therefore, there exist a subsequence \(\{u^{n_k}\}\) and \(u^*\in L^2(\varOmega )\) such that the subsequence converges weakly to \(u^*\). Since \(u^n > 0\) and \(E(u^*)\) must be bounded, \(u^* > 0\) and \(u^*\in S(\varOmega )\).

Because \(TGV^2_\alpha \) is lower semicontinuous, E(u) is also lower semicontinuous. By applying Fatou’s Lemma, we have

$$\begin{aligned} E(u^*) \le \liminf _{n\rightarrow \infty } E(u^n) = \inf _{u\in S(\varOmega )} E(u), \end{aligned}$$

which implies that \(u^*\) is a solution of problem (12).

If we let \(p(t) = \frac{(f(x) -t)^2}{t}\) for any fixed \(x\in \varOmega \), then its second derivative is given by \(p''(t) = \frac{2f(x)^2}{t^3}\) and thus \(p''(t) > 0\) for any \(t > 0\). Hence, p is a strictly convex function when \(t > 0\). Therefore, problem (12) has a unique minimizer. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Kang, M. & Jung, M. Total Generalized Variation Based Denoising Models for Ultrasound Images. J Sci Comput 72, 172–197 (2017). https://doi.org/10.1007/s10915-017-0357-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0357-3

Keywords

Navigation